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Determination of deformation potentials by three-photon piezoabsorption of paraexcitons in KI
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Three-photon piezoabsorption of paraexcitons is introduced as a method for the determination of de-
formation potentials. The splitting of the fivefold paraexciton in KI is clearly resolved for uniaxial stress
up to 800 bar. The hydrostatic, tetragonal, and trigonal deformation potentials are determined with
much higher accuracy than is possible with the classical method of piezoreflection.

Deformation potentials are important fundamental pa-
rameters that are used to describe static as well as dy-
namic properties of solids. Although these parameters
are introduced in the Hamiltonian to account for the
effect of a static stress on the electronic eigenstates, the
same parameters are also of great relevance for the
description of dynamical properties, e.g., electron-
phonon scattering. In a series of publications, Bir and
co-workers! developed the theory of the effects of defor-
mation on the energy spectra of semiconductors. In cu-
bic crystals there are three deformation potentials, which
are classified as hydrostatic, tetragonal, and trigonal ac-
cording to the kind of strain in the crystal. Therefore the
application of stress along different crystallographic
directions is necessary in order to determine the three de-

formation potentials. There are, however, considerable

difficulties in resolving stress-induced splittings and shifts
of optical resonances such as band-to-band or exciton
transitions by means of linear optical techniques. Be-
cause of strong absorption of these dipole-allowed transi-
tions, in most cases one has to do reflectivity measure-
ments, which lead to rather broad bands. Ingenious
methods of modulation spectroscopy were invented in or-
der to overcome these difficulties. For a detailed discus-
sion of advantages and drawbacks of these methods we
refer the reader to the classical monograph by Cardona.?

In this paper we introduce a nonlinear optical method

for the determination of deformation potentials that does
not show the deficiencies of linear optical methods. Our
method of three-photon piezoabsorption is applied to the
lowest paraexciton in KI but it should also be applicable
to semiconductors and even molecular crystals. Up to
now deformation potentials in alkali halides were mainly
derived from piezoreflectivity measurements.>”’ Gavini
and Cardona® have determined deformation potentials of
KI by stress-induced birefringence. There are large
differences between the values obtained by these methods
which can be explained by the influence of background
oscillators. The comparison of the linear optical method
of piezoreflectivity and our nonlinear optical method of
three-photon piezoabsorption leads to the following
points in favor of the new technique: (i) Due to the small
linewidth of the paraexcitons (AE ~0.5 meV) as com-
pared to reflectivity spectra (AE ~80-100 meV) we can
observe directly the splitting of the exciton under static
stress; this splitting can be measured very accurately.
Absolute values of deformation potentials also can thus
be determined very accurately. Because of the large
linewidth, piezoreflectivity has to be measured by modu-
lation of the stress. As discussed by Cardona,? it is often
difficult to get accurate values for the amplitude of the
stress. In many cases it is therefore only possible to
determine relative values of deformation potentials. (ii)
We certainly measure a bulk effect, while reflectivity data
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FIG. 1. Three-photon spectra (in arbitrary
units) and one-photon reflection (dashed line)
of lowest exciton structure in KI at 7 K. The
two solid curves around 6 eV refer to reso-
nances on the upper polariton branch. The in-
set shows two components of the paraexciton
under uniaxial stress of 633 bars in [110] direc-
tion. The lower and higher energy resonances
are measured with laser polarization perpen-
dicular and parallel to the stress direction, re-
spectively. Note the enlarged scale of the in-
set.
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FIG. 2. Stress-dependent splitting and shift of components of
paraexciton in KI for orientation of stress as indicated. Open
and solid circles refer to measurements with laser polarization
perpendicular and parallel to stress direction, respectively. The
solid lines represent a fit with the use of the Pikus-Bir Hamil-
tonian [Eq. (1)]. Note different scales for stress and energy.

depend critically on the quality of the surface. (iii) In the
case of the paraexciton, we deal with a pure and isolated
exciton. The analysis of the experimental data is there-
fore straightforward, since the exciton wave functions are
known. In the case of piezoreflection, however, one has
considerable complications due to the fact that one mea-
sures a polariton resonance which cannot be strictly iso-
lated from background oscillators. For the analysis of
reflectance spectra information on the dispersion and line
shape is necessary. In many cases it is more desirable to
do a Kramers-Kronig analysis. For a detailed discussion
of this point we again refer the reader to Cardona.’
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For our experiments we used ultrapure single crystals
of KI with a size of about 3X3X 12 mm?>. They were
cleaved ([100] orientation) or cut and polished ([110] and
[111] orientation). The stress apparatus is described in
detail by Forchel et al’ A dye laser (Radiant RDP)
pumped by a Nd:YAG laser (Quanta Ray GCR 3 where
Nd:YAG means neodymium-doped yttrium-aluminum-
garnet) was used for the excitation of the paraexciton res-
onances. The three-photon absorption was monitored by
the subsequent emission from the self-trapped exciton at
300 nm. In order to detect the very weak transition to
the paraexciton (10" incoming laser photons lead to
about one photon count in the detection channel) it is of
great importance to suppress background signals which
might stem from nonlinear optical effects of the crystal
surface or optical components. Details of the experimen-
tal setup are given in a previous publication. '’

In Fig. 1 we present the spectrum of paraexcitons of
KI for a uniaxial stress of 633 bars which is applied along
a [110] direction. The two components are selectively ex-
cited with polarized light parallel ([110]) or perpendicular
([1T0]) to the stress direction. Because of the small
linewidth (about 0.5 meV) the splitting can be well
resolved down to a stress of about 30 bar. For compar-
ison the three-photon resonances on the upper polariton
branch of the orthoexciton are also shown in the figure.
The two resonances refer to different total k vectors (k,,
and 1k_..) as discussed in Ref. 10. We also show a
reflection spectrum of Baldini et al.'! Due to the large
linewidth of about 100 meV a splitting under static uniax-
ial stress cannot be resolved.

In Fig. 2 we present the detailed stress dependence of
the paraexciton components for three orientations of the
applied stress. The maximum stress which could be ap-
plied before destroying the sample depends on prepara-
tion and mounting of the crystal and also on the stress
orientation. The experimental results for the slopes were
reproducible within 3% for different runs.

For the analysis of our experimental data we have to
consider only excitons which stem from the uppermost
valence band (I'y symmetry, j, =3) and the lowest con-
duction band (I'y symmetry, j, =1). Because of the large
spin-orbit splitting of about 1 eV the stress-induced cou-
pling to excitons of the lower valence band (I'; symme-
try, j, =+) can be neglected. As discussed in detail by
Onodera and Toyozawa!? the coupling of Jy=2 and

2
Jje=1 leads to a threefold dipole-allowed orthoexciton

TABLE 1. Expressions for slopes as deduced from diagonalization of H; [Eq. (1)] and corresponding
experimental values, which are taken from Fig. 2 as indicated by numbers 1-6.

Theoretical expressions

Expt. slopes

Orientation for slopes % (ueV/bar)
[100] 1 alsy +2s1,)+Lb(s;; —sy,) 6.03+0.07
[110] 2 alsy +2s1,) = Lb(s) —s1,)—(V3/4)d 54 12.9+0.1
3 al(sy +2s,)—1b(sy; —5,)+(V3/4)d 544 —2.3240.05
[111] 4 a(sy +2s1,)—(V3/3)d 544 15.9+0.2
5 a(sy +2513)+(V3/6)d 544 1.1£0.2
6 als) +2s;)+(V'3/3)d sy, —3.6%0.1
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(I'y symmetry, F =1) and a threefold (I';’ symmetry) and
a twofold (I';” symmetry) paraexciton, which correspond
to a fivefold-degenerate state (F =2) in the spherical lim-
it. The paraexcitons are pure triplet states and are thus
not affected by the exchange interaction. The strong cou-
pling of the I'; exciton to light leads to the well-known
polariton structure.!® The stress-induced mixing of the
paraexcitons and orthoexcitons is very weak as can be de-
duced from the small oscillator strength of the paraexci-
tons (Fig. 1). For the analysis of the energy shift and
splitting caused by the applied stress we can thus neglect
this mixing and diagonalize the stress Hamiltonian within
the subspace of the paraexcitons. A consequence of this
mixing is nevertheless a small singlet part of the paraexci-
ton states which is necessary for the excitation of these
resonances. The splitting between the I's and I'y
paraexcitons due to the anisotropic exchange interaction
is of the order of 0.1 meV (Ref. 10) and can thus also be
neglected. The stress Hamiltonian H; was first derived
by Pikus and Bir.! We use the definition of the deforma-
tion potentials a@,b,d as in Ref. 2 and in a more recent
publication by Waters et al.,'?

H,=a Tr(e)—3b[(L}—1L%e,, +c.p.]
—2V3d[(L,L,+L,L,)e,,+c.p.] . (1

L (I =1) is the angular momentum operator for the hole,
e (i,j =x,p,z) are the components of the strain tensor,
and c.p. denotes cyclic permutation with respect to x,y,z.
With the use of the tables of Koster et al.!* one can easily
determine the eigenvalues E of H_ in the fivefold sub-
space of the paraexciton. In Table I we list the slopes
dE /dr for all experimental configurations. The uniaxial
stress 7 is negative for compressive stress and the elastic
compliance constants s;; =(0.298+0.006)X 10> bar !,
$1,=(—0.018+0.006)X 1075 bar™!, and s5,=(2.72
+0.06)X 1075 bar ! are calculated from the data of Ref.
15. We thus get six equations, which are then used to
determine the three deformation potentials. From the ex-
perimental slopes we derive the deformation potentials by
a least-squares fit, taking the errors of the compliance
constants into account:

a=(—2.2+0.1) eV, b=(—0.3+0.1) eV,
d =(0.631+0.02) eV .

The hydrostatic and trigonal values a and d are deter-
mined with high accuracy. For the tetragonal deforma-
tion potential b, however, the relative error is about 30%.
For comparison we present in Table II experimental re-
sults of other authors. With the exception of Miyabe
et al.,® there are no error bars quoted in the literature for
the deformation potentials, which are determined by
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TABLE II. Values for the deformation potentials a, b, and d
obtained by piezoreflection (Refs. 3—7), piezobirefringence (Ref.
8), and three-photon piezoabsorption.

a b d

Reference (eV) (eV) (eV)

3 —2.3 0.16 0.57

8 —0.44 0.22

4 —0.06 0.76

6 —2.16+0.4 0.324+0.08 0.73+0.12

7 —2.05 0.02 0.76
This work —2.240.1 —0.3+0.1 0.63+0.02

linear optical methods.>”>"8 For the tetragonal defor-
mation potential b there are even different signs cited. As
stated above we are convinced that there are inherent
difficulties in determining deformation potentials from
piezoreflectivity data. Very recently, Lipp and Daniels'®
measured the shift of resonances on the upper polariton
branch in KI under hydrostatic stress by three-photon
spectroscopy. In this case the polariton character has to
be taken into account. From their shift of the transverse
exciton energy we derive a hydrostatic deformation po-
tential of @ =—2.05 eV. The analysis of these data en-
counters similar difficulties as in linear optics since even
close to a specific resonance the influence of other
dipole-allowed levels cannot be neglected. From mea-
surements of the splitting of the lower polariton branch
by uniaxial stress we have clear evidence for this point.
First results which are gained by three-photon
difference-frequency generation show a wave-vector-
dependent splitting and shift of the lower polariton
branch. Although the splitting is well resolved, the
analysis does not yield the deformation potentials in a
straightforward way as in the case of the paraexcitons.
Again, for the analysis of the stress-induced effects on the
lower polariton branch the contributions of higher
dipole-allowed transitions cannot be disregarded.

It would certainly be interesting to study the stress
dependence of the oscillator strength of the paraexciton
components (I';7 and I's; symmetry) for different wave
vectors and polarization directions. For a quantitative
interpretation the stress-induced mixing with the
orthoexciton (I'; symmetry), the anisotropic exchange
interaction, and possibly stress-induced k-dependent
terms have to be taken into account.
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