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Transport through two quantum dots in parallel is studied theoretically in the presence of a magnetic
Aux between dots and in the limit of large one-electron level separations in each dot. Electron-electron
scattering at a dot breaks the phase coherence of an electron in the tunneling process through the dot
and suppresses the Aharonov-Bohm oscillations of the conductance. It is shown that the amplitude of
the Aharonov-Bohm oscillations depends strongly on the Fermi level relative to the resonant levels be-

cause of a two-electron phase interference.

Interference phenomena of electron waves, such as the
Aharonov-Bohrn (AB) effect, have been observed in a
mesoscopic solid-state device with a dimension of a few
micrometers. ' In such a small system and at low temper-
atures an electron keeps the phase coherence during its
transport because of the absence of inelastic scatterings
by phonons, etc. As well as the phase coherence, the
Coulomb repulsion is known to be a key ingredient in the
mesoscopic physics. Electron-electron scatterings will
suppress the phase coherence as expected from the Fermi
liquid theory, but the way to suppress the phase coher-
ence in such a confined system may be qualitatively
different from that in a macroscopic system in which the
Fermi liquid theory is valid. In the present paper, the
suppression of the AB effect due to the electron correla-
tion is studied in a system consisting of two quantum
dots.

The transport through a mesoscopic grain, or through
two tunnel junctions, has been investigated extensively in
metallic systems with grain sizes much larger than the
Fermi wavelength, in which single-electron energy levels
are continuous and possibly the Fermi liquid theory is
applicable. Recently the study was extended to semicon-
ductors in both theory ' and experiment. In semicon-
ductors the discreteness of energy levels is more impor-
tant because of small effective mass, and the level separa-
tions in the smallest dot are reported to be comparable to
or larger than the charging energy. '

In this paper the quantum limit is considered, for sim-
plicity, in which energy separations bE between single-
electron levels are much larger than the other energy
scales, the charging energy U, the temperature kz T, and
the level broadening I due to tunneling. In this quantum
limit, only one state contributes to the current. Two elec-
trons can occupy this state and the second electron needs
an excess energy U due to the Coulomb interaction. Such
a quantum dot coupled to leads is essentially the Ander-
son model for a single magnetic impurity and has recent-
ly been explored again by many theoreticians.

The transport depends on the number N of electrons in
each dot and the Fermi level c.~. When N =0, the effect
of the electron correlations is small. The same is true for
N =2 because of the electron-hole symmetry. The
strongest electron correlation is expected at N = 1, where

H =HI+Hd+H, ,

Hl g I. (eak»T e V )ak~ak»r Ebko bk bk»r]

kyar

Hd= g ed d d + Udtdtd tdi,

H, = g (V,k ak d + Vbk bk d )+H.c. ,

kyar
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(4)

where a„(a«) and bk (bk~) are creation (annihilation)
operators of an electron with spin o. in a state k in the left
and right leads, respectively, and dt (d ) is that in the
dot. V is the voltage applied between the left and right
leads and e )0.

Transition rates between the left and right leads are
calculated by treating H, as a perturbation. In the fol-
lowing the lowest order in H, is considered and the Kon-
do effect due to the correlation between leads and dots is
neglected assuming the temperature is higher than the
Kondo temperature. The transition rate between
i =

I
ak

&
cr &s & ), in which an electron with spin o

&
is in

state k& in the left lead and an electron in the dot is in
spin state s„and f =

I
bk2a 2s2 ), in which an electron is

a localized spin is in each dot. When cz coincides with
one of the energy levels separated by U, resonant tunnel-
ing through the level occurs and between these two levels
the conductance is smaller but nonzero. At low tempera-
tures quantum transport vi.a intermediate states dom-
inates the transport between the resonant conductance
peaks and has been studied for a metallic dot theoretical-
ly' ' and observed experimentally. ' ' In this paper
such quantum transport is investigated in quantum dots.

We consider a system of dots connected to left and
right leads. It is assumed that, when the voltage is ap-
plied between leads, the potential drop occurs exclusively
between dots and leads, and that the local equilibrium is
maintained in each lead. In this situation the current is
evaluated from the tunneling probability between two
leads.

First, we describe the single-dot case as an illustration.
Our model Hamiltonian consists of three parts: the
Hamiltonian of leads, that of a dot, and the tunneling
term:
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in the right lead, is expressed in terms of the transition
matrix f':

Pf; = (2 ri/A')
l &f l

f"
l
i & l 5(E; Ef—),

and T in the lowest order is

&f l
T

l
i &

= g & f l H, l
n & & n

l H, l
i & /(E, E—„), (6)

where intermediate states n have no electron or two elec-
trons in the dot. The current is then expressed as

bk zazsz, ak& a&s& fbk2cr2 fak~a&gs& ok~a&s~, bk&a2sz fak&a& fbkzcrzgsz] r

k&o &s& k2o2s2

where g, is the probability of state s and f,k
=f(c,k ) the Fermi distribution function. The same equation is valid for

the many-dot case if we consider s& and s2 as a quantum number specifying one degenerate state in a system of dots. If
there are I& degenerate states, g, =1/m&, and for a single dot with one electron, g, =

—,'. Due to the detailed balance

Pf; =Pf,
I =( —e/m~» Pbk...s, , ak...s, (fak... fbk..—.) .

Assuming V,k~ and V&k~ depend only on c«~ and c.&«, respectively,

I =( e/m—q) g f dc,D, (c, ) f dczDb ( c)z(2~/A')l&bk ozszlzf'l ak, cr,s, &l 6(c,—eV —cz)[f(c, ) —f(cz)] . (9)
11 22

When the densities of states D, (c) and Db (c) do not de-
pend on spin o., the conductance becomes

aeter again and S(cF ) =2!T&l .
Now we move on to the transport through two dots

and discuss the AB effect. The Hamiltonian becomes
G =(BI/OV)( V=0)

=(2me /A') f dcD, (c)Db(c)( —Bf/Bc)S(c),

with

S(c)=(1/m&) g l & bkzo zsz l Tlak& o &s& & l

(10)
2

Hq = g g c„d„d„+U„d„td„td„)d„)
n=1 o

H, = g [e ' (V, &k ak d& +Vbzk bk dz )
ko.

+e' (V,zk ak dz +Vbik bk di )]

(16)

The conductance at temperatures much lower than U
is proportional to S(cz) and calculated in the following.
For a while, the Zeeman splitting is neglected and
c,&

= c&. When c~ ( c&, there are no electrons in the dot
and the transport is of one-electron character. The tran-
sition matrix is

&bk, o IH, do &&do IH, lak o &

+H. c. ,

(a)

process

(17)

(12) (b)

with

T = —
Vb V,*/(cz —c~), (13)

process

where V, = V, (cF) and Vb = Vb(cF), and the conductance
is proportional to S (cz ) =2

! T l
. When

+ U, one electron in the dot and another electron from
the left lead are involved in the transition and there are
three types of transitions as illustrated in Fig. 1 for an
up-spin incident electron. The transition matrices for
these processes are T,

(c)

Y process

and

Tp = Vb V,*/(cF —cq —U), (14)

T T~ T13 (15)

respectively, and ( S)c=l !T+!T&l +!Trl . When
cz & c&+ U, the transport becomes of one-electron char-

FIG. 1. Transport through an intermediate state in a single
dot. Arrows represent the spin direction and numbers show the
order of transitions.
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where @=21r@/4o with 4 the magnetic flux between
dots and Co=bc/e the flux quantum. For each dot,
there are three types of transitions as in Fig. 1 and the
transition matrices are written in terms of

(18)

process

o@

Tp„= Vb„V,*„/( c.p
—F.„—U„),

Ty n Tan Tpn

(19)

(2O)
1 2

process

with n =1,2. In the following we assume that two dots
are identical and c„=cd, etc. Of course qualitative parts
of the conclusions obtained below are also the case for
nearly identical dots and a detailed adjustment may be
possible in the experiment by applying the gate voltage
on one of the dots. When EF & cd,

S(EF)=2le'~ T, +e '~ T 2l

=4IT
I

(cosy&+ I) . (21)

The term with cosy represents the AB oscillations.
When c.d &c.F &c.d+ U, there are eight processes, four of
which have an interference between paths through dots 1

and 2 and the transition matrices are

iy/2T + —iy/2T iy/2T + —iy/2T
a1 2, e &1 e r

iy/2T + —iy/2T iy/2T + —iy/2T
a1 P2& P1 a2

(22)

The other four are spin-Hip processes through dots 1 and
2 with transition matrices

i y/2T
y1)

—iy/2Te (23)

(There are two processes through dot 1 in which only
spin orientations in dot 2 are different and the matrix ele-
ments are identical. The same is true for the processes
through dot 2.) Therefore we obtai. n

S (EF ) = I V, V„ I [(1/E —I /ep) cosy

+4(1/E +1/ep+ I/E Ep)], (24)

with ~ =EF—Ed)0 and c&=cd+U —cF)0. If we put
S (eF ) = A (R cosy+ 1), the relative amplitude of the AB
oscillations is

R =(s —ep) /4(s +Ep+E ep) . (25)

R (eF ) (cd ( cF ( Ed + U) is symmetric around
cF =Ed + U/2 and has a minimum R =0 at
E.F=Ed+ U/2 and maxima R =4 at cF=c.d and c.d+U.
Due to spin-Aip processes R is reduced from unity, the
value in the one-electron transport Eq. (21). The max-
imum value R = —,

' at cF—+cd is obtained from the follow-
ing simple argument. In this limit, processes through
intermediate states with no electron in a dot (a processes)
are dominant in comparison with those through states
with two electrons (P processes). In order to avoid a spin
Hip in the a processes, both spins in the dots in the initial
state should have the same orientation as the spin of the
incident electron. The probability to have such an initial
state is ( —,'), giving R =

—,'. The same argument is true in
a 2m-dot ring, for which R =(—,

'
)

FIG. 2. Two-electron phase interference in processes
through dots. N denotes the magnetic Aux.

S(EF ) = I V, Vb I
(1/e —1/E&) (cosy+ 1), (27)

and R = 1 because of the absence of a spin Aip. The con-
ductance is zero at cF=ed+ U/2 because of the two-
electron interference mentioned above. For the triplet, in
spite of the presence of spin-Hip processes,

S(e~)=I V, Vbl (3/e +3/8&+2/c, E&)(cosy+ I), (28)

and R =1. This is because spin Aips at different dots are
correlated. For example, the matrix element between
(d1tdz) +d1)dzt )/&2 and d1tdzt 1s

((b J, 1 &21
I
Tl~ T11'2& )+ (bg 1 t2T IT la 1'1 121))/&2,

(29)

and two processes with a spin Aip at dots 1 and 2 inter-

It is remarkable that the AB oscillations become small-

F move away rom EF ~d and ~F ~d + U and
vanish completely at cF =c.d+ U/2. The reason is as fol-
lows. Except for the vicinity of ~F =Ed and cF =cd+ U,
both a and r33 processes contribute to the transport. Be-
cause of the sign difference between T and T&, the pro-
cesses involving both T and T& shown in Eq. (22) and in
Fig. 2 give oscillations with quite difFerent phases from
those involving two T 's and two T&'s. At
e~ =Ed+ U/2, T = —T& and these two kinds of oscilla-
tions have a phase difference of ~ and the same ampli-
tude, resulting in the disappearance of the AB effect.
Note that the additional minus sign in T comes from an
exchange of electrons involved in the transport. There-
fore, this disappearance of the AB effect is a manifesta-
tion of a two-electron interference.

The spin state in dots is drastically changed by the
magnetic field and by the spin-spin interaction. When
p~H ))k~ T, both spins in the dots align along the mag-
netic field in both the initial and the final state and the
phase coherence is recovered, giving

S (EF ) =2l V, Vb (1/E + I/E&)(cosy+ 1) .

The spin-spin interaction due to hopping between dots
and leads is of the order of (V, + Vb)/U and can be
much smaller than kz T, but the interaction due to direct
hopping between dots can be large than k&T. Here we
assume a spin-spin interaction without asking its origin.
The ground state is either spin-singlet or spin-triplet de-
pending on the sign of interaction. For the singlet, it is
shown that
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fere with each other.
In conclusion, the Aharonov-Bohm oscillation of the

conductance has been investigated in a system consisting
of two quantum dots. Separations between one-electron
levels in each dot are assumed to be much larger than the
charging energy and the transport through a single-
electron state near the Fermi level is considered. The
amplitude of the Aharonov-Bohm oscillations divided by
the average conductance is calculated as a measure of the
phase coherence and is shown to decrease compared to
that in the absence of the Coulomb repulsion when the
state in each dot is half-filled. The phase coherence is
strongly suppressed, but not cornpetely destroyed in such
a small system. There is no significant temperature
dependence in the region Tz « T « U/kz with Tz the
Kondo temperature in remarkable contrast with the Fer-
mi liquid theory. A tunneling process with an exchange
of electrons gives a different component of conductance

oscillations with an opposite phase compared to the usual
AB effect. These two oscillations cancel each other and
the conductance oscillations disappear when the Fermi
level comes at the middle point of the two levels separat-
ed by U. The Zeeman splitting and the spin correlation
between two dots recover the phase coherence.

By making two dots nearly identical using the recent
microfabrication technique, it will be possible to observe
a suppression of the AB oscillations even if they do not
vanish because of small inevitable differences between
them. In the measurement of the conductance as a func-
tion of the strength of a uniform magnetic field, this
suppression will be observed when the effect of the Zee-
man splitting is reduced by the temperature.
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