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Charge-spin separation and the spectral properties of Luttinger liquids
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We compute the spectral function p(q, co) of the one-dimensional Luttinger model. Charge-spin sepa-
ration gives spectral weight at frequencies between the charge and spin-Auctuation dispersions while

spectral weight above U q and below —
U q is related to the anomalous dimensions of the fermion opera-

tors. The generalization of these results to many-particle correlations is discussed as well as the possibil-
ities for their experimental verification in quasi-one-dimensional conductors.

The notion of a Luttinger liquid was coined by Hal-
dane' to describe the universal low-energy phenomenolo-
gy of gapless one-dimensional (lD) quantum systems. It
is based on the exactly solvable Luttinger model whose
ground state can be viewed as a gas of noninteracting bo-
sons, and postulates that this picture remains true, at
least in terms of renormalized bosons and up to perturba-
tive corrections, for the asymptotic low-energy properties
of a much wider variety of 1D models of correlated fer-
mions (or bosons), provided their low-energy excitations
are gapless. There is thus an analogy to the Fermi-gas
and Fermi-liquid pictures in higher dimensions, and the
Luttinger liquid can be regarded as an effective theory for
the 1D Fermi surface.

The distinctive properties of the Luttinger model are
the absence of fermionic quasiparticles, anomalous di-
mensions of operators leading to power-law decay of the
respective correlation functions, and charge-spin separa-
tion manifest in different velocities for the collective
charge and spin Auctuations. This phenomenology has
now been verified for several 1D lattice models. More-
over, based on x-ray, nuclear-magnetic-resonance, and
optical experiments, it can be concluded that the normal
state of some organic conductors and superconductors is,
in fact, a Luttinger liquid. However, both the experimen-
tal and theoretical interest have been turned mainly to-
ward the ground-state properties and the nonuniversal
exponents characterizing the correlation functions.
Charge-spin separation has received comparatively less
attention, and its consequences as well as possible experi-
mental verification have only been discussed in an ap-
proximate manner in the literature.

Renewed interest for the properties of Luttinger liquids
was stirred up by Anderson's proposal that the normal-
state properties of the high-T, superconductors could be
described by a hypothetical "tomographic" Luttinger
liquid in 2D. ' Much of this discussion has been based
on the spectral properties of the high-T, materials mea-
sured in photoemission; the spectral properties of the
Luttinger liquid and, in particular, the signatures of
charge-spin separation there, are, however, only poorly
understood.

The present paper reports on a calculation of the spec-
tral function

p(q, co) = vr 'ImG (k, c—o+p)

(G is the retarded fermion Green's function, p is the
chemical potential of the electrons) for the Luttinger
liquid which can be measured by photoemission. Particu-
lar attention will be paid to the separate efFects of
charge-spin separation and of the anomalous dimensions
of the fermion operators by comparing to two simplified
versions of the model containing one feature but not the
other. We shaH also discuss qualitatively to what extent
similar and complementary effects can be seen in many-
particle correlation functions which are probed by
different experiments.

The Luttinger Hamiltonian for spin- —,
' fermions can be

written as the sum of the following terms:

GATV F g [v+(p)v+( —p)+v ( —p)v (p)]L
V —P, O P

describes free charge and spin density Auctuations
(v =p, cr ) with the Fermi velocity vF about the two Fermi
points +kF. The operators for charge and spin Auctua-
tions

~ ( + fVr(P~,—~ (Crk +k+ptcrk +kt —Crk +k+p/crk +kg)V2 F
k

F F F

obey boson commutation relations. ck, are the fermion
operators. Ho is the boson representation of the free fer-
mion Hamiltonian Ho=UF+k, „(rk —kF)ck, „ck, „,
where the dispersion extends to infinity and all the
negative-energy states are filled. It is remarkable that the
model can be solved exactly in presence of the interac-
tions

yg4 (p)[v~(p)v+( —p)+v (
—p)v (p)],1

L V=P, O P

(4)

the forward scattering of Auctuations on the same branch
of the spectrum; its effect is a renormalization of the Fer-
mi velocities U~ ~UF +g4 /~ of charge and spin Auctua-
tions which, in general, now will difFer.

=2Hz = g g gz, (p)v+(p)v (
—p),L V=P, O. P

the forward scattering between particles on different sides
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g4v
UF+

2
g2v

2 1/2

Two important simplifications are possible: (i) spinless
fermions, thus involving only charge degrees of freedom
(this limit is formally obtained by setting g, i=0 in the

of the Fermi surface, hybridizes density Auctuations on
both branches. The effective interactions for charge and
spin,

gip 2 (gi(~+gii) gia 2 (gi() gii')

are linear combinations of the fermions coupling con-
stants for parallel and antiparallel spins. The model is di-
agonalized by a Bogoliubov transformation; the emerg-
ing gas of noninteracting bosons can be described com-
pletely by two nonuniversal parameters per degree of
freedom, an exponent K, determining the power-law de-
cay of correlation functions, and u, the renormalized ve-
locities of the collective modes:

j. /2
~VF+g 4v N2v

KVF +g4~ +g2v

G„(x,t) = —iO(t)( t %„,(x, t), ~ii„,(0,0) ) ), (8)

where I. . . , . . . I is the anticommutator, is evaluated via
Haldane's bosonization identity, ' yielding

calculations). Here go&0 introduces a nontrivial power-
law decay of the correlation functions described by an ex-
ponent K&1. (ii) g2=0 but g4i&0, yielding U Wv but
K =1. This is a minimal model for charge-spin separa-
tion where the correlation exponents K are the same as
for free fermions but the velocities of charge and spin ex-
citations differ. The two branches are now independent
and we have a "one-branch Luttinger liquid. " Even such
a simplified model has physical relevance, e.g. , for the
edge excitations of the quantum Hall effect where the
strong magnetic field gives a definite chirality to the par-
ticles, and where the spin degrees of freedom survive un-
der certain circumstances. For more complicated (and
realistic) models possessing a Luttinger-liquid fixed point,
the effective parameters K, (K =1 for spin-rotation in-
variance) and v can be calculated by a variety of
methods.

The retarded Green's function for a fermion +, „with
spin s on the branch r of the dispersion,

O( t ) irk' x 1 AG„x,t = — e
~ 2 2277 QU t —rx (A+lU t) +x

+(x ~—x, t~ —t)

A is a momentum transfer cutoff in the interactions g;(p) =g;exp( —
A~p~ ) and y =(K +K ' —2)/8) 0. For the Hub-

bard model, e.g., there is a restriction —,
' & K 1, implying y & —,'„and y =0 for spin-rotation invariance.

We have not yet been able to Fourier transform this expression exactly, mainly due to difhculties in evaluating
ReG(k, co). However, for the spectral properties ImG(k, co) is sufficient, and one can derive an integral representation
for the full spin- —, fermion problem which can be evaluated asymptotically, and closed expressions for the two toy prob-
lems defined above. Let us start with the latter.

The spectral function for spinless fermions is [here go=(K+K ' —2)/4]
r

1
p„(q„,m) = O(co+Urq„)y yo,2I yo

(co+ Urq„) A

X (1 —5 0)O(co —Urq„)
A

I (yo)U

'rp —
&

( co —Urq„) A
exp

(co —Urq„)A +5 05(co —Urq„) .

+(~~—co, q„~—q„) . (10)

q„=k —rkF measures the distance from the Fermi level.
I (yo) is the gamma function and y(yo, x) the incomplete
gamma function. Equation (10) is plotted for the positive
branch in Fig. 1. Spectral weight appears above the re-
normalized single-particle energy vq with a power-law
divergence (for yo (1) as co~vq, but also as a cusp singu-
larity at negative energies below —vq. In between, the
spectral weight vanishes. The positive-energy feature
corresponds to the creation of particles above the Fermi
sea while the negative-energy feature describes the an-
nihilation of particles above the Fermi sea, present al-
ready in the ground state as a consequence of the g2 in-
teraction. This possibility is most easily seen by consider-
ing the momentum distribution function'

-Vp q

I

Vpq

FIG. 1. Spectral function p+(q, co) for spinless fermions for
q)0.
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n (kF+q)= —,
' —C, sgn(q)~q~ —C2q .

Here, a=2yo and n (kF+q) is finite for q )0. The origin
of the asymmetry in frequency is related to the small
amount of particles excited above kF in the ground state
while the number of holes is of order 1. In a three-body
approximation where the emission of only a single
particle-hole pair is permitted, spectral weight appears at
positive energy but vanishes at negative energy. ' The
spread of spectral weight is a consequence of the g2 in-
teraction, which allows an incoming particle (hole) to
evaporate an arbitrary number of particle-hole pairs on
the opposite branch (as in the x-ray edge problem). Ex-
actly at kF, the exponent of the divergence changes, and

the spectral function behaves as p„(rk~, co)- ~co~, i.e. ,
2yo —1

is infinite for the parameters where n (k) has an infinite
derivative at kF and is zero when n (k) goes linearly
through kF. There is an earlier approximate calculation
by Luther and Peschel. ' The regions of nonvanishing
spectral weight and the exponents of the singularities
agree with their results after correction of some mis-
prints. Unlike Luther and Peschel, at high frequencies
we find an exponential decay of the spectral function.

The second toy problem is the one-branch spin- —,
' Lut-

tinger liquid, g2 =0. This model exhibits charge-spin sep-
aration but the correlation exponents K = 1 are those of
free fermions. The spectral function is

8(co —v rq„)O(v rq„—co)+8(v rq„—co)8(co —v rq„)
p„(q„,co) =

~Q f
cv vrq„/t cv—vrq„—

/

(12)

as is shown in Fig. 2 for the case v ) v applying to
repulsive interactions (for attractive interactions, the role
of v and v is just reversed). At kF, the spectral func-
tion reduces to 5(co) and the momentum distribution is a
step function with a unity jurnp at kF, in agreement with
Luttinger's theorem. " Although this seems to imply a
Fermi liquid, it is clear that the physical picture is quite
different and that the notion of a quasiparticle does not
make sense since the 6-function weight does not survive
the slightest displacement from the Fermi surface and in-
stead deforms into (12). The incident electron decays
into multiple particle-hole-like charge and spin fluctua-
tions, which all live on the same branch as the incoming
fermion. There is no spectral weight at negative energies.
It is immediately apparent that n (k) and, more generally,
any quantity depending on k or co alone, will not exhibit
qualitatively new effects due to charge-spin separation.
These can be manifest only in quantities depending on
both q and ~.

Let us now turn to the spectral properties of the spinful
Luttinger liquid. An analytic calculation is possible in
the spin-rotation invariant case (y =0) in terms of in-
tegrals over Whittaker (i.e., confluent hypergeometric)
functions, and the complete (lengthy) expression will be

given elsewhere. It can, however, be evaluated asymptot-
ically for co~+v rq„and a sketch of the result is given
in Fig. 3 for the (r =+) branch. Both the efFects of
charge-spin separation and of the anomalous exponents
are obvious. Despite its appearance, the spectrum is not
a simple addition of the spinless (g2 finite) and the one-
branch cases, and subtle transfers of spectral weight take
place. Specifically, at positive energies there is a singular-
ity

y —1/2
p„(q„,co) —~co

—v rq„~ ~ as co~v rq„ (13)

as co~v rq„. (14)

Finite y weakens the divergence with respect to the
one-branch model. At negative energies, we obtain a
cusp:

both from above and below. Compared to the one-
branch case, the divergence from below is slower here at
finite y . Coming from above, the exponent is half of the
one for spinless fermions. There is another singularity at
the spin-fluctuation frequency:

2y —1/2
p„(q„,co) -8(co—v rq„)(rv vrq„)—

"p+(q, ~)
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FICx. 2. Spectral function p+(q, co) for the one-branch Lut-
tinger liquid for q )0.

FIG. 3. Spectral function p+(q, co) for the spin-
z Luttinger

liquid for q )0.
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p„(q„,co)-O( —co —u rq„)( —to —u rq„) er

as co~ —v rq„.
This is again similar to the spinless case though the ex-
ponent is only half. The spectral weight vanishes be-
tween v rq, and —v rq„. These features differ from a
previous conjecture. Although an explicit calculation
was not possible for broken spin-rotation in variance
(y )0), from the implied hybridization of the two
branches of the dispersion of the spin Auctuations it is
clear that spectral weight will appear, presumably with a
cusp singularity, already below —

U rq, . Finally, the
momentum distribution function n (k) follows Eq. (ll)
with the appropriate exponent a =2+,y .

All features of p(q, co) can, in principle, be measured
with angle-resolved photoemission. It would be interest-
ing to perform such experiments on low-dimensional con-
ductors whose "normal" state is believed to be a Lut-
tinger liquid. There have been recent angle-integrated
experiments, ' measuring the energy-dependent density
of states X(to) ( —

~co~ predicted for the Luttinger liquid)
which do find an intriguing absence of spectral weight at
the Fermi surface. To what extent this can be related to
the Luttinger-liquid picture described here is not yet
clear.

All many-particle correlation functions of the Lut-
tinger model can be computed exactly and, generically,
will exhibit structure similar to the single-particle
Green's function above though with different correlation
exponents. 9 All two-particle (such as density, spin-
density, or superconducting) correlation functions have
charge and spin contributions and are thus sensitive both
to charge-spin separation and the anomalous
exponents —but can yield complementary information.
The exponents y depend only on the strength of the in-

teractions but not on their sign —the exponents for the
two-particle correlation functions are sign dependent.
The singularities in the dynamical charge or spin struc-
ture factors, S(2kF+q, co) and y(2kF+q, co), measured in
neutron scattering, are governed by an exponent
ctcDw&sDw=K~+It —2 (negative for repulsive and posi-
tive for attractive interaction) and are expected to occur
at co=+v q and +v q in analogy to the above. On the
other hand, one can construct four-particle correlation
functions describing, e.g., 4k+ charge-density waves, that
involve only charge (or spin) degrees of freedom; they will
be similar to Fig. 1 even for the spinful model, and
a4k =4K —2. Different aspects of the effective interac-
tions at the 1D Fermi surface are therefore probed by
different experiments. The many-particle correlation
functions are useful also for studying charge-spin separa-
tion and anomalous dimensions with quantum Monte
Carlo simulations where some algorithms have severe
problems with an accurate determination of single-
particle properties.

Related work has been published recently. For one
hole doped into a half-filled U = ~ Hubbard model,
square-root divergences are found at co=+2 sin(k). '

Moreover, it has been pointed out that the spectral prop-
erties of the Luttinger liquid do inhuence the Fermi-edge
singularities in semiconductor heterostructures in the 1D
quantum limit. '

Note added. After submission of this paper, I have
been informed by K. Schonhammer that V. Meden and
he have independently obtained similar results. '

I wish to acknowledge important discussions with B.
Fourcade, T. Hsu, P. Nozieres, N. Schopohl, H. Schulz,
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