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Dielectric and optical properties close to the percolation threshold. II.
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We present a two-dimensional simulation of the optical properties of granular metal films using the
Frank and Lobb algorithm. The results are compared with the effective-medium approximation (EMA).
Close to the percolation threshold we obtain excellent agreement between the simulation and the EMA.
It is shown that the anomalous absorption in the near ir stems from the broadened spectrum of surface-
plasmon (or cluster) modes and the percolation scaling law for a mixture of two conductors. This model
is able to account for the absorption, reAection, and transmission of thin semicontinuous gold films and
their frequency independence at the optical percolation threshold. The discrepancy between EMA and
the simulations and experimental data at the edges of the cluster-mode spectrum and in the Lifshitz tails
outside the critical region are due to configuration fluctuations neglected in the EMA.

I. INTRODUCTION

The optical and infrared properties of random metal-
insulator composites (thin films or cermets) close to the
percolation threshold have been the subject of a number
of recent works (for a review see Ref. l). The optical
properties of these materials are characterized by a num-
ber of features that do not appear in the pure metal. The
main difference for noble and other good conductors
based composites is the occurrence of a spectrum of Mie
or "surface plasmon" absorption resonances in the visible
or near-infrared frequency range, which depends on the
morphology of the metallic inclusions in the composite.
As the concentration of inclusions increases this spec-
trum (whose maximum for noble metals lie in the visible
range) broadens towards higher wavelengths due to the
formation of clusters of various shapes and sizes. A dis-
cussion of the mathematical properties of the spectrum of
resonances in resistor-inductor-capacitor (RLC) networks
simulating such composite systems is presented in Ref. 3.

In this paper we are dealing with the optical properties
of semicontinuous noble-metal films for which well-
documented experimental data are available. In these
films near the percolation threshold p, the cluster reso-
nances give rise to an unusual behavior of the film
reQectivity and transmittivity. In the near-infrared re-
gion ( -2 pm) one observes three characteristic
features: ' (l) The absorptance, refiectance, and
transmittance are almost frequency independent in the vi-
cinity of the percolation threshold. (2) There is no sharp
transition of the reAectivity at the metal-insulator transi-
tion. The observed reflectance is much lower than that of
a continuous metallic film but increases almost linearly
with the metal filling factor. (3) The absorption is max-
imum in the vicinity of the percolation threshold and is
much higher than that of a continuous film of the same
electronic density.

These nontrivial results have been used to question the
validity of mean-field theories to describe the optical

properties of composites in the vicinity of the metal-
insulator transition. Recently a few models' ' have
been proposed, which make an extensive use of the vari-
ous scaling laws and ansatz of the percolation theory.
Authors of Ref. 11 assume that only clusters larger than
the light wavelength A, contribute to the absorption. Au-
thors of Ref. 13 identify the wide region of strong absorp-
tion as the region where the anomalous diffusion length
(much smaller than A, ) on the percolating backbone is
smaller than the percolation correlation length. In these
works, the quantitative comparison with experiment de-
pends on the ansatz chosen for the cluster distribution or
the values of the unknown expansion coeScients of the
scaling functions. In both works the contribution of clus-
ter or surface-plasmon modes are neglected.

The models of Refs. 11—13 assume that over a wide
range of filling factors around the percolation threshold
p„ the optical properties are dominated by the Auctua-
tions and therefore cannot be described by an effective
dielectric function. If this statement would be confirmed
this would cause a serious setback to the efforts undertak-
en to model the dielectric and electrical properties of
composites. ' ' It would be also a rare example of a
phase transition exhibiting a wide critical region on both
sides of the critical point very far from the condition
(p =p„~=0) where a sharp phase transition occurs.

By contrast, it has also been shown' ' that the
effective-medium theory' (EMA) is obeying the good-bad
conductor scaling law of Efros and Shklovskii' and Stra-
ley' in the case of a two-dimensional (2D) metal-
dielectric composite in the frequency range of interest.
As a consequence, the near-infrared optical absorption
coefficient is maximum and almost exactly frequency in-
dependent for a filling factor p* (the optical threshold)
slightly higher than the percolation threshold p, in the
case of noble-metal films. ' At p, the optical resonant ab-
sorption from the finite-size clusters starts to decrease
and the metallic absorption from the percolating cluster
starts to increase. At p* the sum of these two contribu-
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tions is maximum and independent of frequency. ' These
results have been confirmed by real RLC circuits simula-
tions of metal-insulator composites as well as by comput-
er simulations using the transfer matrix methods. ' On a
more theoretical ground, Luck using a perturbative ex-
pansion of the conductivity has provided a quantitative
explanation of the currently observed fact that for a large
class of conductance distribution, EMA predictions are
very accurate.

In order to try to resolve the contradictions between
the conclusions of these two series of works and to clarify
the importance and the role of fluctuations as well as the
importance of size effects and the role of cluster resonant
modes, we present here the results of a numerical simula-
tion using the Frank and Lobb algorithm, ' which allows
us to calculate the optical absorption coefficient and the
reAectivity coefficient for a model of gold-insulator
discontinuous thin film. The results of the simulation are
compared with the corresponding curves obtained in the
EMA. This algorithm has been shown to work efficiently
not only for problems involving the conductivity but also
for calculating the critical current of a normal metal-
superconducting composite. The same method has been
used successfully to simulate far-infrared absorption in
two-dimensional normal metal-superconductor compos-
ites. In that case, the analytical EMA is in excellent
agreement with all the results of the simulations. The
present paper finds its inspiration in the work of Stroud
and co-workers who have proposed a similar approach
for optical absorption but did not apply it to real systems.
In the near ir frequency region, the simulations and cal-
culations we present here allow us to understand the vari-
ation of the relative contributions of all the finite clusters
and the percolating cluster to the total optical absorp-
tion. In the near infrared region we do not find any
length scale dependence of the absorption but with our
simulations we can recover in the dc regime the finite-size
percolation critical exponent t/v. Although we did not
choose the model parameters to fit perfectly the experi-
mental results, the absorption coefficient and reAectivity
coefficient curves as well as the reflectance, absorptance,
and transmittance of a granular thin film calculated using
the Abeles formula and reported here are good illustra-
tions and of what is observed in noble-metal discontinu-
ous films around p, . ' ' The results of this simulation
confirm the findings on the optical conductivity close to
p, and reported in a first paper with the same title' and
referred to as paper I in the following.

As we shall argue, the agreement between the 2D simu-
lations and the 2D EMA is the consequence of the fact
that the relevant exponents in the scaling function valid
in the near ir frequency range are the same in the per-
colation theory and in the EMA. This is not the case in
3D systems and therefore discrepancies are expected for
3D composites although the analytical form of the scal-
ing function should be well approximated by the EMA
scaling function.

II. THE MODEL

To simulate the absorption and reAectivity properties
of a 2D metal-dielectric composite (cf. paper I), we con-

X(co)—o.d(co)+(1—p) =0,
hard(co)+ (d —1)X(co)

(2)

where the lattice dimensionality is d =2. This self-
consistent equation is identical to the Bruggeman approx-
imation for a 2D composite when the depolarization fac-
tor is g = 1/d and corresponds to circular inclusions in a
2D medium.

Since we are interested in noble-metal discontinuous
films and to make possible comparisons with previous pa-
pers, we have used for our simulation calculations the
same value as in Refs. 26 and 27 and paper I for a gold-
based composite metal and dielectric conductances, i.e.,
hen =9.2 eV for the plasmon energy, h/~=0. 06 eV for
the relaxation energy. The dielectric constants are
e ( ~ ) =6.5 and ez =2. 82.

%'e have calculated XFL for square lattices of linear
size 1.=10, 15, 20, 25, 30, 35, and 50 and averaged over
1000 to 10000 random lattice configurations for various
metallic concentrations p. In that model, the infinite lat-
tice percolation threshold is p, =0.5. From XFL we can
calculate the real and imaginary part of the dielectric
constant c, and c2 given by ReX =cocpc2 and ImX =cocpc].
This allows us to calculate the optical conductivity (or
optical absorption coefficient' ) defined by the opticians

sider a square lattice occupied by bonds of conductance
0 (co) with probability p and bonds of conductance
0 d(co) with probability 1 —p. The metal conductance
o (co) is the Drude conductivity

(0)
o (co)= . +i cocos ( ~ )1+l'TCO

and the frequency-dependent dielectric conductance
0 d

—l EpE, d CO.

The Drude dc conductivity cr (0)=morpho =me /m.
The constants cp, cd, and c are respectively the vacuum,
the dielectric, and the metal closed-shell dielectric con-
stants. The quantities ~ ' and co& are the metal relaxa-
tion and plasmon frequencies. The metal and the insula-
tor are represented by local quantities and in this circuit-
like model, propagation effects have been neglected.

To find the bulk conductance of such lattice, the Frank
and Lobb (FL) algorithm consists in a repeated applica-
tion of a sequence of series, parallel and star —triangle
Y—V transformations to the bonds of the lattice. The
final result of this sequence of transformations is to
reduce any finite portion of the lattice to a single bond
that has the same conductance as the entire lattice. The
average of this conductance over a number of random
configurations is the quantity XFL from which we will cal-
culate the optical absorption. The efficiency of that algo-
rithm has been analyzed in d.etai1 in Ref. 25. It appears
that the FL method is best behaved for problems where
the conductivity must be calculated for the entire range
of filling factor p. In this paper we will compare the re-
sults of the FL algorithm numerical simulations with the
effective-medium approximation' (EMA) solution of

X(co)—o. (co)
p o (co)+(d —1)X(co)
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I
I14as E2/A, and the refiection coefficient (for a semi-infinite

medium)

(n, —1) +n2
with n =QE, +iEz=n, +in2 .

(n, +1) +n2
(3)

We have computed r in two different ways: (a) For each
configuration we have calculated the reAectivity
coefficient r and then calculate the average r„(b) alterna-
tively, we can calculate the average rb from the average
conductance XFI . The usual absorption coefficient g, i.e.,
the fraction of energy absorbed in passing through unit
thickness of the materials, is given by q=2n, n2co/c
=2m. s2/A, .

III. NUMERICAL RESULTS

The results of the simulations are illustrated in Figs.
1 —5. Figure 1(a) shows the ir optical absorption E2/A, (in

pm '
) for three wavelengths A,

&

=2. 2, A, z
= l.7, and

k3 = 1 .5 pm calculated with the FL algorithm. The linear
size of the circuits is 25. We have averaged over 1000
circuit configurations. For (p —p, )/p, (0, the contribu-
tion to the optical absorption comes essentially from clus-
ter resonant modes, while for (p —p, )/p, )0, the absorp-
tion comes from both cluster modes and percolating con-
ducting electrons. The optical absorption is maximum
for a concentration p* slightly higher than p, . As the
wavelength increases, the contribution of conducting
electrons increases, while the contribution of cluster
modes decreases. This explains the narrowing of the cen-
tral absorption curve around the origin (p-p, ) and the
increase of the absorption for (p —p, ) /p, ~ 1 as the
wavelength increases. It is worth noticing that the c2/k
is wavelength independent in the immediate vicinity of
I'c.

Figure 1(b) shows the optical absorption coefficient
E2/A, for A. = 1.7 pm, one of the cases of Fig. 1(a) com-
pared with the results of the mean-field theory (EMA).
The behavior is qualitatively the same. However the
maximum is closer to p =p, and the width of the central
peak is narrower in the EMA. The mean-field theory
does not account properly for the tails of the cluster reso-
nant modes distribution (Lifshitz modes) because it
neglects Auctuations coming from rare cluster
configurations.

In Fig. 1(c) we show the variation of the optical ab-
sorption coefficient for X=1.7 pm with the lattice linear
size I.. As I increases, the width of the "anomalous"
central region broadens and tends quite rapidly towards a
stabilized curve.

Figure 2 reproduces the results of Fig. 1(b). The EMA
linear contribution from percolating conducting electrons
has been subtracted to emphasize the contributions of
resonant cluster modes. Close to p, the variation of per-
colating electrons conductivity is no longer linear but
—(p —p, )' and this explains the fact that the central
peak in the FL simulation is slightly asymmetric with
respect to the origin (p =p, ).

Figure 3(a) gives the variation of the optical absorption
coefficient with k for p =p, =0.5 and for increasing lat-
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FIG. 1. (a) Near-infrared optical absorption for three wave-

lengths 2.2, 1.7, 1.5 pm calculated with the FL algorithm for
circuits of linear size 25 (averaged over 1000 realizations) as a
function of metal coverage. (b) Near-infrared optical absorption
for A. = 1.7 pm, calculated with the FL algorithm for circuits of
linear size 25 and compared with the results of the mean-field

theory (EMA). (c) Near-infrared optical absorption for X=1.7
pm, calculated with the FL algorithm for circuits of various
linear size (from L = 10 to 35).
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FIG. 2. The same results of Fig. 1(b). The contributions of
resonant modes and conducting electrons have been separated.

tice sizes. For very small L„size e6'ects start to appear
for large A, outside the anomalous absorption region.

In Fig. 3(b) we show the same curve for p*=0.5057,
the optical threshold in the EMA, calculated with the FL
algorithm (I. =25) and in the EMA. Figures 3(a) and
3(b) show that near p„ the optical absorption coefficient
is practically wavelength independent. In that region, the
EMA is in surprisingly good agreement with the results
of the FL simulations.

Figure 4(a) illustrates the variation with (p —p, )/p, of
the calculated reAection coefficients r, and rI, and rEMA
for X=1.7 pm. As for the case of the optical absorption,
the agreement between the EMA and FL simulation is
quite remarkable between —0.2 and 0.2. The discrepan-
cy in the region +(0.25 —0.50) is due to the fact that the
EMA is not appropriate to deal with the tails of the clus-
ter resonant modes distribution. In Fig. 4(b), we show
the variation of the reAection coefficients at p =p, for a
range of ir wavelengths.

The results presented so far are only meaningful if the
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FIG. 4. (a) Reflection coefficient as a function of metal cover-

age for A. =1.7 pm, calculated with the FL algorithm with two
different averaging procedures for circuits of linear size 25 and

compared with the results of the mean-field theory (EMA). (b}
Reflection coefficient as a function of wavelength for p =0.5

calculated with the FL algorithm with two difFerent averaging
procedures for circuits of linear size 25 and compared with the
results of the mean-field theory (EMA}.
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fluctuations around the averaged values presented in
Figs. 1 —4 lie in a reasonable range and if the simulation
method can reproduce the percolation critical exponents
obtained by other methods. We have checked these two
points.

(l) The largest Iluctuations occur for E2 at p-p, and
for ReX in the tails of the cluster resonant modes region.
In Fig. 5 we show the relative error on c& at p =p, and
the relative error on ReX at p=0.25 as a function of the
linear size of the network. One can see that for L larger
20, provided one averages over a few thousand
configurations, it is possible in both cases to achieve a re-
sult with a relative error smaller than 10%. All our re-
sults are in that range of precision.

(2) The FL method is able to yield percolation critical
exponents with a high degree of accuracy. As an exam-
ple and a way to check the performances of our program,
we have plotted the variation of the log of the real part of
XFL vs log L for a circular frequency co=0.08~ ', where
the conductivity still has its dc value, and found a value

of t/v=0. 976+0.010, which overlaps the range given by
the Percola machine.

IV. COMPARISON WITH EXPERIMENTAL DATA

4non,T=
(no+n, ) +(n, +no)p+q

with p =2m. 2g and

q = [ c., + Ez
—( n o +n, )E, + n on, ]rj

(4)

where g =2mt /A, and no and n, are the refractive index of
the air and the substrate (n, -2).

Figures 6 and 7 show the optical absorption coefficient,
the reAection coefficient r, the absorptance A, reflectance
R, and transmittance T as a function of the filling factor p
and the wavelength at the optical threshold p . A, R,
and T have been calculated with the exact Abeles equa-
tions. We have checked that the approximate formulas

The FL simulations reported in this paper account
qualitatively for the experimental features discussed in
points 1 to 3 of the Introduction. A quantitative compar-
ison with experimental optical data for various metal
based composite can be done by adjusting the following
parameters: ~ ' and co, which depend on the mean free
path, the effective depolarization factor g, which depends
on the cluster morphology and determines the percola-
tion threshold, which in most films and composite is
larger than the percolation theory value. The dielectric
constant Ed and c, are modified by the intercluster ca-
pacitance due to surface charges. The effective value to
be used for cd must also take account of the fact that the
substrate fills part of the intergrain space as this has been
demonstrated by hopping and tunneling conductivity
studies at low metal coverage. In our simulations the
Au film optical conductivity close to p, in the 1.5 —2.2 pm
range is 13 pm ' compared to 22 pm ' obtained from el-
lipsometric measurements by Gadenne, Beghadi, and
Lafait. ' Since the optical conductivity at p, scales as
+cd, it is possible to reproduce the Gadenne data by as-
suming a higher value of c.d to account for these capaci-
tance effects. To compare with the p variation of the ab-
sorptance defined as A =1—R —T, where R and T are
the reAectance and the transmittance, one has to
remember that the thickness of the film increases with p.
This explains why the absorptance is a continuously de-
creasing function for p )p* in contrast to the optical ab-
sorption coefficient, which increases outside the cluster
absorption region towards its pure metal value (Fig. l).
To calculate the transmittance and the reflectance of the
films from the reAection coefficient for a semi-infinite
medium calculated and shown in Fig. 4, one has to con-
sider the effect of multiple rejections due to the finite
thickness of the film. This has been established by
Abeles. When the film thickness t is much smaller than
the wavelength, these effects can be approximated to
second order in t lA, by the following formulas:

(no n, ) +—(n, no)p+q-
(no+n, ) +(n, +no)p+q
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(4) are exact to less than l%%uo in the wavelength range con-
sidered. We have used the model of Sec. II with two
small differences dictated by the physics of the problem.
We have chosen a depolarization factor g =0.65 compa-
tible with the experimental percolation threshold and an
insulator dielectric constant close to that of the substrate
(ed =4). The film thickness is 100 A at p„a typical value
reported in experimental papers. In the vicinity of p, the
agreement with experimental data ' ' ' is remarkable.5, 7, 12, 13

A fine tuning involving the various parameters of the
model could be used to fit exactly the observation but at
this point would be irrelevant. Particularly noteworthy is
the complete frequency independence of the three optical
quantities A, R, and T at the optical threshold p*. This
result confirms the conclusions of paper I and the specu-
lation on a direct relation between metal-insulator transi-
tion and the frequency independence of the optical prop-
erties.

0.8

-(c)
A V'

V. DISCUSSION AND CONCI USIONS
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The simulation calculations we have performed have
confirmed our findings' that the good-bad conductor
scaling law of Efros and Shklovskii' and Straley' are
obeyed in 20 by the EMA and yields a frequency in-
dependence of the optical properties in the neat ir close
to p, but, more surprisingly, the good agreement in the
anomalous absorption region leads to the conclusion that
the analytical scaling functions used to represent the con-
ductivity of a binary system with two conductivities
od(co) and o (co) in the critical region can be approxi-
mated by the analytical scaling function obtained in the
EMA. Indeed as discussed in Refs. 3 and 14, in the criti-
cal region around p, the conductance scales as

FIG. 6. (a) Optical absorption of an EMA model of gold
granular model as a function of metal coverage. (b) ReAection
coefficient of an EMA model of gold granular model as a func-
tion of metal coverage. (c) Absorptance, transmittance, and
reflectance of an EMA model of gold granular thin film as a
function of metal coverage.

&(co)=o' (co)~Ap~'4&~(h(co)(b, p~
' '),

with h(co)=od(co)/co (co). The functions 0&+(z) have
the analytic properties compatible with the dc limits of
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Ip
—p, l=lhl' '+" (~ =&=1 3)

In the EMA one has pb
—p, l

=
l
h

l

' with

(6)

(~)
h(co) =

ted(co)

sd(co)
—(co~/co')+8 ( ~ )

in the near ir relevant wavelength range. Using these ex-
pressions, one finds that for A, =1.7 pm, the bounds
(pb

—p, ) /p, =+0.431 in the percolation theory and
+0.272 in the EMA. These estimations are in excellent
accord with the curves of Fig. 1. In the second case for

Re(X) and Im(X). The exponents t and s are the conduc-
tivity and superconductivity critical exponents. For

'(co&co, which is the frequency range of interest
here and at the percolation threshold (bp ~0), the ex-
pression (5) gives P+(z) =Kh" and X(co)=Ko (co)h"
with u =t/(s+t) K. is a constant assumed to be univer-
sal. In two dimensions s =t and u =

—,
' as in the EMA. In

the EMA where P+(z) can be calculated exactly' '
K =Qp, /( 1 —p, ). Our simulation calculations suggest
that in the critical region P+(z) can be approximated by
the analytical scaling function obtained in the EMA.
This is what some authors ' ' have done implicitly by in-
troducing without theoretical justification, the exact criti-
cal exponents t and s in the EMA equations to analyze
the optical spectra of metal-insulator cermets. Our re-
sults give some solid ground to that assumption.

If the agreement between FL simulations and EMA is
exceptionaHy good near p„as reported in Sec. IV there is
a discrepancy in the region Ap =+0.2S between EMA on
one hand and simulation calculations and experimental
data on the other hand. This is due to the inability of the
EMA to deal with the tails of the cluster modes distribu-
tion and to the narrowing of the distribution width. This
discrepancy already noted by other authors" has led
them to believe that the EMA is inappropriate in the
whole region —0.25+0.25. A similar phenomena ap-
pears in other disordered systems problems. In disor-
dered alloys for instance, the electronic spectrum of elec-
tronic or vibration states calculated in the EMA (in that
context, the coherent-potential approximation) is nar-
rower than the actual one and cannot account for the
Lifshitz tails states responsible for localization. The
difference of width can be calculated from the study of
the conductors scaling laws. One has from Ref. 3

lower relative concentrations, one observes in the FL re-
sults the contributions of the Lifshitz tails. The agree-
ment between these theoretical predictions and the nu-
merical results is another proof of the power of the
method and of the coherence of our interpretation of the
films optical data.

In conclusion, we have shown that the broaden spec-
trum of Mie resonances is still playing an important role
in the near ir absorption and refiectivity (in the range
2200 —1500 nm) of granular thin films and give a plausible
interpretation of the so-called anomalous absorption in
complete agreement with the two conductivities scaling
laws of the theory of percolation. These scaling laws do
not rely on the exact morphology of the metallic clusters.
This is very fortunate since, it is now obvious that the
morphology of thin films is rather different from the clus-
ter morphology of the classical theory of percolation.

Near the percolation threshold, the cluster resonant
modes dominate the absorption and are not affected by
size effects. Above p„ the contribution of percolating
electrons which obey the usual dc percolation scaling
laws is too small to affect the behavior of the optical ab-
sorption. The results of the simulations confirm the cal-
culations of paper I that the frequency independence of
the optical properties in the near ir at the optical thresh-
old p*. The last, somehow unexpected, result is that the
universal scaling function P+(z) might be well approxi-
mated by the scaling function of the mean-field theory.
This justifies the efforts of Lafait and co-workers' ' to
interpret cermets data with the EMA expressions and the
exact percolation theory exponents s and t. Formula (6)
provides another method of extracting these exponents
from experimental data. It would be interesting to study
the change of the anomalous absorption width and there-
fore of t and s as one goes from a 2D to a 3D regime
where the good agreement between simulation and EMA
near p, is expected to be lost.

ACKNOWLEDGMENTS

We acknowledge with thanks fruitful discussions with
Dr. J. M. Luck, Dr. J. Lafait, Dr. P. Gadenne, Dr. M.
Octavio, Dr. C. J. Lobb, and Dr. B. Souillard. This
work has been supported by the programme
"multimateriaux" of the Wallon Region and the pro-
gramme "Tournesol'* of the French Community of Belgi-
um.

*Permanent address: Ecole Normale Borate Postale No. 4288,
Antananarivo, Madagascar.

~Permanent address: Laboratoire d'Energetique E.E.S. Sciences
Bofte Postale No. 906, Antananarivo, Madagascar.

J. Lafait, S. Berthier, M. Gadenne, and P. Gadenne, in Physical
Phenomena in Granular Materials, edited by G. C. Cody
et al. , MRS Symposia Proceedings No. 195 (Materials
Research Society, Pittsburgh, 1990), p. 77.

~U. Kreibig, M. Quiten, and D. Schoenauer, Physica A 157, 244
(1989).

J. P. Clerc, G. Giraud, J. M. Laugier, and J. M. Luck, Adv.

Phys. 39, 191 (1990).
4R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, Phys.

Rev. B 8, 3689 (19?3).
P. Gadenne, These d etat, Universite Paris VI, 1986.
K. H. Khan, G. A. Niklasson, and C. G. Granqvist, J. Appl.

Phys. 64, 3327 (1988); M. Kunz, G. A. Niklasson, and C. G.
Granqvist, ibid. 64, 3740 (1988).

7P. Gadenne, A. Beghadi, and J. Lafait, Opt. Commun. 65, 17
(1988)~

8E. Dobierzewska-Mozrzymas and P. Bieganski, Surf. Sci. 200,
417 (1988).



4? DIELECTRIC AND OPTICAL PROPERTIES CLOSE. . . . II.

M. Gajdardziska-Josifovska, R. C. McPhedran, D. R. McKen-
zie, and R. E. Collins, Appl. Opt. 28, 2744 (1989).
Y. Yagil and G. Deutscher, Appl. Phys. Lett. 52, 373 (1988).
T. Robin and B. Souillard, Opt. Commun. 71, 15 (1989).
P. Gadenne, Y. Yagil, and G. Deutscher, J. Appl. Phys. 66,
3019 (1989).
Y. Yagil, M. Yosefin, D. J. Bergman, G. Deutscher, and P.
Gadenne, Phys. Rev. B 43, 11 342 (1991}.
F. Brouers, J. P. Clerc, and G. Giraud, in Physical Phenomena
in Granular Materials, edited by G. C. Cody et a/. , MRS
Symposia Proceedings No. 195 (Materials Research Society,
Pittsburgh, 1990), p. 77.

' F. Brouers, Physica A 157, 454 (1989).
~6F. Brouers, J. P. Clerc, and G. Giraud, Phys. Rev. B 44, 5299

(1991).
~~G. A. Niklasson and C. G. Granqvist, J. Appl. Phys. 55, 3382

(1984); D. A. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935);
R. Landauer, in Electrical Transport and Optical Properties of
Inhornogeneous Media, (Ohio State University, 1977),
Proceedings of the First Conference on the Electrical Trans-
port and Optical Properties of Inhomogeneous Media, edited
by J. C. Garland and D. B. Tanner, AIP Conf. Proceedings
No. 40 (AIP, New York, 1978), pp. 2—43.

8E. L. Efros and B. I. Shklovskii, Phys. Status Solidi B 76, 475
(1976).

J. P. Straley, J. Phys. C 9, 783 (1976}.
J. M. Luck, Phys. Rev. B 43, 3933 (1991).
C. J. Lobb and D. J. Frank, Phys. Rev. B 30, 4090 (1984).
X. C. Zeng, P. M. Hui, and D. Stroud, Physica A 157, 370
(1989).
D. Stroud and P. M. Hui, Phys. Rev. 8 37, 8719 {1988);X. C.
Zeng, P. M. Hui, and D. Stroud, ibid. 39, 1063 (1989); X. C.
Zeng, D. J. Bergman, P. M. Hui, and D. Stroud, ibid. 39,
13 224 {1989).

F. Abeles, Ann. Phys. (Paris) 5, 777 {1950).
D. J. Frank and C. J. Lobb, Phys. Rev. B 37, 302 (1988).

26S. Berthier, Ann. Phys. (Paris) 13, 503 (1988).
J. Lafait, S. Berthier, and L. E. Regalado (unpublished).

28J. M. Normand, H. J. Herrmann, and M. J. Hajjar, Stat. Phys.
52, 441 (1988).

29G. Desrousseaux, J. Trompetee, R. Faure, H. SchafTar, and J.
P. Dussaulcy, Thin Solid Films 98, 139 (1982).

30F. Abeles, in Aduanced Optical Techniques, edited by A. C. S.
Van Heel (North-Holland, Amsterdam, 1967).

~S. Berthier, K. Driss-Khodja, and J. Lafait, J. Phys. (Paris) 48,
601 (1987).
F. Brouers and J. Franz, Phys. Status Solidi B 113,431 (1982).
S. Blacher, F. Brouers, and G. Ananthakrishna, Physica A
185, 28 (1992).


