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Surface electronic structure of y-uranium
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It is interesting to study the surface electronic structure of uranium in the context of f-electron locali-
zation as the 5f shell is filled. Accordingly, we have used the film-linearized-muffin-tin-orbital method to
calculate the surface electronic structure of y-uranium with body-centered-cubic structure. This all-
electron self-consistent fully relativistic calculation has been done for a five-layer slab with (100) surface
using two lattice constants (differing by about 1%) corresponding to different experimental information.
Our calculated work functions of 3.60 and 3.82 eV for the two lattice constants both provide excellent
agreement with the experimental results, which range from 3.63 to 3.90 eV. The calculated density of
states and the charge distribution show stronger hybridization of Sf with 6d electrons than that of 5-
plutonium. Our calculations indicate that the surface enhancement of 5f localization (i.e., relative to the
bulk behavior) is much stronger for uranium than for plutonium. This increase of localization at the sur-
face may have important consequences for surface reconstruction, chemisorption, and other surface be-
havior.

I. INTRODUCTION

It is interesting to study the surface behavior of the
early actinides (thorium through plutonium) in the con-
text of f-electron localization as the Sf shell is filled. '
For the bulk electronic behavior, as the proportion of 5f
to 6d and 7s electrons increases, the itinerant behavior of
the 5f electrons gradually disappears (with a more dras-
tic change to localization between Pu and Am). Since the
surface f electrons tend to be somewhat more localized
than those in the interior (because of decreased opportun-
ity for overlap), the degree of localized f-electron behav-
ior will be more conspicuous at the surface for any of the
light actinides. Furthermore, several experimentally ac-
cessible surface properties such as the work function and
chemical reactivity are quite sensitive monitors of the de-
gree of f-electron localization. Uranium, located in the
middle of the early part of the series, has only three Sf
electrons in its atomic configuration (5f 6d'7s ) instead
of the six 5f electrons in plutonium (5f 7s ), and the
proportion of outer-shell s and d electrons is also larger in
uranium than in plutonium. Therefore, a study of the
electronic structure of uranium provides important infor-
mation about the changeover from itinerant to localized
5f-electron behavior. It is therefore illuminating to cal-
culate the predicted surface behavior for uranium and to
compare this behavior to that which we calculated for
plutonium. Moreover, since uranium metal is highly

reactive with almost all nonmetallic chemical agents,
especially with hydrogen, oxygen, and water, and with
many metallic elements as well, a study of the surface
electronic structure of uranium is of great potential prac-
tical importance.

II. METHOD AND GEOMETRY

The method employed in this study is our self-
consistent film-linearized-muffin-tin-orbital (FLMTO)
method. The method has been proven by a number of
calculations of 3d, 4d, and 5f metals ' to be an
ef5cient and accurate way to provide high-quality results.
Since it has been described in detail in our previous
work, ' we give only a brief description here.

The basis functions used are a combination of the stan-
dard muffin-tin orbitals (MTO's) (Ref. 9) and plane-wave
orbitals (PWO's). ' The MTO's inside the sphere consist
of a linear combination of the solution of the radial Dirac
equation and its energy derivative for the spherically
averaged actual potential at each iteration. We do not
use the atomic-sphere approximation;' the full potential
j.s used everywhere except inside the muon-tin spheres
where the non-muffin-tin (NMT) potential is approximat-
ed by the extended interstitial NMT potential. In the in-
terstitial region, the MTO is a Ha, nkel function, while in
the vacuum it is modified to be a linear combination of
the solution of the one-dimensional Schrodinger equation
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FICs. 1. Geometry of the Ave-layer y-uranium slab. The z
direction is normal to the surfaces at +Z&. Solid and dashed
circles show uranium atoms at the body-centered positions in al-
ternating layers looking inward.

and its energy derivative for the planar averaged vacuum
potential. The PWO's as independent basis functions,
behave like two-dimensional plane waves in the direction
parallel to the slab surface. Along the direction perpen-
dicular to the surface, they either have a real exponential
behavior or a plane-wave-like behavior, depending on the
energy parameter and parallel reciprocal-lattice vector in
the interstitial region. Like the MTO's, the PWO's are
augmented inside the muffin-tin spheres. In the vacuum
they have the form of linear combinations of solutions of
the one-dimensional Schrodinger equation for the vacu-
um potential and their energy derivatives. All these func-
tions are continuous and have continuous first derivatives
everywhere. Both valence and core electrons are treated
self-consistently. The energy parameters for each orbital
in the spheres and for the vacuum and interstitial regions
are calculated self-consistently, which leaves the lattice
constant, atomic number, and valence-electron number as
the only input. The exchange-correlation potential is cal-
culated within the local-spin-density approximation using
the Vosko-Wilk-Nusair parametrization. " The iterative
calculations were carried out until the difference in input
and output potential was of the order of a few mRy at all
locations.

There are three forms of uranium structures that occur
as the temperature changes' (orthorhombic a-U up to
600'C, tetragonal P-U up to 760'C, and bcc y-U above
760'C). In the high-temperature y phase, the structure
has been found to be body-centered cubic. A lattice con-

0
stant of 3.48 A was found at high temperature. This
value is then extrapolated to a room-temperature lattice
constant of 3.43 A. The lattice constant of y-uranium at
room temperature has also been studied by means of

impurity-stabilized samples, from which a pure y-
uranium lattice constant at room temperature is derived
to be 3.467 A. With this information in mind, we have
performed calculations for a (100)-oriented five-layer slab
of bcc uranium as shown in Fig. 1, with lattice constants
of both 3.43 and 3.467 A. In both calculations, we ad-
justed the radius of the muffin-tin sphere to make the
spheres touch.

For both lattice constants a ten-point set of special k
points in the irreducible wedge of the Brillouin zone of
the two-dimensional square mesh has been used in the
calculations. ' The two choices of lattice constant yield
very similar densities of states (DOS) and charge-density
distributions, and give work-function values of 3.82 and
3.60 eV for the smaller and larger lattice constants, re-
spectively. Both these values provide excellent agree-
ment with the most recent experimental values, ' '
which range from 3.63 to 3.90 eV.

III. RESULTS OF THE CALCULATION

A. Electronic structure
0

Since the calculation for the lattice constant of 3.43 A
gives a density of states and charge-density distribution
very similar to those for the lattice constant of 3.467 A,
we show only the density of states and the charge-density
distribution contour map for the latter. By employing
the Lorentzian broadening smoothing technique' (with
the smoothing factor A, =0.03 eV) we plot the density of
states from the calculated discrete energy eigenvalues. In
the sphere-projected density of states shown in Fig. 2, the
spin-orbit splitting is 1.1 eV, as expected, slightly less
than the 1.3 eV splitting for plutonium. This small in-
crease from uranium to plutonium is consistent with the
charge being concentrated closer to the nucleus as the ac-
tinide contraction occurs.

The density-of-states behavior for uranium corre-
sponds to much broader f-band widths than for plutoni-
um. Indeed, in this calculation, the density of states for
the center (bulklike) sphere does not show a distinctly
two-peak structure. This is very different from what we
have found in the plutonium calculation, in which we
found two peaks, mainly originating from —,

' and —,
' states,

respectively, with the —,
' band and the —', band fairly well

separated. In the uranium calculation of Fig. 2 however,
the —,

' band and the —', band are very much overlapped,
especially at energies lower than the Fermi level. More-
over, the —,

' band and the —,'band are both much wider
than those of plutonium. The shorter distance between
two nearest atoms in y-uranium compared to the dis-
tance in 6-plutonium makes the direct overlap of 5f or-
bitals stronger, and this leads to the f-band width for
uranium being larger than that for plutonium. However,
although the surface density-of-states peaks ( —', and —', ) for
U are broader than the corresponding DOS peaks for Pu,
the narrowing relative to bulk behavior is greater in U.
Thus, the contrast between U and Pu in itinerancy of f
electron behavior is less pronounced on the surface than
in the bulk.

In addition to the direct overlap between the f orbitals,
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Center
Subsurface
Surface

0.265
0.287
0.223

0.138
0.108
0.095

1.779
1.805
1.218

2.551
2.536
2.586

11h =7.304 per five-atom unit ceInterstitial charge

(a =3.467 A)
s p d

Center
Subsurface
Surface

0.280
0.304
0.237

0.143
0.112
0.098

1.790
1.823
1.225

2.512
2.489
2.580

TABLE I. Integrated charge distribution of bcc y-uranium
for lattice constants o
subsur ace, an suf, d surface atomic spheres (orbitally projec e an
the interstitial region of the five-layer slab.

Integrate or i a -pd b t 1- rojected and interstitial charge
distribution (e )

(9 =3.43 A)
d

the stronger hybridization between, p
~ ~ ~

and s and d orbit-
als, especially between f and d orbitals, contributes to the

eaks. This can be seen from the
charge is ri u

'd' t 'b tion for the orbitals as shown in a e
orbit-'d d to ether with the locations of the or i-when consi ere og

1 in the density-of-states plots shown in ig. . n
orbital-projected charge distribution or p'-

=3.467 A shown in Table I, we notesplit case with a =
u-orbital charge for the center atom is 3 o othat the -or ita c a

the total charge, which is almost doub e e
r e of 19% of the total charge for the center atom in

the plutonium calculation. n ig.
orbita -projec e et d d nsity of states for the center, subsur-

h In order to make the behaviorface, and surface sp eres. n
ve enlar ed theh and d states more visible, we have enlarged t eoft es, p, an

d 't f those states by a factor of 5 in t ep o.ensi y o —4 eV to wellt at t e wi eh h ide d-band density extends from-
r tail of the fabove the Fermi level with the low-energy a
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face contraction favorable to increased bonding, ' while
for plutonium there might be a surface expansion more
favorable to the polarization effects (and even possibly a
surface magnetic transition).
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