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Interpretation of positron-annihilation data with respect
to the electron-positron enhancement factors. II. Applications
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The theoretical considerations of the properties of positron-annihilation characteristics in simple met-
als, presented in the previous paper, are verified for the alkali metals and Mg. Results are based on a
local-density approach to electron-positron correlations and band-structure calculations are performed
within the linear-muffin-tin-orbitals —average-spheres approximation. The validity of the average elec-
tron density approximation is discussed and the effective densities, determined by electron-positron
correlation effects, are presented for valence electrons in simple metals. Methods of extracting the full
shape of the electron-positron momentum density from experimental curves are recommended. The pro-
posed analysis of experimental data applied to simple metals allows more reliable verificaton of the shape
of electron-positron enhancement factors near the Fermi surface.

I. INTRODUCTION

In the interpretation of experimental data for angular
correlation of positron-annihilation radiation (ACPAR)
with respect to the electronic structure of materials, the
knowledge of the electron-positron momentum-
dependent enhancement factors s(p) is necessary. In Ref.
1 (hereafter referred to as I) properties of these parame-
ters are discussed on mathematical grounds. In Sec. III
our general considerations concerning valence electrons
in simple metals are checked on the examples of alkali
metals and Mg. Calculations are based on the band-
structure results obtained within the linear-muffin-tin or-
bitals (LMTO) —average-spheres approximation (ASA).
Electron-positron correlations are treated within the
local-density approach (LDA).

In I it was shown that the form of the positron wave
function; the state-independent local electron-positron
correlations; or, generally any state-independent correla-
tions, slowly varying and periodic in the lattice function
cannot change remarkably the shape of momentum den-
sity of valence electrons inside the central Fermi surface
(FS) in simple metals. If the state-dependent correlations
are applied within the LDA, the results for the electron-
positron enhancement factors E,""(p) are very close to
corresponding characteristics obtained by the average
electron density ' (AED) approximation.

The applicability of the AED for nearly free electronic
(NFE) populations has an essential meaning. The LDA
has been quite often applied recently in calculations of
positron-annihilation characteristics in real metals. Nev-
ertheless, there is a question of which alternative
electron-gas theories provide correct enhancement fac-
tors @~sf"(p,r, ). Before applying the jellium results to
LDA calculations in more complicated metals, we should
verify g&Ef'(p, r, ). The conversion LDA~AED for mo-
menta inside the FS gives such opportunity in the case of
simple metals. The AED parameters r,""for valence
electrons in a few simple metals are presented in Sec. IV.

Another problem, connected with "experimental"
enhancement factors E,'„",(p), follows from the fact that
the biparabolic approximation of 8""(p ), applied to
fitting experimental ACPAR data, is not valid even in
an electron gas. For this reason, the extraction of a real
momentum dependence of E,'„"',(p) is of vital interest.
Section V is devoted to methods of working with experi-
mental positron-annihilation data with respect to this
problem.

II. BASIC FORMULAS

harp

2
2

p r(p)=
3 g n(kj) f e 't"tttff~(r, r)dr

8m
(2)

respectively. Here

gf„(r)=e'"'g u~ (Cx)e'
G

(3)

are the electron wave functions in the host material,
gf~i(r„rz) denote the pair wave functions of electron in
the initial state kj at r, and thermalized positron at r,
n(kj) are the occupation numbers of the states kj, while
rp and c are the classical electron radius and velocity of
light, respectively. Momenta p in the Eqs. (1)—(3) are in
the extended zone scheme and k are considered inside the
first Brillouin zone (1BZ). Vectors Cs denote reciprocal
lattice vectors. The total annihilation rate A, (A, = I/~),
where r is the positron lifetime) is related to p r(p) ac-
cording to the expression

Here the main denotations used in I are briefly repeat-
ed. Electron momentum density (EMD) and 2y momen-
tum density of annihilation pairs are given by the expres-
sions

&TpC
2

2
p'(p)=

3 g n(kj) f e ' '1bfl(r)dr
8m
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k= J p r(p)dp=vwoc J dr g n(kj)lgf~(r, r)l

Functions gk (r, r) may be generally written as

Xkj(r)ekj(r) [fkj(r) l 0 +( r)1 kj( r)

(4)

and

p'(p=k+G*)= g n(kj)luk~(G')l
kj

p(p —k+G*)= lu„*(G*)l'lh„*(0)l'

x
l
I+a(kj*,G*)l2

where P+(r) stands for a positron wave function and
yk~(r) are periodic in the lattice, i.e.,

yk (r)= g hkJ(G)e'
G

x n(kJ*)+ g lwkj, G*)l'

(8a)

Depending on the approximation applied to 1tffJ(r„rz)
we can distinguish the following cases. '

(i) The independent particle model (IPM), which as-
sumes fk, (r ) = 1, i.e., ykJ ( r ) =g+ ( r ). Here we have

p' (p) =s' (p) Xp'(p) .

respectively, where

a(kj, G*)= [hk)(G* —Gk )]

X g hkJ(G —G*)uk (G)/uk (Gk. ) (8b)
GAG~.

(ii) The AED, ' which corresponds to the LDA in a
homogeneous system. In this case

hk (G*—GkJ ) uk, .(Gk~ ) hkJ(0)

while

(r)[&carr(k~ rcarr))1/2

p (p)= ,'s,;['(p, r,"")Xp' (p) .

(iii) The LDA employing state-independent correlations,
i.e.,

fkj(r) = Si'c'ii'[pO "s(r) l

Xkj(r) 0+(r)[ sj ll lpo " (r)) ]

where momentum po is independent of the state kj and
its choice depends on the approach. ' Here

[1+a(kj,G*)]
[1+a(kj",G*)]

Vectors Gk and band j* fulfill the relations

lui„(G,, ) I

~ luk, (G)
I

G .~=G* .kj*

III. INFLUENCE OF POSITRON DISTRIBUTION
AND STATE-INDEPENDENT CORRELATIONS

ON THE RESULTING ACPAR SPECTRUM

(8c)

po (p)=so""(p)xp' (p)=so (p)xp'(p),
where

e r(P)=so""(P)Xe' (P) .

(iv) The LDA using energy-dependent correlations, e.g.,

fk, (r) =si"i["[&k,/&+, r, (r)),
pe(r) =P+(r) [c„",(["[E~~/E~, r, (r)]]

where Ek - and E+ are the energy of the state kj and Fer-
mi energy, respectively. The corresponding momentum
density is given by

p, (p)=s,"'"(p)Xp' (p)=e, r(p) Xp'(p),
where

s ~(p)=s,' "(p)Xe (p) .

(v) An exact form of Pff~(r, r) which, according to our
knowledge, has not been determined by theory up to now.

Equations (2), (3), (5), and (6) lead to the following ex-
pressions for the p'(p) and the "generalized" momentum
density p(p) (for more details see I):

In this section we examine models (i) and (iii) of Sec. II
[which assume yk (r) independent of the electronic state
kj] in few representatives of simple metals. Results,
based on LMTO-ASA band-structure calculations, "
confirm our theoretical considerations presented in I.

Valence electrons in simple metals are described by the
NFE model reasonably well. Except for the states kj
close to the BZ boundary, within the NFE and for mo-
menta p inside the central FS there is only one "leading"
Fourier coefficient in the expansion (3) of

Pf J(r) [namely,
ukJ(GkJ )], and the other (umklapp) components are very
small. Due to this fact the momentum-dependent func-
tions a(kj, G* ) and P(kj, G*) in Eqs. (8) are almost negli-
gible and the resulting enhancement factor
s(p=k+G*)=p(p)/p'(p) is close to lh„., (0)l . Thus,
in the case of the IPM or state-independent correlation
functions the nearly constant value of s(p) should be ob-
tained. The aim of this section is to verify this hypothesis
in a series of simple metals.

In alkali metals the Fermi momentum is inside the 1BZ
and only one band j*=1 is occupied, i.e., P(kj, G*)=0
for j&1. For momenta p inside the FS we have

s(p =k) =
lh (o) l'

l
1+a(kl, o) l' .
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It is apparent that if y(r) is not state selective, the func-
tion a(k1, 0) is the only one responsible for momentum
dependence of E(p). It is obvious that Ia(kl, 0)l achieves
its maximum at the FS, since luk&(0)l decreases when k
approaches the BZ boundary [while the umklapp com-
ponents u&t(GWO) increase]. The values of

8~PM(p)/E~PM(0):
I

1+atpM(kl 0)I2

in Li, Na, K, and Mg for p=pF are displayed in the
second row of Table I. It can be seen that values of
Ia (pF1,0)l do not exceed 2%. That confirms our cal-
culations of I and is consistent with results obtained by
Sormann. ' The change in Eo'""(p)=eP(p)/E' (p) at the
FS is even less pronounced (up to l%%uo), as Eo'""[0,r, (r) ] is

more slowly varying function than g+(r), especially in

the vicinity of the ionic cores (the same conclusions are
valid in Mg, as shown below).

In Mg the Fermi momentum pF is outside the 1BZ.
This is illustrated in Fig. 1, where the spherical FS of
hexagonal close-packed metal with two s electrons per
atom is shown both in the extended (p space) and the re-
duced (k space) zone schemes. It can be seen that in the
second band (j =2) the leading term in the expansion (3)
of the electron wave function is ut, 2(G, ) (where

Cx, =[100]) for momenta k inside the area XLM, and

ut, 2( —[001]) for k inside the area I ALX. If p=k+G,
is above the line Xl, the band j*=3gives the main con-
tribution to p'(p) and p(p). So, within NFE, for momen-
ta p =k+ G* inside the FS (except the states on the BZ
boundary) the contribution of only one state kj* dom-
inates in p'(p), i.e. , pNFE(p=k+G*) = lu&, e(G*)l .

Let us consider momenta p=(p„0,0) along the line

I M. Inside the lBZ pN„E(p) reads as

pNFE(p=k) =n(ki)lukt(0)l'

for k&I ALL (or Ipl —lrMI) .

Outside the 1BZ we have

pNFE(p=k+Gt) -=n(k2) luk2(Gt)l'

for k &ELM (or rMI Ipl IpFI) . (9b)

In the case of Fermi momentum outside the 1BZ, both

~ I I I I ~
I r ~ ~

r I I r 1 ~

second-bond holes

t bi rd —band ei ect rane

[

IA

I

I

I

I

fourth-band electrons

FIG. 1. Fermi surface of Mg on the I MLA plane in the ex-
tended (left-hand side) and reduced (right-hand side) zone
schemes pl and p2 mark the region where p(p) =p&(p), i.e., only
one band is occupied.

pNFF(p=k+G*)= luk, (Cx*)l lh(0)l

X In(kj*)+ g lf3(kj, G*)l

the terms a(kj, Cx*) and P(kj, Cx*) appear in Eqs. (8). In
particular, due to nonzero values of 13(kj,G*), the jumps
in p' (p) and po (p) should be observed in the region
of the band superposition. Nevertheless, our calculations
of p r(p) in Mg (Ref. 11(c)] indicate that these jumps are
very small, as predicted on mathematical grounds in I.
Within the IPM the results for the enhancement factor

(p ) are as follows: E (p )/E (0)= 1, 1.002,
»d 1.042 for Ip I

~
I p, I, Ip, l I p I I

rM I, «d
I
rM

I

&
I p I

~
I p~ I, respectively (see Fig. 1). If state-

independent local correlations E,",„'"[O,r, (r)] are applied
[model (iii) of Sec. II with po =0], the changes in

EP(p)/eP(0) are a bit more pronounced: they amount
to 1.0, 1.002, and 1.052, respectively.

This behavior of enhancement factors has been predict-
ed by our theoretical considerations of I. Namely, if the
small contribution of a(kj, G*) in relation (8) is neglected
(see the Appendix in I and results for alkali metals),
p' (p) and pP(p) may be approximated by

(10a)

TABLE I. Enhancement factors c.' (p) jc™(0)and

Eo (p)/Eg " (0) at the FS in simple metals. Results are based on
the LDA and band-structure calculations performed within
LMTO-ASA (Ref. 11). po (p) and p'(p) are normalized to
unity at p =0.

where within the NFE

h (G*—Gt„) ut„(Gk, )
P(kj, Cx*)=n(k,j)—

uq. e(G*)
kJ

(lob)

Metal

Li [100]
[110]

Na [100]
[110]

K [100]
[110]

Mg [100]

IPM
(PF)

0.9821
0.9802
1.0047
1.0047
1.0117
1.0027
1.0418

corr
(PF)

0.9926
0.9915
1.0040
1.0030
1.0100
1.0030
1.0100

LDA
Po (PF)

0.9694
0.7917
0.9918
0.9907
0.9803
0.9299
0.9486

P (PF)

0.9949
0.8150
0.9847
0.9829
0.9587
0.9237
0.9015

E(p) =
I
h (0)

I
for

I p I
—

I pz I,

e(p)=lb(0)l 1+
2

h( —G, ) uk 2(Gt)
h(0) uk t(0)

for Ip21~ Ipl ~ lrMI,

Equations (9) and (10) lead to the following values of E(p)
in Mg:
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h(G, ) uk, (0)
E(p)= lh(0)l' 1+

~k2 I

for II Ml ~ Ipl IpFI .

However, h( —GI ) = h (G& ) (since the lattice potential is
real and has inversion symmetry) and a jump in E(p) at
~p~ =I M depends on the ratio uz 2(G, )/uI, , (0) only.
Since this ratio is less than unity, E(p) has higher values
in the third region. This fact is in agreement with the
LDA and LMTO-ASA results presented here.

The above results indicate that the positron distribu-
tion and state-independent electron-positron correlations
have considerably less inliuence on the shape of p ~(p)
than the band effects [i.e., deviation of uk/(Gk/) from uni-

ty; see columns 4 and 5 of Table I] since the momentum
distributions p ~(p) is almost proportional to p'(p) in our
case. Moreover, except for Li, at the FS p ~(p)/p ~(0) is
closer to unity that p'(p)/p'(0). The fact that the posi-
tron distribution reduces the inAuence of the lattice po-
tential on the resulting momentum density is in agree-
ment with expectations. The IPM electron-positron wave
function fk~/ (r„r~ ) =QI',/. (r, )f+ (r~ ) is the eigenfunction
of the Schrodinger equation (in Rydberg units)

the LDA are slowly varying functions of positron posi-
tion r are at the high-density region (i.e., in the vicinity
of the ionic core, where gf, . change rapidly) and therefore
should not reproduce considerably the band effects in
p I'(p ). This fact is illustrated in Fig. 2 where the
momentum dependence of s I'(p) and p'(p) is shown. Let
us point out that characteristics inside the FS are drawn
in the scale enlarged 20 times in comparison to the one
for high-momentum components (HMC). Expt for Li,
E ~(p) behaves as 1/p'(p): if p'(p) decreases, c, ~(p) in-
creases (see Table I and Fig. 2). This effect is observed
both for momenta inside the FS and HMC. For umklapp
components, however, the momentum dependence of
E ~(p) is much more pronounced than in the central FS.
This feature of E ~(p) for momenta p outside the FS is
connected with strong momentum dependence of HMC
of p'(p).

IV. APPLICABILITY OF AED IN SIMPLE METALS

As shown in I, for momenta p inside the FS, the
enhancement factor reads as

where V and V+ are the effective one-particle electron
and positron potentials, respectively, and E+ is a posi-
tron energy. For r, =r~ Coulomb parts of V (r, =r~)
and V+(r ) cancel each other and only the electron-
electron exchange-correlation part of V (r ) remains.
As a result, the positron wave function g+(r) "smooths"
the position dependence of the product ff, .(r, =r~ )g(r ),
especially inside the muffin-tin sphere, and dumps the lat-
tice effects in p' (p) with respect to p'(p). On the other
hand, electron-positron correlations considered within
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FICs. 2. Momentum dependence of cl (p) and p~(p) in the
first band as a function of k. Characteristics p'(p) and c ~(p) in-
side the FS (the scale is enlarged 20 times) are shown by solid
and dash-dotted curves, respectively. The HMC values of p'(p)
and c (p) are marked by dashed and dotted lines, respectively.
Results are based on LMTO-ASA and LDA (Ref. 11).

[ —V', —V/+V+(r )+V (r, )]fk (r, )1t+(r/, )

=(EI,/+E+ )PI',/(r, )g+(rp ),
8""(p=4+G" ) = ih . (0)

i [ I+ /(p) ]

where g(p) is a monotonic function of p inside the FS and
achieves its extreme at p =pF. This function is related to
a(kj, G*) and P(kj, G*) according to Eqs. (7) and (8).
The form of g(p) depends mainly on the ratios of um-
klapp to main components of QI, .(r). For NFE popula-
tions a(kj, G*) and p(kj, G*) are only small corrections
(see Sec. III) and therefore the momentum dependence of
g(p) inside the FS should be very weak. Within models
(i) and (iii) of Sec. II, [1+/(p) ]/[1+/(0) ]
=E"'"(p)/e'"'(0). These values in a few simple metals
are displayed in columns 2 and 3 of Table I (for IPM and
for state-independent correlations E,",I['[0,r, ( r ) ], respec-
tively). It can be seen that these quantities are very close
to unity [g(p~) does not exceed 2%%uo]. Since g(p) provides
only small correction to c.""(p), the momentum depen-
dence of the electron-positron enhancement factors inside
the FS is due to the state selectivity of the two-particle
correlation function fi, (r) only. Neither the form of the
positron wave function nor the state-independent correla-
tions can change visibly the shape of p ~(p) inside the FS
with respect to p'(p) for delocalized electrons (e.g. ,
valence electrons in simple metals).

In some cases Eq. (11) enables us to reduce LDA to
AED, where the density of valence electrons is described
by the effective electron density parameter r,"".Applica-
bility of AED in simple metals would be a great advan-
tage in studies of the correlations effects in real solids.
Namely, it would allow for verification of given electron-
gas theory before applying it to calculation of annihila-
tion characteristics in more complicated metals within
the LDA.

If the LDA [model (iv) of Sec. II] is applied, Eq. (11)
may be written in the AED form:
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Eggs(p=k+G*)= j Ef ~['[E„ /Ez, r, (r)]~ ttj+(r)~ dr[1+(LDA(p)]

= ei".&i "[E„*/&F, r, (r+ ) ][ I+ PANDA(p) ] . (12)

Ui
L

CL

20-

/
/

/
/

/
/

/

/
-20

Apart from coefficients a(kj, G*) and P(kj, G*), OLD~(p)
contains here also the correction g~hz. +(G)/hz. ~(0)~,kj kg

where the summation is performed over vectors G&0.
The conversion LDA~AED for momenta p inside the

FS is reliable if (i) te first term in (12) leads for all momen-
ta p to the same value of r, (r ) =r,""' (see discussion in I)
and (ii) [I+((p)] is a known small correction indepen-
dent of the choice of the electron-gas theory providing

With respect to the condition (ii), (LDA(p) depends
only on the electronic structure of material [providing
values of ukj(G)/ukj(Gkj)] and the ratios
hz~(G)/hz~(0), i.e. on the degree of localization of elec-
trons and lattice potential parameters. Its dependence on
the choice of correlation functions fk (r) should be rath-
er weak. In this sense gLDA(p) is the universal small
correction.

In simple metals requirement (i) is well satisfied. The
values of r, (ro) and r, (r, ) obtained according to Eq. (12)
for p=0 and 1 (in units of pF), respectively, are shown in
Fig. 3 by full and dashed lines. These values are the same
providing r,' "'=r, (r&&)

= r, (r& ), listed in column 3 of
Table II. The effective density parameters r,""differ
from the ones characterizing the average valence electron
density in the Wigner-Seitz cell, r, ""(columns 2 and 4 of
Table II).

It should be noted here that ei",&i"(p, r, ) is a strongly
varying function of density parameter r, (in the region of
metallic and low densities it behaves as r, ), while as a
function of momentum p it increases at most 60%. ' So,
even the considerable relative changes in Ej';&['(p, r, )

should provide relatively small correction to r,""ob-
tained according to Eq. (12). For this reason the function
g(p) does not play an important role when the effective
density parameters r,"""are extracted from E""(p) ac-
cording to Eq. (12). It is not so with relative enhance-
ment factors e(p)=e(p)/E(0) determined by experiment
(cf. discussion in I). Its jellium analog e,',;i"(p, r, )

e&
='(ip, r, )/ gE~['(O, r, ) is weakly dependent on r, (see

Ref. 3 of I) and if we extract r,""' from relative enhance-
ment factors, the correction g(p) must be taken into ac-
count. Since g(p) is universal (it depends only on the
structure of material, namely the degree of localization of
electrons), we have

'] 5

&& [ [ I+OLD~(p) ]/[ I+OLD~(0) ]) (13)

C(0)'
C(1]-C(O)

C(0)

10 14 0,7

12.

10 I

0.6

3
2 3 Li Na K f', (o.u. )

FIG. 3. The efFective densities determined by the electron-
positron correlation efFects (see also Table II). r,"' marked by
asterisks are drawn on axis r, . Values of c""(0) and c,""(pF)
[obtained within the LDA (Ref. 11)] are joined with values of
the enhancement factors in jellium [Ref. 19(a)], e„',;i"'(p, r, ) for

p =0 and p =pF by full and dashed lines, respectively. Dotted
line shows correlation function in jellium (Ref. 14)
g(r, ) =A)"/A, ' compared with y =k" /A, ' for valence elec-
trons (Ref. 15).

2
1.5 2

Mg Li K lq (a.u. )

FIG. 4. The same as in Fig. 3 (solid lines and asterisks).
Dashed lines and triangles correspond to r,' '", obtained accord-
ing to Eq. (13) when g(p) is neglected and taken into account,
respectively.
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TABLE II. The values of the electron density parameters r, for valence electrons in simple metals.
The average valence-electron density parameters r,""are given in column 2. r,""in column 3 denotes
the effective densities determined by electron-positron correlations effects basing on c,'""'(p) calculated
within the LDA (Ref. 11) for p=O and ~p~

= ~pF~. The relative differences between r,"' and r,""' are
given in column 4. r, in column 5 describes the densities determined by electron-positron correlation
effects basing on values of y" =A,„",

&
/A, „'» extracted from Ref. 15 (for more details see Fig. 4 and the

description in the text).

Metal

Be
Al
Mg
Li
Na
K
Rb
Cs

free
S

1.873
2.07
2.638
3.24
3.93
4.862
5.197
6.656

corr
S

2.53
3.15
3.70
4.40

r corr r free

free
S

—4.09
—2.78
—5.85
—9.50

(%) S

1.80
2.01
2.53
3.12
3.72
4.47
4.70
5.04

&corr

(%)
S

0.0
0.95

—0.54
—1.59

The factor [ I+((p)]/[ I+/(0)] (listed in Table I) cannot
be neglected while determining r,"'" from Eq. (13). In
Fig. 4 the values of r,""' obtained according to Eq. (13)
for p/pF = 1 when this correction was neglected (dashed
line) are compared with those following from including
this factor (triangles). It is apparent that if g(p) is taken
into account in Eq. (13), the effective electron density pa-
rameters are the same as those following from Eq. (12) for
absolute enhancement factors. Neglecting g(p) in Eq.
(13) for relative enhancement factors E(p) (which are the
only ones extractable from experiment) may lead to the
wrong effective AED, even in simple metals.

The next question is how far r,""is universal for the
description of the electron-positron correlation effects
within AED. ' The great advantage in studies of the
EMD by the positron-annihilation method would be
agreement between r,""and r,* following from total an-
nihilation rates, i.e.,

corr g /gIPM g (
e )/gIPM( e

) carr(

The values of r,*, obtained according to Eq. (14), where

yg ['t(r, ) and y'„,[' were taken from Refs. 14 and 15, re-
spectively, are compared with r,""in Table II and in Fig.
3. The slight differences between these values (up to
1.5%%uo) should be attributed to the fact that A,„,~ in real
metals reads as [cf. Eqs. (4) and (12)]

A,„„=f e,',;,"(p,r,""')p'„„(p)dp
pEFS

corr(p)pIPM(p)dp
p&FS

For HMC (the second term) the AED is not applicable
(cf. paper I) and the effective electron density is not ex-
tractable. Moreover, in electron-gas theories only mo-
menta p H FS are considered in expression (4), i.e.,

yf;i['(», ) =3 f p c„",i['(p, r, )dp .
p EFS

As the result, the contribution of HMC to k„& may lead
to small differences between r,* and r,' " in real metals
(especially in K).

V. METHODS OF WORKING
WITH COARSE POSITRON EXPERIMENTAL DATA

In the interpretation of experimental ACPAR data,
electron-positron enhancement factors are usually ap-
proximated according to the biparabolic formula

e(p) =a +b(p/pF )'+c(p/pF )' .

In this section the following problems are discussed:
(i) Arponen and Pajanne [Ref. 17(a)]. Measurements in

real metals show large variations in the ratio of (b+ c )/a.
The various experimental results, even for simple metals,
are not consistent with each other (see Table III).

(ii) Gustafson and Willenberg [Ref 17(b).]. The ratios
b/a and c/a vary strongly as the details of the computa-
tion procedure are varied and their sum (b+c)/a is a
more reliable parameter.

(iii) Rubaszek and Stachotoiak (Ref. 9). Although the
biparabolic Kahana formula (15) is valid for momenta
~p~ ~0.8pF (i.e., for about 50% of all electronic states), it
is not satisfied near the FS. The parameter
[e(pF) —E(0)]/E(0), which is better defined that b/a and
c/a, usually differs from the value of (b+c)/a. It is
necessary to keep this in mind when one compares exper-
imental data with theoretical predictions.

(iv) Berko (Ref. 18). The most important question in
the data analysis is how to know the statistical errors of
the reconstructed data. If one sees oscillations in p(p)
(especially for low momenta), does one believe that they
are real, that it is a mathematical Fourier transform
problem, or that it is error propagation (i.e., noise).

In the majority of experimental works the coe%cients
b/a and c/a are determined either from reconstructed
densities or from ACPAR [one-dimensional (1D) or two-
dimensional (2D)] spectra. Depending on the way of
dealing with experimental data, however, the resulting
parameters b /a and c /a (as well as their sum) are
different (Table III). This disagreement between experi-
mental enhancement factors may be attributed to the fact
that the biparabolic approximation (15) is not valid for
momenta close to the Fermi momentum. The following
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PF
X(p, ) = I I dp, dp p(p) =2' I dp p p r(p ) .

Z

If we assume that the densities p r(p) can be described by
biparabolic formula (15), the corresponding 1D ACPAR
spectrum reads as

. —P2 1+—
2 PF

2
C P
3 PF

4

(16)

Of course, in this analysis the experimental error is
neglected, while in the interpretation of real data it

simple test illustrates the problem.
Let us consider the isotropic momentum density

p r(p)=ej",11'(p, r, ) [which differs from (15) near the FS]
and calculate the corresponding 1D ACPAR curves

should be taken into account. The methods of reducing
the statistical experimental error are discussed at the end
of this section.

Parameters b/a and c/a (and their sum) fitted to
curves p r(p) and N(p, ) are given in Table IV (first and
second rows, respectively). The values of b/a, c/a, and
(b +c) /a depend strongly on the choice of the interpola-
tion points (p„pz,p3). Moreover, they essentially differ
depending on the way of dealing with the data [fitting to
p(p) or X(p, ); see Table V]. The main reason for these
features is the fact that the parabolic formula (15) cannot
describe p(p) in about 50%%uo of the whole momentum re-
gion. This fact is also illustrated in Fig. 5(a), where E(p)
based on the "reconstructed" density p"'(p) (crosses) and
resulting from X(p, ) (solid circles) are compared with

E,",1["(p,r, =2) (solid line) used in the calculation of both
p""(p) and X(p, ). Figure 6 shows that the reconstruction
method [fitting to p(p)] leads to an appreciably smaller
difference between the starting "true" enhancement fac-

TABLE III. Values of the enhancement factors in simple metals determined from 1D or 2D ACPAR
spectra. In the last column R and F denote reconstruction and fitting, respectively. Asterisks mark re-
sults at 4 kbar pressure and double asterisks show the values of b/a where v=1+(b!a)p was fitted to
ACPAR data Trip.le asterisks correspond to reconstructed densities [here (b+c)/a describes the
shape of e( p) up to

~ p ~

(
~ pF only].

Metal

Al

b/a

0.13
0.1767
0.132
0.4
0.27
0.25
0.19

c/a

0.12
0.1282
0.017

0.10
0.15
0.18

(b +c)/a

0.25
0.305
0.149
0.4
0.37
0.40
0.37

Ref.

6(a)
6(b), 6(c), 6(e)
6(d)
6(f)
6(g)
6(g)
6(g)

Method

1D, F
1D
2D, F

Fg

2D, R [100]
[110]
[111]

Mg
0.20
0.1977
0.7+0.2
0.25
0.20
0.18

0.14
0.1453

0.38
0.145
0.06

0.53+0. 19
0.34+0.03
0.343
0.7+0.2
0.63
0.345
0.24

10(b)
7(c)
6(e)
6(f)
7(a)
7(b)
7(d)

1D, F

1D
F)fc g

1D, F
1D
2D, R

Li 0.22
0.227
0.27
0.20

0.18
0.183
0.19
0.0

0.40
0.41
0.46
0.20

7(b)
8(a)
8(d)
8(f)

1D
1D
1D, F
2D, F

Na 0.16
0.60
0.30
0.34
0.0

0.18

0.27
0.22
0.40

0.34
0.60
0.57
0.56
0.40

6(a)
6(f)
8(b)
8(d)
8(f)

1D, F
Fg

1D, F
1D, F
2D, F

0.9+0.3
0.42
0.3
0.2
0.25
0.46

0.31
0.3
0.4
0.35
0.35

0.9+0.3
0.73
0.6
0.6
0.6
0.81

6(f)
8(d)
8(e)
8(f)
8(f)
8(d)

1D, F
1D, F
1D, F
2D, F
2D, F
1D, F
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TABLE IV. The values of parameters b/a and c/a obtained by fitting the electron-gas enhancement
factors (for r, =6) to the biparbolic formula (first row). The corresponding parameters fitted to the
curves N(p, ) are displayed in the second row. 6 in columns 3, 5, and 7 denotes the relative differences
between the values b/a, c/a, and (b +c)/a (shown in columns 2, 4, and 6, respectively) and the average
values of corresponding parameters [determined for seven sets of various interpolation points

p&

0.1

0.2

0.0

P2

0.5

0.5

0.5

0.7

0.8

0.9

b/a

0.2084
0.1172
0.1962
0.0648
0.1959
0.0108

Ab/a (%)
—1

—47
5

19
5

87

0.2393
0.4084
0.2748
0.4635
0.3183
0.5313

bc/a (%)

10
10

—4
—2
—7

—17

(b +c)/a

0.4477
0.5256
0.4710
0.5282
0.5142
0.5420

& (%)

5

1

0
1

—9
—2

tor and the fitted one [than fitting E to X(p, ) ] for momen-
ta up to p—=0.75pF. However, when p approaches the
FS, N(p, ) provides a much better fit.

Results shown in Tables IV and V and Figs. 5 and 6 in-
dicate the following.

(i) In the case of fitting to c,
'" '(p) (obtained from recon-

structed densities) (a) b /a as well as (b +c)/a (in contrast
to c/a ) do not depend essentially on the choice of the in-
terpolation points, and (b) up to p -=0.8pF the biparabolic
formula describes the momentum dependence of E(p)
reasonably well and the set of interpolation points (0.2,
0.5, 0.8) seems to provide the best fit (cf. Fig. 6 and Table
IV).

(ii) In the case of fitting to X(p, ) (a) (b +c)/a is defined
much better than b/a and c/a separately, and (b) the
recommended set of interpolation points is (0.1, 0.5, 0.7).

The fact that the sum (b+c)/a is a well-defined pa-
rameter does not mean, however, that the interpretation
of the experimental results should be limited to the com-
parison of (b+c)/a with the values of the theoretical
enhancement factors at the FS [shown in Fig. 5(b) by the
full line). A much better method is to study the shape of
p(p) in the whole momentum region, as presented in Fig.
7. If we restrict our analysis to experimental values of
(b +c)/a, we should compare these quantities with their
theoretical analogs given by formulas (15) and (16) (de-
pending on the way of dealing with the data), instead of

e(p) =E (p)+ E, (p)e(0. 8p —p),
where Eb(p) is given by formula (15), 6 is the unit step
function, and E, (p) is a correction function. If the
enhancement factors Ei';,['(p) following from the ladder
approximation to the electron-positron Careen's function
are considered, ' the function E, (p) may be approximated
in the form

il

&(p)-Go)
E(o)

0.8—

1.6—

1.5

lg =2

0.5—
II

~ ~ 0 ~ ~+
~ ~ ~ ~

~ ~ ) ~
~ ~ ~

~, ~ ~ OO~y+ ~ yy ~ u ~ ~ ii ~ ~ 0+ ~ ~ ~ eooOooo
0

X x x x x x

with [Ei",~["(1)—Ei';~['(0)]/E,",&["(0) [marked by solid circles
or crosses in Fig. 5(b) and given in Table V].

The above results lead to the conclusion'that the simul-
taneous study of reconstructed densities and ACPAR
curves N(p, ) could help us answer the question of how
far the values of the enhancement factors near the FS
differ in real metals from those following from Eq. (15).
Since the biparabolic formula (15) does not describe prop-
erly E(p) near the FS, we propose to correct it in order to
reproduce "true" momentum dependence of e(p). The
corresponding enhancement factor may be written in the
form

1.4 0.4-

A(r, ) b/a c/a (b +c)/a 6 (%) 4&(pF)

2 056

4 0.629

6 0.629

0.2515
0.1392
0.2433
0.1148
0.2962
0.0797

0.1550
0.3255
0.2172
0.4103
0.2644
0.4527

0.4065
0.4627
0.4604
0.5251
0.4706
0.5324

27
17
27
17
25
15

10
6

10
6

10
6

TABLE V. The average values of parameters b/a, e/a, and
(b+c)/a fitted to p(p) and N(p, ) are shown in the first and
second rows, respectively. A (r, ) = [e,',;["(pF,r, ) —ej f["(0,r, ) ]/
c„",~~'(O, r, ) denotes the values of the relative enhancement factors
in jellium at the FS. 6 describe the relative differences between
A(r, ) and (b+c)/a. AE(pF) is the relative difference between
values of c„",~~" and their biparabolic approximation (b +c)/a for
P PF ~

1.3 0.3—

1.1 i I I

0.7 0.8 0.9 1.0

0.2—

Mg Li
I

3

K Rb Cs
i i

5 r, (a.u. )

FIG. 5. (a) Values of c,",~~"(p, r, ) in an electron gas for r, =2
(full line) compared with their biparabolic approximation when
the parameters b/a and c/a were fitted to p(p) (crosses), and to
corresponding curve N(p, ) (solid circles). (b) The relative
values of cjzf) (p, r, ) as a function of r, for p=pF (full line),

p =0.99pF (dashed line), and p=0. 95pz (dashed-dotted line).
(b +c)/a fitted to E' "(p) and N(p, ) are shown by crosses and
solid circles, respectively. The experimental values of (b +c)/a
are drawn by open circles, triangles, and solid circles (see Table



6968 G. KONTRYM-SZNAJD AND A. RUBASZEK 47

:12—

a') 0
Z

I

O. S-
GJ

C1

CL

0-

I

CL

43

12—

10-

~ yO ~ ~ ~ ~
~ + ~

~I ~ ~

~ ~

0.5
0

" p/p, 0,5 p/pF

FIG. 6. Relative differences between values of c,,",]]"(p,r, =2)
and their biparabolic form c"'(p) for various sets of interpola-
tion points (p&,p2, p3): (0.1, 0.5, 0.7), full line; (0, 0.5, 0.9),
dashed line and crosses; and (0.2, 0.5, 0.8), dotted line solid cir-
cles . In (a) and (b) the results obtained when the parameters
b/a and c/a were fitted to N(p, ) and c(p), respectively, are
shown.

8, (p/PF ) =d /[ l.06—(p /PF ) ] for
i p i /PF ~ 1,

where d is a fitting parameter, dependent on the metal
considered. The corresponding 1D ACPAR spectra are
equal to

shape of N'" '(p, ). It seems that Na is the most ap-
propriate metal for this analysis. On the other hand, in
alkali metals the Fermi momentum is rather small and
the inhuence of the resolution function of the equipment
can unable us to study p"'(p) and N'"~'(p, ) in the neigh-
borhood of 0.8pF. As a conclusion, detailed studies of
N, (p, ) require the equipment of high resolution, such as
the one used by Kubica and Stewart. "

Reconstruction techniques for 1D and 2D ACPAR
data were described by Pecora, who discussed
momentum- and Fourier-space spherical harmonics
reconstruction methods. The alternative approaches
have been proposed by Cormack ' and Reiter and
Silver: the expansion of measured projections into a set
of orthogonal polynomials. The resulting densities p(p)
are sums of the corresponding orthogonal polynomials.
If planar projections of p(p) (1D data) are expanded in
terms of Hermitian polynomials and spherical harmonics,
densities p(p) are given as a series of the Laguerrian poly-
nomials and spherical harmonics. For linear projections
of p(p) (2D data) application of Chebyshev polynomials
of the second kind [with the weight function (1—p )'~ ]
gives p(p) as a series of Zernike polynomials. We recom-
mend techniques of Refs. 21 and 22 for the following
reasons. '

(i) The expansion of experimental data into orthogonal

N(p, ) =Nb(p, )+N, (p, ),
where Nb(p, ) is given by Eq. (16) and

1

N, (p, ) =2npF p E, (p/pF )dpI, /JF

m PFd ln(7 ) for p, /PF ~ 0.8

vrpFd ln[(1.06—p, /pF)/0. 06]

1.6—

1.0

Al r' = 2.01

p/p,

N a r,"=3.72

p/p„

for p, /pF)0. 8 . C(p)'
—

Mg r,"= 2.53 K r,
"= 4.47

The correction N, (p, ) (which is constant up to

p, ~ 0.SPF ) amounts to about 2% of N(p, =0) if
E&",&["(p,r, ) from Ref. 19(b) is applied. Nevertheless, for
good experimental statistics, the values of N, (p, ) are a
few times higher than the experimental error (especially
for momenta close to 0.8PF). The parameter d may be
determined from the constant value of N'" '(p, ) N&(p, )—
in the region O~p ~0.8PF. Investigation of N, (p, ) for

p )0.SPF [where N, (p, ) is a strongly varying function] is
not recommended because of experimental errors and
smearing of 1D ACPAR data, following from the resolu-
tion function of the equipment.

Precise analysis of Nb(p, ) and N, (p, ) requires first of
all correct subtraction of the core contribution. For this
purpose the theoretical curves N' "(p, ) should be fitted
to experimental ones, ¹"I"(p,), for momenta p, p„.
This method seems to be reasonable since recent theoreti-
cal results for core contribution to the total annihilation
rates' give very good agreement with the experimental
lifetime measurements. The same occurs for the theoreti-
cal enhancement factors for ionic core states, obtained
within the LDA. ' "' It is also important to investigate
these metals in which HMC not inhuence visibly the

E (p)i

1.8-
L i r,

" = 3.12

p/p,

i Rb r,
"= 4.70

/

I

p/p,

1,4—
/

/
X

1.2—

~.o ——-~~

0 0.2 0.4 0.6 0.8 1

n/p
F

0 0.2 0.4 0.6 0.8 1

p/p„

FIG. 7. Enhancement factors c„",~]'(p, r, ) following from vari-
ous electron-gas theories (full [Ref. 19(a)], dashed [Ref. 19(b)],
and dash-dotted [Ref. 19(c)] lines) compared with "experimen-
tal" enhancement factors given in Table III. Crosses show re-
sults of Ref. 8(d) and solid circles (Li, Na, and K) are results by
Oberli et ttl. [Ref. 8(f)]. For Al and Mg the reconstructed densi-
ties from Refs. 6(g) and 7(c), respectively, are presented.
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polynomials shares the least-squares approximation prop-
erties of these functions and hence properly takes experi-
mental errors into account.

(ii) Measured projections are dependent on each other
as they represent integrals of the same density. The so-
called "consistency condition" for 2D data was discussed
in Ref. 23. It was shown that this condition suppresses
the noise in the data making additional advantage of the
method.

Of course, in order to reproduce the shape of aniso-
tropic density p(p) properly, the best way is to perform a
reconstruction of 2D ACPAR spectra. However, in or-
der to determine the true shape of E(p) or p(p) the
analysis of 1D ACPAR curves seems to be more reliable.
In this connection we limit our consideration to 1D AC-
PAR spectra.

The only quantity which can be estimated exactly from
X(p, ) is the isotropic component of the density p (p).
p (p) describes the true isotropic component of p'"~'(p)
only in the case when N(p, ) are almost isotropic (nearly
isotropic FS as well as small contribution of HMC). The
isotropic component of 1D data, go(p), is given by the re-
lation'4

&p, (P)=go(P}+ Xgl, (P)&l, (& &)

where Kl are the spherical harmonics and angles (P, a)
describe the orientation of p, with respect to the crystal
axis. Knowledge of go(p) enables us to calculate p (p)
from the relation

1 dgo(p)
po(p) = ——

p dp
(18)

However, the calculation of the derivative of go(p) in Eq.
(18) is troublesome because go(p) is very sensitive to the
experimental errors. In the case of 1D ACPAR data, the
expansion of go(p) into the Chebyshev polynomials of the
first kind

N

g(p)= y a T, (p)
m=0

(19)

seems to be the most favorable because it allows us to
reduce the statistical experimental error in the highest
degree. Due to orthogonality of Tk(x}, the coefficients
a may be written as

1
a =—f (1—p )

' go(p)T2 (p)dp .
7T 0

In the unit system p =cos(t},a reads as

4 m/2
go(cost )cos(2mt)dt .

77 0

According to Eqs. (18) and (19), the isotropic component
p (p) is given by

N
po(p}= — g ma U2 i(p),p~ m=i

where U (p) are the Chebyshev polynomials of the
second kind. In the limit p equal to zero,

p (p =0)= —2a, /n. .

This procedure, allowing us to reduce the experimental
errors as well as to draw the shape of p (p) with high ac-
curacy, is to be described in more details elsewhere.
The expansion of the experimental data into series (19) al-
lows us to reproduce the shape of the experimental curve
go(p) in detail. The calculation of p (p) for various num-
bers of the expansion coefFicients enables us to reproduce
the shape of the density with high precision. This
analysis allows us to answer the question of which oscilla-
tions in p(p) are real and which are due to the errors
propagation. In contrast to this method, smoothing of
the experimental curves (e.g. , by Spline function) in order
to eliminate the statistical error causes the smearing of
N(p, ) [and corresponding p'""'(p)] at the FS.

VI. CONCLUSIONS

Band-structure calculations results indicate that, for
NFE populations (e.g., valence electrons in simple met-
als), neither the positron distribution nor local state-
independent electron-positron correlations can change
visibly momentum density of annihilation pairs with
respect to the EMD. The slight jumps of P r(p) observed
in the region of bands superposition are mainly due to the
deviation of p'(p) from the step function, i.e., to the band
effects. These results confirm our general considerations
presented in I. Moreover, pP(p) and p' (p) are closer
to the step function than p'(p) (except Li). This fact sug-
gests that the positron distribution reduces band effects in
p' (p).

The AED works for valence electrons in simple metals
reasonably well for momenta p inside the FS. The corre-
lation effects may be described quite correctly within the
jellium model if only the proper electron density is taken
into account. Knowledge of the effective density allows
for verification of electron-gas theory before applying it
to the calculation of annihilation characteristics in more
complicated metals with the LDA. Without a doubt
effective electron densities differ from average valence
electron densities in the Wigner-Seitz cell, r,"'. This fact
should be taken into account when the electron-gas
theory results are compared with experimental data.

Applicability of AED enables us to avoid performing
laborious calculations of convolutions of electron and
positron wave functions with local electron-positron
correlation function. Knowing the values given in Table
I we can restrict our calculations of p ~(p) to p'(p).

In the majority of experimental works the real form of
the enhancement factor s',„'"',(p) is approximated by the
biparabolic formula which is not valid near the FS even
for such a simple model as an electron gas. This fact may
be the main reason for a lack of consistency between vari-
ous experimental results for b/a, c/a, and (b+c)/a,
even in simple metals. The values of these parameters ex-
tracted from experimental curves strongly depend on the
way of dealing with the data and fitting procedure. Only
a simultaneous analysis of p"'(p) and 1D ACPAR data
(described in Sec. V} could enable us to determine the
momentum dependence of E(p) near the FS.
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In order to diminish the inAuence of experimental er-
rors on the results, the expansion of 1D ACPAR data
into a series of orthonormal Chebyshev polynomials of
the first kind is proposed. This expansion has the least-
squares approximation properties and hence properly
takes experimental errors into account. As a result, the
isotropic component of the momentum density is given as
a series of Chebyshev polynomials of the second kind.
This allows us to determine the values of the density

p (p) with high accuracy in the whole momentum region,
even for momentum p equal to zero.
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