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Bimetallic interface: A periodic planar jellium approach
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The problem of the bimetallic interface is studied within the periodic planar jellium (PPJ) approxima-
tion. According to the PPJ approach, the positive charge of the crystal is considered uniformly distri-

buted on the lattice planes parallel to the interface. As a result, the PPJ method, while it retains the sim-

plicity of the one-dimensional character of the jellium approximation, additionally incorporates explicit-

ly within a self-consistent calculational scheme effects due to crystal anisotropies and zeroth-order
band-structure effects. These characteristics make the proposed method suitable for various applications
to bimetals that cannot be studied either within the jellium approximation or by an ab initio calculation.
The general applicability of the method as well as the major differences between the results of the pro-
posed PPJ method and the results of the ordinary jellium model are demonstrated by the presentation of
results obtained by applying the PPJ method to the bimetallic system Na(001)/K(001).

Although the problem of the metal surface has been
extensively and systematically studied within various ap-
proximations, the problem of the bimetallic interface has
not been given analogous interest. The lack of the
periodicity along the direction perpendicular to the inter-
face, and the breaking off, of the two-dimensional period-
icity along planes parallel to the interface, have limited
the studies of the bimetallic interface to those described
mostly within the jellium model.

Within the jellium approximation, Bennett and Duke'
have developed a formalism that has been recently used
and extended by Ferrante and Smith who obtained a
self-consistent solution for bimetallic systems. Self-
consistent solutions of bimetal systems beyond the
jellium-model approximation have not, to the best of our
knowledge, yet been presented. However, the embedding
approach of Inglesfield and the real-space multiple-
scattering approach of Zhang and Gonis indicate
promising ways for attacking the problem of the bimetal-
lic interface.

In the present paper, we will present a model descrip-
tion of the bimetal system which goes beyond the jellium
approximation and incorporates explicitly the interface
anisotropy as well as zeroth-order band-structure effects.

In particular our model approximation is based on the
"periodic planar jellium" (PPJ) model that was first intro-
duced in order to study the metal-vacuum interface in a
way that can explicitly include the surface anisotropy
within a self-consistent calculational scheme. According
to the PPJ model, the positive charge of the ions of a
semi-infinite metal is distributed uniformly along the lat-
tice planes which are parallel to the metal surface. As-
suming that the semi-infinite metal has a Bravais lattice
and exhibits a specified (hkl ) orientation, the positive
charge density on the (hkl) planes (which are parallel to
the surface) can be completely determined by knowing
the type of the metal and its crystal orientation (hkl ).
For this model description, periodicity is retained in the
bulk crystal along the (hkl) axis, which is perpendicular

to the surface, which is assigned to the z axis of the sys-
tem. Thus although this model is one dimensional, sur-
face anisotropy and band-structure effects [associated
with the bulk crystal periodicity along the (hkl) axis] are
explicitly included in the proposed description.

Within the PPJ approximation the solution of the
Schrodinger equation goes along the following self-
consistent calculational scheme: First Poisson's equation
is solved ' for the periodic planar positive charge distri-
bution and an assumed electron density p(z) that satisfies
an overall charge neutrality. The Ashcroft local pseudo-
potential is used to describe the ion-electron interaction
and its core radius parameter for the ions of the metal are
among the imputs of the problem. The Coulomb
(pseudo)potential, Vcb(z), obtained from the solution of
Poisson's equation, is added to the exchange and correla-
tion potential V„,(z) obtained within the local electron
density approximation (LDA) and Wigner's formula for
the exchange and correlation energy per electron. The
so-obtained single electron potential, V,s(z),

V,tr(z) = Vcb(z)+ V„,(z),
is inserted into the Schrodinger equation (atomic units
are used)

l d gE + V.fr(zCE(z) =&KE
dz

which is solved self-consistently by a wave-function-
matching technique (described elsewhere ) from which
the wave function gE(z) and the corresponding eigenval-
ues E are determined.

The PPJ approach to the semi-infinite metals described
above is now applied in the case of a bimetallic system
which is specified by giving the types of its left and right
metal constituents, their separation as well as their orien-
tation ( hkl ) and ( h 'k 'l' ), with respect to their inter-
face. Assuming that both the metal constituents of the
bimetallic system possess a Bravais lattice, the bimetallic
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FICx. 1. The positive charge distribution of the bimetal
Na(001)/K(001) as approximated within the periodic planar jel-
lium model. On the (001) lattice planes of Na and K, the posi-
tive charge density is 2m/a» and 2m/a&, respectively, where
a;, i =Na, K are the areas of the unit cells of the (001) planes of
Na and K. The interplane distance is dL and dz for Na and K,
respectively, and the distance a between the first Na plane and
the first K plane is taken equal to a =0.5(dL+ d& ).

system exhibits the picture shown in Fig. 1 when approxi-
mated with the PPJ approximation. The orientations
( hkl ) and (h 'k'I') specify the periodicity in the left and
right bulk parts of the system as well as the density of the
positive charge on the (hkl) and (h'k'I') lattice planes of
the left and right metal, respectively. The interface re-
gion is assumed to be extended a few lattice constants
from the interface plane towards each metal constituent.
The interface region may exhibit interface relaxation
effects, interface defects, etc. However such considera-
tions will not be discussed in the present work for which
it will be assumed that the bulk periodicities are extended
up to the interface plane.

From Fig. 1 it becomes clear that the bimetallic system
exhibits three physically different regions: the left bulk,
the interface, and the right bulk. In each of these regions
Schrodinger s equation, Eq. (2), is solved separately after
having solved Poisson's equation and having calculated
V,Ir(z) for the whole system.

The solution of Poisson's equation is a major step in
the present methodology and according to our solution it
is based on the knowledge of the electron density profiles
pL(z) and (0„(z) of the semi-infinite metals each of which
is, respectively, the left and the right metal constituent of
the bimetallic system. The electron densities pl (z) and
pE(z) need not be the self-consistent solutions of the cor-
responding semi-infinite metals. However, they have to
be chosen in such a way so that they can neutralize the
positive charges of the left and right metal constituents,
respectively. On the other hand, if, as in the present case,
pL (z) and pE(z) are taken to be the self-consistently ob-
tained densities of the corresponding semi-infinite metals
that constitute the bimetallic system, one can make use of
the assumption that to the left of z =zL and to the right
of z =z„ the electron density p(z) of the bimetal is identi-
cal to pL (z) and pE(z), respectively. This observation al-
lows us to restrict our self-consistent solution only within
the interface region with the result that the self-
consistent solution of the bimetallic system is greatly fa-
cilitated.

Having obtained the single-electron potential V', Ir)(z),

g(s)(z) p(s)(z)a (4)

where a is the two-component vector whose components
are the two constants of integration. Continuum normal-
ization applied to gE'), i =L,R, consistent with the aver-

age electron densities in the bulk, allows us to determine
the ratio AE '/AE' '. Then, the matching of the wave
functions at the interface boundaries at zl and zz allows
us to determine the other four constants of integration.
In particular the matching procedure reduces to the fol-
lowing matrix equation for the constants tpE

' and yz '..

Sln+E
M

cos+E

Sln+E

The matrix M is given in terms of the known ratio
AE '/AE ', the matrices PE '(zI ), PE '(zE ), PE '(zI ),
PE' '(zE ), and the vectors QE

' and QE' '. Equation (5) is
then reduced to an algebraic quadratic equation in either
sin yE

' or sin yE
' from which both yF and gF ' are ob-

tained.
The determination of the wave functions leads to a new

electron density function p(z) obtained from the equation

E, lgE(z) I'
p(z) = J dE(EF E)—

2E

where EF is the Fermi energy of the system.
The next step is to use the calculated new electron den-

in the interface region we make sure that this matches
the V',Ir'(z) and V',Ir)(z) in the left and right bulk regions,
respectively. The matching between V',Ir'(z) and V',ff (z)
at the interface boundary at z =zl can be obtained
directly by considering the interface region as an exten-
sion of the left bulk region. However the matching be-
tween V',Ir'(z) and V',Ir)(z) at the interface boundary at
z =zE is initially obtained by shifting V',It (z) by a con-
stant value so that the Fermi energies in the two bulk re-
gions are equated. Such correcting potential shifts ap-
pear to be necessary in every iteration towards self-
consistency although their value gets smaller and smaller
as self-consistency is achieved.

After having constructed V,Ir(z) for the whole system
we solve Schrodinger s equation (2) in three different re-
gions. The solutions in the bulk are expressed by the
propagation matrix PE'(z), i =L,R and the eigenvectors
QE" of the propagation matrices PE(d; ) calculated at
z =d;, i =L,R, the corresponding periods along the z axis
within each bulk region, ' i.e.,

i sing' '

g(j)(z) —Ay()Py()(z)Q(g)
cosy')

where 2", y", i =L,R are constants of integration.
The vector g(E)(z), i =L,R, is a two-component vector
whose first component refers to the eigenfunction gE'(z)
and its second component refers to the devirative
Bg'E'(z)/Bz. The propagation matrices Pg)(z), j =L,R,
are (2X2) matrices obtained under the boundary condi-
tion PE"(0)=1,j =L,R. The solution in the interface re-
gion takes the form
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p(i)(z) —~p(i —I)+(1 ~) p(i
—I) (7)

sity and obtain a new single electron potential V,ff(z) ac-
cording to the process described above. The new V,ff(z)
replaces the old one in the Schrodinger equation (2) and
the described calculational process is repeated until self-
consistency is achieved. Our criteria for self-consistency
refer to the changes in the average values of the bulk elec-
tron densities, the potential misfit constant between the
interface and the right bulk regions, and the charge neu-
trality of the interface region. When these criteria satisfy
our numerical tolerances for these quantities, the self-
consistent process is terminated.

We have applied the presented method to the bimetal-
lic system Na(001)/K(001), in other words, to the bimetal
that has as left metal constituent the Na metal with its
(001) lattice plane parallel to the interface and as right
metal constituent the K metal with its (001) lattice plane
parallel to the interface. In Fig. 2 the self-consistently
obtained single electron potential V,ff(z) is shown. In
Fig. 3 we present the self-consistently obtained electron
density p(z) (solid curve) which is compared with the
electron density, po(z), resulting from the superposition
of the self-consistently obtained densities of the Na(001)
and the K(001) semi-infinite metals (dashed curve). The
distance between the first Na-(001) lattice plane from the
first K-(001) lattice plane is taken equal to
a=0. 5(dL +dii ).

In our calculations it has been found that the initial
iterations towards self-consistency are very unstable. In
every iteration we had to check upon the charge neutrali-
ty of the interface region and restore it if necessary by
adding and/or subtracting a charge distribution de-
scribed by three diffuse Gaussians arbitrarily located in
the interface region. Also we found it necessary to use
the mixing of the input p,„and output p,„,electron densi-
ties at every iteration, i.e.,
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FIG-. 2. Self-consistently obtained single electron potential
V ff( z ) for the system Na(00 1)/K(00 1 ) approximated within the
periodic planar jellium model as shown in Fig. 1. The vertical
lines indicate the position of the lattice planes as in Fig. l. Its
wavy form and the elevated shoulder in the interface point out
its significant differences from the results of the jellium ap-
proach.

take place from the metal of lower work function (K) to-
wards the metal of the higher work function (Na). This
statement is not true in general as the electrostatic sur-
face dipole moments which contribute to the work func-
tion of each metal should not be considered in the dy-
namics of the interface problem. Instead, as Bennett and
Duke' observe, the quantities that govern charge transfer
in a bimetallic interface are the bulk "separation ener-
gies, " i.e. , the quantity S"=( V",ff(z))+ —,'(k~"), i =L,R,
of each metal. As our quantitative analysis indicates, for
the bimetal Na(001)/K(001), S' ' —S' '(0 and correct-
ly our calculation indicates a charge transfer from Na to

where i refers to the iteration number and a to the mix-
ing constant; the latter had to be taken as large as 0.95.
Our numerical tolerances were as follows: The misfit po-
tential constants were kept smaller than 1 mRy and the
charge neutrality in the interface region close to 1%.

Our results shown in Figs. 2 and 3 indicate that con-
trary to the jellium model results, the bimetal electron
density p(z) exhibits significant differences as compared
with po(z) which is obtained by superimposing the self-
consistently obtained electron densities of the semi-
infinite metals that constitute the bimetal. Besides the
new shoulder that p(z) exhibits in the interface region be-
tween the Na-(001) and the K-(001) lattice planes two
other major differencess between p(z) and po(z) are ap-
parent in Fig. 3. First, it is clear that the Friedel oscilla-
tions tend to reduce in size on both sides of the interface.
Second, it is observed that the electron charge associated
with the Friedel oscillations in the semi-infinite metals
Na(001) and K(001) is concentrated in the interface re-
gion and preferably to the K side in the case of the bimet-
al. This significant result, shown in more detail in Fig. 4,
is opposite to the expected result following from the
statement that in a bimetal interface charge transfer will
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FIG. 3. Self-consistently obtained electron charge density
p(z) for the system Na(001)/K{001) approximated within the
periodic planar jellium model as shown in Fig. 1 (solid curve).
The dashed curve indicates the density po{z) obtained by super-
imposing the self-consistently obtained electron densities of the
Na(001) and the K(001) semi-infinite metals. The vertical lines
indicate the position of the lattice planes as in Fig. 1.
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the K side.
Figure 4 indicates also the adequacy of the assumed

spatial extent of our interface region. It is observed that
our choice can be considered adequate enough for the as-
sumed separation a of the Na-K crystals because the am-
plitude of the Friedel oscillations becomes satisfactorily
small at the interface boundaries. This appears to be less
than 20% of the main di6'erence density peak and less
than 5% of the bulk value of the electron density. As
much of the transferred charge is concentrated in the Na
and K interlayer spaces that are adjacent to the interface
region, an increased spatial extent of the interface region
is not expected to alter appreciably the present results.
On the other hand, if the distance o, is allowed to in-
crease, the interface boundary planes that we have chosen

FIG. 4. The difference Ap(z)=p(z) —po(z) of the electron
densities shown in Fig. 3. It exhibits oscillations that tend to
reduce in amplitude towards the bulk regions. The values of
b p(z) at the boundaries of the bulk regions indicate the adequa-
cy of the assumed spatial extent of the interface region.

will take the place of the boundary of the surface region
of the Na and K semi-infinite crystals, respectively, for
which this choice was found to be very satisfactory.

In addition to the possibility of varying the distance a,
the present model allows one to study interlayer relaxa-
tions and their effect on the charge transfer through the
interface (for given separation a). The charge transfer
across the interface depends critically on the Coulombic
contribution to the bulk "separation energy". which in
turn depends on the parameter a and the interlayer relax-
ations. The latter quantities specify an interface
configuration (geometry) whose optimum configuration
should be obtained from an energy minimization. In the
absence of interlayer relaxation, for example, we expect
in terms of the bulk "separation energies, " an increase in
a to be followed by a gradual reversion of the charge
transfer.

It is worth noting that for the system Na(001)/K(001)
the conduction bands of both the Na and the K metals
are within the first Brillouin zone and no band gaps ap-
pear along the (001) direction for energies within the
occupied portion of the conduction band (up to the
Fermi level). For some other combinations, like
Al(001)/Na(001), this situation is not satisfied and the
present approach can be used to study zeroth-order
band-structure effects on the electronic structure of the
bimetallic interface. It should be also pointed out that
within the present method one can study the energies of
(interface) crystal defects by considering interfaces be-
tween crystals of the same metal, M, but of different
orientations, i.e., M (hkl)/M (h 'O'I').

In conclusion, we have presented a method to study
bimetallic interfaces which is based on the PPJ model
description. This approach is the natural zeroth-order
approximation of a complete three-dimensional solution
of the semi-infinite metals based on the propagation ma-
trix method ' and as that it incorporates anisotropy and
band-structure effects in a more natural and explicit way.
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