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Nonperturbative resonances in periodically driven quantum wells
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Energy absorption characteristics are computed for a classical and a quantum model of an infinite
square well, as a function of driving amplitude and frequency. Nonperturbative resonances are
observed corresponding to the replacement of states localized in phase space by more extended
states. Their presence is predicted by avoided crossings in the quasienergy spectrum of the Floquet
operator. The conditions under which these resonances occur can be realized in experiments on
GaAs/Al Gai As quantum wells in intense far-infrared radiation.

In recent years, much theoretical and experimental
effort has been devoted to the response of atoms to
electromagnetic radiation with electric field comparable
to the ionization energy El, but with photon energies
Lu &( EI. The best-known experiments study the ioniza-
tion of Rydberg hydrogen atoms by intense microwaves. i
Results have been accounted for by classical and quan-
tum models. 2

Modern semiconductor technology has enabled the
fabrication of solid-state analogues of one-dimensional
atoms. s Using molecular-beam epitaxy, electrons in
Al Gai ~As can be confined in arbitrarily-shaped
"quantum wells" parallel to the direction of epitaxial
growth (z axis), while remaining free perpendicular to
z. Quantum wells are typically 200—300 meV deep, with
spacing AE between quantized subbands between sev-
eral meV (well width 1000 A.) and 150 meV (well width
50 A.). For quantum wells with widths L greater than
a few hundred A. , it is possible (without destroying the
sample) to apply oscillating electric fields with amplitude
Ep such that the electric-field energy eEpL )AE. Thus
electrons in quantum wells driven by intense oscillating
fields are a new system in which to study nonperturbative
effects in the interaction of light with matter.

As a first step towards making predictions for exper-
iments, we have performed classical and quantum sim-
ulations of the dynamics of a single electron in a one-
dimensional square well driven by an intense oscillating
electric field. The square well is a generic model for non-
integrable wells and we choose it because it is simple to
fabricate. Qualitative and quantitative studies of single
electrons in triangular and square quantum wells have
been made by Benvenuto et al.4 and Lin and Reichl. 5

These papers study the distribution and the localization
of a large number of states. In distinction, we concen-
trate on the structure and interaction of a small number
of states.

At experimentally realizable values of electric-field am-
plitude and frequency, we find sharp, purely quantum-
mechanical energy-absorption resonances where popula-
tion is efFiciently transferred from the ground state to
a highly excited state. The positions of these reso-
nances are accurately predicted by avoided crossings in
the quasienergy spectrum of the Floquet operator;s more-
over we are able to completely explain them as multipho-
ton processes between Floquet "eigenstates. "

We first present a brief discussion of the classical dy-
namics of a driven particle in a one-dimensional (1D) in-
finite square well, since many structures of the classical
phase space persist in the quantum regime. The Hamil-
tonian is simply that of a driven particle in a 1D infinite
square potential:

H(q, p, r) = p /2 + Vp(q) —r q sin(r),

where

Vp(q) = ' )10, 9&1

Note the only free parameter is x, the unitless driving
amplitude. This is perfectly general, noting the substi-
tutions:

r —= ~t, q = x/a, v = F/rn~2a.

Here a is one-half the width of the physical well, F is the
magnitude of the driving force, m is the effective mass,
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FIG. 1. The classical Poincare section associated with the
Hamiltonian [Eq. (1)], with scaled drive amplitude K = 0.04.
Trajectories are sampled at w = 0 (mod 2vr).

and ~ is the frequency of the drive. The physical position
and time are 2; and t, while q and w are now unitless. The
appropriate unitless momentum p, and kinetic energy 8'

are p = P/mrna, 8—:p /2 = E/mwza2, where P and E
are the physical momentum and kinetic energy.

The resulting equation of motion is integrated to give

q(~) = -K[sin(~) —sin(~p)]

+ [r cos(~p) + p, ] (~ —~p) + q, .

A good root finder is used to find the smallest w such that
the electron hits a wall at q = + 1. There, p —+ —p, the
next collision with the wall is found, and the process is
iterated.

The classical dynamics are completely determined by
the Poincare map of the classical vector field since the
Hamiltonian (1) is periodic in time. Figure 1 shows the
phase space of the classical Poincare map for z = 0.04.
The dynamics are organized by the particle's bouncing
frequency 0 = x p/2 for v = 0 and the driving frequency
~ = 1. For any value of K, the dynamics are regular at
suKciently high p as the particle adjusts adiabatically to
the periodic drive. The nearly horizontal trajectories at
the top and bottom of Fig. 1 are invariant "Kolmogorov-
Arnold-Moser" (KAM) tori. These are impenetrable by
a classical particle. The oval trajectories surrounding
the dominant 0:~=1:1resonance at p 0.62 form the
largest resonance "island. " Higher-order resonances form
a sequence converging toward p = 0. There they over-
lap forming a chaotic ocean as dictated by the Chirikov
overlap criterion. In Fig. 1, the chaotic ocean extends
to a KAM surface which separates the period-three and
period-one resonances.

When the last KAM surface separating the 1:3and 1:1
resonances is destroyed, a classical particle can absorb
energy by migrating from near p = 0 to the KAM lines
above the 1:1 resonance.

7/phys jm~a 2 (5)

Thus in addition to the purely classical parameter K, we
now have the purely quantum-mechanical parameter h.

The temporal evolution of the state vectors is
completely determined by the Poincare map of the
Schrodinger equation (4) since the latter is time periodic.
But the Poincare map is just the Floquet operator U2
(Ref. 13) which evolves a state through one drive cycle:
U~-IO(0)) = IO(2~))

We choose as a spatial. basis set the energy eigen-
states of the undriven well, and denote these as (In))„
In this basis, the Floquet operator can be calculated
through a simple integration, using a fourth-order Runge-
Kutta algorithm, evolving each basis vector through a
quarter cycle of drive, The full cycle is simply calculated
from the quarter cycle propagator through symmetry.

We must restrict ourselves to a finite basis for compu-
tational purposes. It sufBces to choose a basis of the first
N states of the undriven well, where 2" is well into the
KAM region in phase space. Basis states whose momen-
tum is in the classical KAM region couple only weakly
with other states. In simulating a physical system, the
drive frequency determines the value of h, , from Eq. (5).

The Hamiltonian (1) is explicitly time dependent, so
there are no stationary states or energy eigenvalues. In-
stead, since the time dependence is periodic, one com-
putes Floquet states and quasienergies which are, respec-
tively, the eigenfunctions and 5/2+i times the Floquet
exponents of U2 . The analog of the classical phase por-
trait is the set of Husimi distributions7 of the Floquet
states. These are projections of these states onto a basis
of Gaussians localized in q and p. In such a representation
the Floquet densities are seen to localize upon classical
invariants, such as KAM surfaces, resonance islands, and
tangles, and extend themselves throughout the classi-
cally chaotic region. In this sense, a classical Poincare
section can serve as a reference to a Floquet state.

Figure 2(a) shows the energy gained by an electron
with an eifective mass of i5m, in a 500-A square well, as
a function of field strength. Ten basis states were used.
(Energy values converged to three significant digits when

The (q, p) position of the resonances can be computed
in spite of the fact that the nonlinear Poincare map can-
not be found explicitly. Moreover, the stability of the
resonances can be determined because this requires only
the linearized Poincare map. This allowed us to apply
Green's criterion using the 1:n resonances to esti-
mate a value of K such that KAM surfaces are destroyed.
This gives an estimate of K 0.05 for the destruction of
KAM surfaces between the 1:1and 1:3 resonances. We
found numerically that the last KAM surface between
these resonances disappears at approximately K 0.035.

The quantum dynamics of the system are computed
by solving the Schrodinger equation

~&~.V(q, ~) = [-(~'/2)(~'j~q') —q~ sin(~)14(q ~) (4)

thus quantizing the Hamiltonian (1), with the boundary
conditions Q(IqI & 1, w) = 0. Here h is a unitless free
parameter, related to the physical Planck constant by
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five or more basis states were used. ) Only the lowest two
states had momenta in the classically chaotic region. The
system is assumed to be in the ground state of the driven
well at w = 0. After each iteration by Uz, (Q~Hp~g) was
computed. The maximal (solid line) and mean (dashed
line) over 1000 drive cycles are plotted. The Hamiltonian
Hp of the undriven system can be used because it is equal
to the Harniltonian of the driven syster. , at ~ = 0 (mod
2~)

The narrow peak in Fig. 2(a) is a purely quantum-
mechanical nonperturbative resonance. In Fig. 2(a) a
sharp resonance occurs as r (electric field) is swept
through 0.78 (14.0 statvolts/cm), at a fixed frequency
of 40 cm i (h = 0.3682751). Similar resonance peaks
are found as one varies h, or any combination of ~ and
h. (The physical drive frequency a, for example, varies
both unitless parameters. )

On a resonance peak, the ground state couples to two
new Floquet states that turn out to be linear combina-
tions of Floquet states that exist off of the peak. This
allows the system to gain far more energy than it would
have otherwise. We say that these peaks are super-
imposed on the "classical" energy absorption curve, al-
though at this highly quantum level any resemblance to
the classical system is completely washed out.

We can explain these resonances as simply due to mul-
tiphoton absorption between Floquet states with difer-
ent quasienergies. A view of the phase space distribu-
tions of these states on and oK the peak reveals that
these resonances destroy Floquet states which are local-
ized in p in favor of more extended ones. Figure 3 shows
the Husimi distributions of the erst and third Floquet
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states, just below and on the nonperturbative resonance
seen in Fig. 2(a). Below the resonant value of K both dis-
tributions are localized in p. State (1,0) (the labels are
defined below) is localized in the classically chaotic region
of phase space and overlaps considerably with the ground
state of the undriven well. State (3,4) is in the KAM re-
gion, and has virtually no overlap with the ground state.
On the resonance in Fig. 2(a), the two localized states
have been destroyed and replaced by two states that ex-
tend all the way from the ground-state region into the
KAM region. Above the resonant value of v. , the Floquet
states return to their original structure, so these states
are not shown in the figure. We conclude that at the
resonances, multiphoton processes allow transport from
states localized in the chaotic region to states localized
in the KAM region, via the extended states.

The mechanism behind the nonperturbative reso-
nances is revealed upon examining the variation of the
quasifrequency (quasienergy/h) spectrum with relevant
parameters. Each quasifrequency is associated with two
indices (n, m). s In the limit of zero driving amplitude
the integer n labels the eigenstates of the undriven well,
n = 1, . . . , oo, and for each n, there exists an infinite
family of quasifrequencies: Z„~= S„p+ mh. [The scal-
ing of Eq. (2) makes the photon frequency equal to one. ]
Thus the quasienergies represent the combined energy of
the particle in the well and the radiation field. The lo-
cation of the resonances in parameter space corresponds
to avoided crossings in the quasienergy spectrum.

The undriven energy eigenvalues are FP = n2vrzh /8.
This allows us to trace a Floquet state back to its origin
as an energy eigenstate. For an example, in Fig. 2(b)
the frequency of the third undriven eigenstate is Zsc/h =
4.08907, so we assign the indices (3,4) to the Floquet
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FIG. 2. (a) The maximum (solid) and mean (dashed) en-
semble energy of the quantum system, varying K. (b) Selected
lines from the quasifrequency spectrum.

FIG. 3. The Husimi distributions of the two I loquet
states which combine at the avoided crossing highlighted in
Fig. 2(b). Above, (a) and (b) are the (1,0) aud (3,4) Flo-
quet states, off-resonance. Below, (c) and (d) are the more
extended states formed by their combination on-resonance.



6798 BIRNIR, GALDRIKIAN, GRAUER, AND SHERWIN 47

state which traces back to the quasifrequecy 0.08907 at
r = 0. Therefore its parity is Sz = (—1)"+m+i = 1.
This is the same parity as that of the Floquet state
coming from the ground state, with indices (1,0). The
spectral lines of two states with the same parity cannot
cross, and instead avoid each other. As in standard time-
independent degenerate perturbation theory, the associ-
ated eigenstates couple to form a new basis at the avoided
crossing. This analysis is similar to that of Shirley, i4 in
the context of two-state systems.

The 1D infinite square well with one electron is clearly
a highly simplified model of electrons in a quantum well
in AI~Gaz ~As. However, neglected effects are unlikely
to eliminate the existence of quasienergies, multiphoton
processes at their avoided crossings, and hence the exis-
tence of nonperturbative resonances.

We cannot prove that the nonperturbative resonances
persist at this stage, work in that direction is in progress,
but we have the following reasons for believing that they
do. For excitation energies lower than the energy of an
LO phonon, such as the nonperturbative resonance in
Fig. 2 which couples the ground state with the first ex-
cited state (18 meV), estimates of the time of inelas-
tic scattering for the quantum wells range from tens to
hundreds of laser cycles for the frequency used in our
simulations. is Thus it is reasonable to ignore the finite
electron coherence time as a first approximation for such
resonances. The finiteness of the well is ignored, but com-
putations modeling the continuum show that the res-
onances are merely shifted as indicated by perturbation
theory. Motion in the plane of the well is not included
but can be added in a straightforward manner within the
framework of dissipationless quantum mechanics. Pre-
sumably this effect is much smaller than those of many-
body interactions and dissipation. We need to know what
effect dissipation has on the Floquet theory of the model.
Dissipation here can be treated as a composite system,
coupling the electrons with a phonon bath. The work
on this nontrivial task is in progress. The many-body
effects need to be tackled by a time-dependent density
functional theory. Such a theory does not presently ex-
ist but is being developed, see Birnir and Holthaus.
However, Birnir, Gudmundsson, and Johnsonis have in-
terlaced time iteration with Hartree iteration to compute

the Poincare map of the driven square well. These com-
putations showed that the nonperturbative resonances
persisted, but that their amplitude was modulated.

If a sufficiently low charge density is placed in a quan-
tum well, the single-particle and many-body results must
converge. We have performed self-consistent calculations
of the wave functions and energy levels for an undriven,
symmetrically modulation-doped 500-A. square well. For
sheet densities less than 5 x 10 cm, the wave functions
are qualitatively unchanged by many-body effects, and
the difference between energy levels shiRs by less than
five percent. These small changes in the static properties
give one hope that the effects on quasienergies are also
small for low densities.

The well widths and electromagnetic field strengths
for which nonperturbative resonances were predicted in
this work are achievable using GaAs/Al Gai As quan-
tum wells and the free-electron laser at the University of
California at Santa Barbara. Efforts are currently un-
derway to determine the best experimental signature of
these resonances, and to observe them. The most obvious
experiment is to look for an increased extinction of inci-
dent radiation at a particular value of far-infrared inten-
sity. However, it is uncertain that electrons can dissipate
energy fast enough to make this effect observable. Alter-
natively, the average electronic kinetic energy (temper-
ature) could be determined directly from measurements
of the photoluminescence or photovoltage in the pres-
ence of intense far-infrared radiation. The experimental
observation of the nonperturbative resonances predicted
in this work could usher in a new era in the study of
nonperturbative effects in the interaction of light with
matter.
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