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Bond and site percolation on two- and three-dimensional elastic and superelastic percolation networks
with central forces are studied using large-scale Monte Carlo simulations and finite-size scaling analysis.
A highly accurate method of estimating the elastic percolation threshold p., is proposed. For bond per-
colation (BP) on a triangular network we find p. ~0.64110.001, for site percolation (SP), p.
=~0.713£0.002, and for BP on a bcc network we obtain, p., ~0.737£0.002. We calculate the force dis-
tribution (FD) in these networks, i.e., the distribution of forces that the intact bonds of the networks
suffer, near and away from p_,. Far from p, the FD is unimodal, but as p,, is approached, it becomes bi-
modal. We find that for BP on the triangular network near p,,, the zeroth and second moments of the
FD belong to the universality class of bond-bending models discussed in paper II. However, this is not
the case for SP on the triangular network and BP on the bcc network. In particular, for the bee network
we find f/v,=~2.1, where f and v, are the critical exponents of the elastic moduli and the correlation
length of the system, respectively. This value of f /v, is distinctly different from that of bond-bending
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models, which is about 4.3.

I. INTRODUCTION

The relationships between the microstructure and
effective properties of materials, e.g., their transport
(electrical and thermal conductivities), mechanical (elas-
tic moduli), and failure properties (the fracture strength
distribution and toughness) have been studied for a long
time.! The effect of disorder on transport and mechanical
properties has been studied and a better understanding
has been developed over the last two decades by combin-
ing a variety of techniques and ideas such as percolation
and scaling concepts,? effective-medium approximation
(EMA),? renormalization-group methods,* as well as
large-scale simulation, and well-controlled experiments
on model systems.>®

In this paper and its sequels (hereafter referred to as
papers II and III), we study vector transport and failure
properties of disordered materials. As the model of
disordered materials we use percolation networks in
which each bond represents an elastic element, or a
spring, with an elastic constant e which can take on
values from a probability density function H (e). In most
cases we use the simple binary distribution

H(e)=pble —a)+(1—p)é(e —b) , (1)

i.e., e takes the values a and b with the probabilities p and
1—p, respectively. In a few cases, we consider a more
general distribution, H(e)=pf (e)+(1—p)f,(e), where
f1 and f, are two continuous and normalized probability
density functions. If a is finite and b =0, we obtain an
elastic percolation network (EPN). Another case of in-
terest is when a = o and b is finite, i.e., a fraction p of the
springs are totally rigid and the rest are soft. We call this
a superelastic percolation network (SEPN). As the per-
colation threshold p., of an EPN is approached from
above, all elastic moduli G of the system vanish. Near p,,,
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the elastic moduli obey the following scaling law:
G~(p—p.), 2

whereas, in a SEPN all elastic moduli diverge as p,, is ap-
proached from below according to

G~(Pce —p) 7. (3)

The elastic percolation threshold p,. and the critical ex-
ponents f and 7 may depend on the microscopic force
laws between the sites of the network. One of the main
goals of this paper and paper II is to estimate p.,., f, and
7 for a variety of two- and three-dimensional networks.
In this paper we study EPN’s and SEPN’s with only cen-
tral or stretching forces. Such networks are of both
theoretical and practical interest. For example, in the ab-
sence of friction between the particles of a granular pack-
ing, which is a reasonable model of sedimentary rocks,
the mechanical behavior of the packing is similar to those
of EPN’s that we study in this paper. Paper II contains
our results for percolation networks with both central
and bond-bending (BB) forces, while in paper III we
study fracture and failure properties of disordered ma-
terials. The preliminary results of our investigations have
been reported before.”!© In the present papers, we give
full details of our previous results for elastic and super-
elastic percolation networks, present a number of results,
and provide a detailed analysis of the relevant experimen-
tal data and their comparison with our results.

II. NUMBER OF INDEPENDENT
ELASTIC MODULI

Before describing EPN’s with central forces (CF’s), it is
necessary to discuss the number of elastic moduli that
one needs for describing a two-dimensional (2D) or
three-dimensional (3D) percolation network, since most
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of the networks that we use in our papers are not elasti-
cally isotropic. The constitutive equations for a linear
elastic solid relate the strain and stress tensors through
the expression'!

eij:Sijka'km , 4)

where €; and oy, are the strain and stress tensors en-
tries, respectively, and S;;; denotes the compliance ten-
m

sor. The above equation, the generalized Hooke’s law,

can be written in an alternative form relating the stress

and strain tensors through the stiffness or the elastic

moduli tensor, Cjj
m

Uij =C,-jkm6km . (5)

In this equation C;; has 81 entries or components

which, due to the symmetry of both the stress and strain
tensors, can be reduced to 36 distinct elastic moduli. The
double-indexed system of stress and strain components is
often replaced by a single-indexed system having a range
of 6, which is usually called the Voigt notation. Hence,
the generalized Hooke’s law may be rewritten as

where Cg,, is a 6 X6 square matrix containing elements
C,, through Cg. If a strain energy function exists for
the solid body, Cg, =Cpk, and the 36 independent
moduli are reduced to 21. If a material further possesses
three mutually perpendicular planes of elastic symmetry
(orthotropic material), the number of independent elastic
moduli reduces to 9.

For isotropic materials, the number of independent
elastic moduli reduces to 2, and the elastic matrix is sym-
metric regardless of the existence of a strain energy func-
tion. The usual elastic moduli, namely, Young’s modulus
Y, shear modulus u, and bulk modulus K, are given by

K=C11—'/.L . (9)

The triangular network, which is extensively used in our
papers, is an isotropic lattice and, therefore, the above ex-
pressions directly apply to the determination of its elastic
moduli. We also use a square network in 2D which is not
isotropic. In 3D, almost all regular lattices are anisotrop-
ic.

For the cubic family of lattices [square, simple-cubic,
and body-centered (bcc) networks] that we use in our pa-
pers, it is easy to show that u=C,,, as before, and

_ (Cy; —Cp)Cy+2C,)
CntCp ’

K=1C, +2Cy,) , (11)

(10)

so that one, in general, needs three independent elastic
moduli for characterizing the network. Moreover, Y and
w are not isotropic for the cubic lattices!? and the above
formulas for Y and pu refer to the moduli in the principal

directions, whereas K is isotropic for a cubic system. Fi-
nally, Garboczi'® showed that, within numerical uncer-
tainty, a bond-disordered triangular network with CF’s

obeys the Cauchy relation, C;, = C.

III. PERCOLATION NETWORKS
WITH CENTRAL FORCES

The elastic energy of a percolation network with CF’s
is given by

E=5;3 [(“i_uj)‘Rij]zeij , (12)
(ij)

where u; is the displacement of site 7, and R[j a unit vec-

tor from site i to j. It has been established!*! that the
bond percolation threshold p2 of this system is much
larger than p2, the connectivity threshold of scalar per-
colation. For example, for a d-dimensional cubic net-
work one has pZ=p3 =1, where p> is the site percola-
tion threshold of the system. Therefore, a meaningful
study of CF networks is restricted to certain lattices, e.g.,
the triangular and bcc networks. Earlier simulations of
the triangular network!'*!%!” gave pZ~0.65, as com-
pared with p£=0.347. For the CF model a correlation
length £, can be defined that diverges as p, is ap-
proached

E~(p—po) (13)

where earlier simulations'®!’ yielded v,~1.1 for bond
percolation (BP) in 2D CF networks. An EMA pre-
dicts'*18720 that for a d-dimensional network of coordi-
nation number Z, one has

pE=2d4/7 . (14)

According to Eq. (14), p2Z =2d is the average coordina-
tion number of a d-dimensional network at p£, which im-
plies that the coordination number of a d-dimensional CF
network must be greater than 2d in order for it to have
nonzero elastic moduli. Previous studies of CF networks
were restricted to 2D, and no extensive study of 3D CF
models has been undertaken so far.

Before presenting our results, let us briefly discuss how
our Monte Carlo calculations are done. To calculate
elastic properties of a given model, we minimize its elas-
tic energy E with respect to u;,dE /du;=0. Writing
down this equation for every interior node of the network
results in a dN simultaneous equations for nodal displace-
ment u; of a d-dimensional network of N internal nodes.
The boundary conditions depend on the quantity that we
would like to calculate. For example, to calculate the
elastic constant C;; we stretch two opposite faces of the
network by a given strain .S, and impose periodic bound-
ary conditions in the other directions. The resulting set
of linear equations is solved by either Gaussian elimina-
tion (in 2D), or by the adaptive accelerated Jacobi-
conjugate gradient method (in 3D), that uses an accelera-
tion parameter which is optimized for each iteration.
The convergence criterion is that for all sites i,
[ulF —ul* ~V] /lulk ~D| < ¢, where u'¥’ is the displace-
ment of site i after the kth iteration, and e=10"°. Unless
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specified otherwise, these solution methods and boundary
conditions were used for all of our computations dis-
cussed in this paper and papers II and III. From the
solution of the set of equations for nodal displacements
we calculate E and hence the elastic modulus
C,;=2E/S?. All of our computations were carried out
on the Crays X-MP and Y-MP of the San Diego Super-
computer Center.

IV. RESULTS

We now present our results for 2D and 3D CF net-
works. We restrict our attention to the triangular and
bee networks.

A. Results for the triangular network

As discussed above, earlier simulations!®!7 had indicat-
ed that for BP on a CF triangular network one has
pZ~0.65 and f/v,~1.45. The result for f /v, was in-
teresting because it differed from the critical exponent of
conductivity g of percolation networks defined by
g~(p—p.), for which t/v=0.973, where v is the
correlation-length exponent of scalar (connectivity) per-
colation (v=£% in 2D), and from the elasticity exponent of
BB models in 2D for which?! f/v~2.96. In a previous
paper,’ we found that for site percolation (SP),
f/v,=1.14. However, in a series of papers, Roux and
Hansen?? proposed that the CF model on the triangular
network belongs to the universality class of the BB mod-
el. Using a transfer-matrix method,'” they obtained for
BP on the triangular network f /v, =3, compatible with
that of the BB model.?! According to Roux and Han-
sen,?? the reason for the discrepancy between their result
and the earlier ones”!%!7 is that the scaling properties of
the CF model are extremely sensitive to the value of p,,,
and for the triangular network they obtained p2 ~0.642.
Although this is only 1.2% less than the earlier esti-
mates,'®!” it apparently can cause such a dramatic shift
in the value of f/v,. However, Roux and Hansen?? did
not study SP on the triangular network to check the
universality of f with respect to the type of percolation
process.

To further check these results, and to study SP more
accurately on the triangular network and BP on the bcc
network, we first studied the force distribution (FD) in
the network, which is the distribution of forces that the
intact bonds of an EPN suffer. (For the analogous prob-
lem of current distribution in random resistor networks
see de Arcangelis, Redner, and Coniglio.?*) In order to
calculate the FD, we impose a unit macroscopic strain on
the network and determine the nodal displacements u;
from which the total force F,, exerted on a bond «a, is

calculated. We then calculate the FD for various values
of p. Of particular interest are the moments of the FD
defined by

M(k)=3n(F,Fk (15)

when n(F,) is the number of bonds that suffer a force
whose magnitude is F,. Near p., the moments M(k)
obey the scaling law

M(k)~(p —p,, )7 % . (16)

To estimate any critical exponent such as g(k), we use
finite-size scaling analysis (FSSA) according to which, for
a network of linear size L at the percolation threshold,
one has

M(k)NL—va(k)[al+azg1(L)+a3gz(L)] ’ (17)

where g,(L) and g,(L) represent, respectively, the lead-
ing nonanalytical and analytical correction-to-scaling
terms, which are particularly important for small to
moderate values of L, and q(k)=gq(k)/v,. A similar
equation can be used for estimating f. We only include
nonzero values of F, in Eq. (15) and, therefore, M(0) is
simply the total number of bonds that suffer a nonzero
stress, i.e., the total number of bonds in the backbone of
the EPN and, hence, —¢(0) is simply the fractal dimen-
sion dgg of the backbone. On the other hand, M (1) is
the average force that a bond suffers, and M (2) is propor-
tional to the elastic modulus of the network [hence,
q(2)=/f]. For all of our computations discussed here and
in papers II and III, we considered various functional
forms for g,(L) and g,(L) in order to find the most accu-
rate fit to the data;QSome of })he functional forms that
were used were L ', (InL) 2 and In(cL), where Q,
and £, are correction-to-scaling exponents, and c is a
constant. In order to compare the quality of the fits ob-
tained with various functional forms for g,(L) and g,(L),
we calculated the quantity Q,

Q=3 [(SD —PD)/SD]?, (18)

data

where SD represents the data obtained from our simula-
tions and PD represents the predictions of Eq. (17) after it
has been fitted to the simulation data. We selected those
functional forms for g (L) and g,(L) which yielded the
smallest Q. For all cases discussed here and in papers II
and III, we found that the most accurate fits (with the
smallest Q) are provided by?*

g,(L)=(InL)" ", (19)
g.(L)=L""'. (20)

TABLE I. Number of percolating realizations N for each network size L for calculating the mo-

ments of the FD in BP on the triangular network.

L 5 10 15 20

25 30 35 40 45 50

N(p, ~0.641) 800 600
N(p,, ~0.65) 800 500 400 300

500 500 500 500 500 500
300 250 200 120 100
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FIG. 1. Moments M(k) of the FD vs network size L for BP
on the triangular network at pZ ~0.65.

We first determined M (k) for k =0—4 at p2 of the tri-
angular network, both at pclz ~0.642, which is the esti-
mate of Roux and Hansen,” and at pZ~0.65 which is
the earlier estimate.!®!7 In Table I we present the statis-
tics of our simulations. Nonpercolating clusters were dis-
carded from our simulations, and the numbers in Table I
refer to the number of percolating networks. Figure 1
shows the results for p2 ~0.65, while Fig. 2 presents
those at p£ ~0.642. As Fig. 1 indicates, there is no evi-
dence for significant correction to scaling and all curves
appear to be straight lines, even for small values of L.

In Table II we present the estimated g(k) for both
simulations. The results for M (0) and M(2) at p2 ~0.65
are consistent with the older estimates,”'®!7 while those
at p2 ~0.642 are in agreement with the results of Roux
and Hansen?? and the BB model (see paper II). In partic-
ular, the result, —g(0)=1.62, obtained at p2 ~0.642, is
in agreement with the fractal dimension of 2D percola-
tion backbones,”® dpp~1.64. Note also that the results
at pZ ~0.642 indicate that for k >2

g(k)=q(k—1)+2, 21

CF Model
o 4 — k=1
L i J
-1
_2’_
- k=2
=
=
o4l
o
°
_5_
_6_
s
-8_
-9 1 1 1 1 Il 1
1.1 1.2 1.3 14 1.5 1.6 1.7 1.8
log,q L

FIG. 2. Moments M (k) of the FD vs network size L for BP
on the triangular network at pZ ~0.641.

i.e., there is a constant gap between gq(k —1) and q(k).
However, the values of §(k) at pZ ~0.642, for k0 and
2, are not in agreement with those of the BB model (see
paper II).

We would like to emphasize the importance of the
correction-to-scaling terms g;(L) and g,(L), especially
when L is relatively small. If, for example, we neglect
such terms, then, for p2 ~0.642 we obtain §(2)=£ /v,
~=2.2, instead of 2.95 (see Table II), which is also the
most accurate estimate for 2D networks.?! Thus, it is
only by including such correction terms that the accura-
cy of our results becomes comparable with those of the
previous most accurate estimates. Of course, if L is large,
then the magnitude of such correction terms is small and
insignificant. Including such correction terms also gives
us confidence that our results are reliable.

Since the results for BP showed extreme sensitivity to
the value of p2, we felt compelled to check our earlier re-
sults’” for SP on the triangular network. To do this, we
need to develop a new method of estimating p.,. We hy-
pothesize that if we calculate r =M (2)/M (1) for various
values of L and p, then, at the true p_,, a plot of Inr versus

TABLE II. Values of the critical exponents §(k) of the moments of the FD in BP on a triangular network.

k 0 1 2 3 4
q(k)(p,~0.641) —1.62+0.06 0.85+0.05 2.95+0.25 4.941+0.45 7.05+0.75
q(k)(p. =~0.65) —1.95+0.05 0.112+0.006 1.46+0.10 2.96+3.0 4.32+0.50
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InL would be a straight line, since, according to Eq. (17),
the contributions of correction-to-scaling terms to both
moments would be of the same order of magnitude and
would cancel one another. To test this idea we used net-
work sizes L =25, 35, 45, and 55, and calculated r at vari-
ous values of p ranging from 0.636 to 0.65. Number of
realizations varied from 1500 for L =25 to 200 for
L =55. We found that a plot of Inr versus InL is a
straight line only if 0.640 <p <0.642; see Fig. 3. Thus,
we estimate that

pE~0.64110.001 , (22)

which is in excellent agreement with the result of Roux
and Hansen.?? We then used this method of estimating
D¢ for SP on the triangular network. We used network
sizes L =45, 55, 65, and 75 and varied p between 0.69
and 0.73. Number of realizations varied from 400 for
L =45 to 100 for L=75. Once again, we obtained a
straight line for the plot of Inr versus InL if
0.711 <p <0.715, and, therefore,

pS ~0.7134+0.002 , (23)

which is slightly higher and more precise than, but con-
sistent with, our previous estimate,” p35 ~0.71+£0.01. We
then used this new estimate of p5 and FSSA to estimate
f /v, for SP on the triangular network. The results are
shown in Fig. 4, from which we obtain

f/v,~1.12£0.05 , (24)

which is completely consistent with our earlier result’
mentioned above, but is very different from ¢(2)
=f/v,==2.95 obtained for BP (see Table II).

At this point, two questions must be addressed. (i)
Why do the scalings of M(0) and M (2) for BP on the tri-
angular network appear to be consistent with those of the
BB model (discussed in paper II)? Roux and Hansen?? ar-
gued that this is due to the lever arm effect which is
caused by a force coupling at the two ends of a connected
cluster and, hence, it is similar to the BB forces. To
check this we calculated the FD at various p’s. At

28 . .

T
L

34f

38} 4

In M(2)/M(1)

3.1 33 35 3.7 39 4.1
i1n L

FIG. 3. Variations of M(2)/M (1) with size L of a triangular
network for BP at p2 ~0.641.
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24} p

1n C11

] _

32 4

2.6 3 34 38 42
In L

FIG. 4. Variations of elastic modulus C,; with size L of the
triangular network at pS ~0.713.

p =0.9 we obtained a unimodal distribution which is rela-
tively narrow. As p is lowered to 0.8, the FD becomes
broader, and a small second maximum to the left of the
main one also appears. At p=0.65, the distribution,
shown in Fig. 5, is quite broad and bimodal. The magni-
tude of the smaller maximum is about 44% of the larger
one. However, a small shift from p =0.65 to p =0.641
causes the smaller maximum to become even larger and,
as shown in Fig. 6, its magnitude becomes as much as
80% of the larger maximum. The smaller maximum is
completely absent when the system is well connected, and
appears only when the system loses its connectivity and
approaches p,,. This bimodal FD of the CF model at p2
is completely similar to that of the BB model discussed in
paper II. In other words, if the contributions of CF’s and
lever arm effect are comparable, the system effectively
behaves like an EPN with BB forces. (ii) Why is SP not
behaving like BP? If we calculate the FD for SP on the
triangular network for 0.71 <p <0.72, although we still
obtain a bimodal FD, the magnitude of the smaller max-
imum is always much smaller than the large one, which
means that the lever arm effect for SP on the triangular

Distribution

45 -35 25 -15 -5
In F

FIG. 5. FD for BP on the triangular network at p =0.65.
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FIG. 6. FD for BP on the triangular network at p2 ~0.641.

network is much weaker than that for BP, and the contri-
bution of CF’s dominates that of the lever arm effect.
This might explain why SP does not seem to be in the
universality class of BP on the CF triangular network.

Next, we study the superelastic percolation problem on
the triangular network,'® which has been studied by
several authors,?%26:27 using various techniques. For BP
on a superelastic CF triangular network, they all ob-
tained 7/v,=~0.98. We studied the same problem for
both BP and SP on a triangular network using FSSA.
Figure 7 presents our results for BP, from which we ob-
tain

7/v,~=0.92£0.02 , (25)

which is in agreement with that of the BP model in 2D
(see paper II). It is also consistent with the fact that BP
of the CF triangular network seems to belong to the
universality class of the BB model. However, when we
studied the same problem in SP, we obtained, 7/v,

6.0

1 L 1 ]
2.6 3.4 4.2
InL

FIG. 7. Variations of elastic modulus C,; with size L of a su-
perelastic triangular network at pZ ~0.641.

=~1.05+0.03, which does not agree with (25). This again
might indicate that BP and SP on the CF triangular net-
work belong to two different universality classes.

B. Results for the bee network

We now turn our attention to 3D CF networks, which
have not been studied before, except within an EMA
(Refs. 18 and 19) with limited numerical simulations. We
studied BP on a bcc network, and calculated the FD and
the critical exponent f. We first estimated p2 in order to
calculate f. Since EMA’s usually overestimate p2, and
because Eq. (14) predicts that p; =0.75, we can say that
pZ <0.75. We can also obtain a lower bound for pZ by
calculating an elastic modulus of a large bcc network and
locating the fraction of intact bonds at which the elastic
modulus vanishes. Using this idea and an L =16 net-
work, we estimated that pC’: >0.72. Next, we used our
moment ratio method described above for estimating p2.
We calculated M (1) and M(2) for various network sizes
L in the range 0.72=<p <0.75. The number of realiza-
tions varied between 2000 for L =6 to 200 for L=16. A
plot of In[M(2)/M (1)] versus InL for various values of p
indicated that the data would make a straight line if
pE~0.737, but for p <0.735 or p >0.739 it would show
distinct curvature. Therefore, our final estimate is

pE~0.737+0.002 , (26)

which is about 1.7% less than the EMA prediction, but
much larger than pZ~0.1795 for scalar BP on the bcc
network.

Having determined pZ, we now can calculate the FD
and its moments. For the bcc network the second mo-
ment M(2) is exactly equal to the corresponding elastic
modulus. We first calculated the FD at p=0.95, 0.85,
and 0.737, using a network of size L=16 with 200
different realizations for each p. At p =0.95, we obtained
a unimodal FD. However, similar to the triangular net-
work, as p—p2Z, a second maximum appears to the left
of the main maximum. At p=p2Z=0.737, the FD shown
in Fig. 8 is bimodal, but the magnitude of the smaller

4

2x10‘r —r

Distribution

. \__/
-35 -25 -15 -5
In F

FIG. 8. FD for BP on a bce network at p2 ~0.737.
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TABLE III. Number of percolating realizations N for each
network size L for calculating the moments of the FD in BP on
the bce network at pZ ~0.737.

L 6 8 10 12 14 16
N 2000 1000 600 400 300 200

maximum, which is presumably due to the lever arm
effect that mimics the effect of BB forces, is only about
20% of the main maximum. This is similar to the FD in
SP on the triangular network, and once again indicates
that as the connectivity of the system improves, the lever
arm effect diminishes. Thus, we speculate that the CF
model on the bcc network might not belong to the
universality class of 3D BB models. To check this, we
calculated the moments M (k) for various sizes L at pZ.
The statistics of our simulations are shown in Table III;
the results for M (k) are presented in Fig. 9, with the es-
timated g (k) given in Table IV, which confirm our asser-
tion. As Table IV indicates, g(2)=f/v,=2.1£0.2,
which is completely different from f/v~4.340.1 found
for 3D BB models (see paper II). Note that the values of
g(k) given in Table IV satisfy the scaling relation (21).
Note also that the value of f/v,=2.110.2 is close to
t/v=2.27+0.01, found recently by Gingold and Lobb.?®
Moreover, —@(0)=dpgg=2.5, which is the same as the
fractal dimension of the largest percolation cluster at p,
in the scalar percolation problem. The reason may be
that p2 of the bce network is so much larger than p2 that
the backbone of the elastic network is essentially identical
with the percolating cluster in the scalar problem. Next,
we studied the superelasticity problem on the bcc net-
work using FSSA, with the result that, 7/v, ~0.80£0.03,
somewhat larger than the corresponding value for 3D BB
models, 7/v=0.74 (see paper II).

V. SUMMARY

We studied bond and site percolation processes on 2D
and 3D elastic percolation networks with CF’s, and
developed a method for estimating the percolation
threshold p., of such networks that appears to be highly
accurate. In 2D we found that the zeroth and second
moments of the FD in BP on the triangular network be-
long to the universality class of the BB model, while the
same may not be true for SP on the same network. In
3D, we found that BP on the bcc network is not in the
universality class of the BB models. Instead, the critical
exponent f /v, appears to be close to ¢ /v, the critical ex-
ponent for the conductivity of percolation networks. The
same is true about the scaling properties of SEPN’s in
both 2D and 3D. We should mention that Roux and
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FIG. 9. Moments M (k) of the FD vs linear size L of a bcc
network at p2 ~0.737.

Hansen?? proposed that
q(k)=g.(k)+k , (27)

where §,.(k) is the critical exponent of the kth moment of
current distribution in a percolating random resistor net-
work.?® Our results for BP on the triangular network
agree with this equation only for k =0 and 2, for which
g4.(0)=—1.64 [recall that —@.(0)=dgg], and §.(2)
=t/v=0.97.

After completion of this work, Knackstedt and
Sahimi?’ used a two-parameter position-space renormal-
ization group to study the universality of the CF problem
on a triangular network. They found that while the
geometrical properties of CF networks in BP and SP may
belong to the same universality class, the elasticity criti-
cal exponents f of the two systems are very different.
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