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Electronic distribution and second-harmonic generation at the metal-electrolyte interface
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A model for second-harmonic generation at the meta1-solution interface is presented in which the met-

al is modeled as jellium, and the solution is characterized by its optical dielectric constant. The
coe%cient a characterizing the nonlinear optical response perpendicular to the surface is calculated both
for bare metal electrodes and for metals covered with an overlayer of a di6'erent metal. Generally, the
presence of the solution reduces the absolute value of a, particularly for negatively charged surfaces,
while a metal overlayer enhances it. Our calculations are compared with similar results for metal sur-

faces in the vacuum, and discussed with respect to experimetal findings.

I. INTRODUCTION

In the past decade second-harmonic generation (SHG)
has become a powerful tool for the investigation of the
microscopic structure and dynamics of interfaces. '

One of the main reasons for the interest in this nonlinear
optical technique is its inherent surface sensitivity; SHG
can provide information about the electronic and
structural properties of atomically thin layers at surfaces
and interfaces.

The application of SHG in electrochemistry is of par-
ticular importance since there are very few other
methods which can probe the electronic structure of elec-
trodes in situ. In contiast to surfaces in the vacuum, the
electrochemical interface has an advantage in that the
surface charge can be controlled by adjusting the applied
external potential. This makes it possible to change the
electron density distribution at the interface and the
amount of adsorbed species, and to study the inhuence of
these effects on the nonlinear optical response. By con-
trast, temperature is the only thermodynamic variable in
the vacuum.

A large gap currently exists between theory and experi-
ment on SHG in electrochemical systems. Numerous ex-
perimental studies have employed SHG as a tool for
measuring the electronic, structural, and thermodynamic
properties of components in the electrochemical double
layer. ' The only microscopic calculation of the non-
linear optical response at the metal-electrolyte inter-
face ' was done on the basis of an oversimplified model
for the electronic density distribution at the surface. This
model does not reproduce with reasonable accuracy the
results of density-functional calculations ' for metal sur-
faces in the vacuum, and is limited to small surface
charge densities. On the other hand recent density-

functional calculations ' of the nonlinear optical
response for metals in the vacuum have enjoyed
significant success. The dependence of the SHG signal on
the angle of incidence, polarization, and frequency of the
incident laser beam have been analyzed within the frame-
work of the jellium model. Some of the theoretical pre-
dictions have been verified by quantitative measurements
on aluminum surfaces. The results of the cited pa-
pers " clearly indicate that (i) the SHG response nor-
mal to the surface is quite sensitive to the electronic den-
sity profile at the surface, and (ii) a realistic description of
the ground-state electron-density profile is necessary to
explain experimental observations.

This paper reports on systematic density-functional
calculations of the SHG response at a metal-electrolyte
interface on the basis of realistic models for the electronic
density profiles. ' ' The variation of the SHG signal with
the electronic density n of the metal and the electrode
charge density q have been studied. The effect of the ad-
sorption of metallic overlayers on the SHG response is
also considered. During the past few years this effect,
which occurs primarily during the so-called underpoten-
tial deposition of metals, has been of special interest to
experimentalists, ' ' but so far there is no theory for it.

In this work metal substrates and metal adsorbate lay-
ers are treated within the jellium model. This model
neglects interband transitions, but provides a realistic
description of the density distribution in the surface re-
gion. It describes the basic properties of simple metal
surfaces quantitatively. The free-electron-like aspects of
the conduction electrons of noble metals such as silver
and copper should also be adequately represented by this
model.

The theory presented below is intended to describe the
SHG response at low frequencies. In this limit the nor-
mal component of the second-order polarization is nearly
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independent of the frequency co of the incident laser
beam, and can be obtained from the nonlinear density in-
duced by a static uniform electric field oriented perpen-
dicular to the surface. ' We expect our results to be
representative of the region co/co (0.1 where co is the
bulk plasma frequency.

II. THE STRUCTURE OF THE SHG SIGNAL

Let us assume that p-polarized light of frequency co is
incident on a semi-infinite jellium. The intensity I2 of
the SHG signal with p polarization may be expressed as
follows

I2~ 8me

I m toe
E, (co)E,(Q)e (co)[c, (co)—e, (co)]

(P cos 4'+S sin '0) tan9

where

P=
2s(co)s(Q)a(co) sin 8—b(co) cos 8+ —,'d(co)

Em co

[s(co)+s(co)]

d(co) [E (co)—E, (co) sin 0]'~
s(co) =

2s (co)[E (co)+s(co)] cosO
E

I /2( )

Here e, m, and c are the fundamental constants; Q=2co,
(co) and E, (co) are the bulk optical dielectric constants

of the metal and the electrolyte, respectively. The polar
angle of incidence with respect to the surface normal is
denoted by 0; + is the angle of the polarization vector
with respect to the plane of incidence ('0=0 corresponds
to p polarization, 4=90 to s polarization). The ampli-
tude b(co) specifies the contribution to the signal caused
by currents induced parallel to the surface and d(co) is
due to the magnetic dipole contribution from the bulk.
In a semi-infinite free-electron system, the parameters d
and b have the values b = —1, d = 1 and are independent
of frequency and of the nature of the metal. ' ' The di-
mensionless function a(co), on the other hand, character-
izes the nonlinear response due to currents driven per-
pendicular to the surface, and depends sensitively on the
electronic properties of the interfacial region. It is pro-
portional to the integrated normal component of the
second-harmonic surface polarization. ' ' This func-
tion can be expressed through the dipole moment of the
nonlinear surface screening charge 5n2(z, co) induced by a
uniform electric field normal to the surface and oscillat-
ing with the frequency co:

a(co) = 4n f dz z5n2(z, co—)/q

Here the coordinate z is normal to the surface, n is the
bulk electronic density of the metal, and
q„(t)=q exp(icot) is the surface charge density induced
by an electromagnetic field at the interface.

In the low-frequency limit, when the conduction elec-
trons of the metal follow the oscillations of the incident
electromagnetic field instantaneously, the electronic den-
sity profile depends on q (t ) in the same manner as on
the static charge density q. Then the second-harmonic
screening surface charge 5n2(z, co) can be written in the
form

5n2(z, co) I c) n[z;q+q (t)] I d no(z;q)

q =0 2 Qq

(3)

c) no(z;q)
a(co) =a = 2n f dz z-

oo Bq
(4)

The ground-state density no(z;q ) can be obtained from a
variational calculation assuming a particular form of the
energy functional E[n(z;q)] of jellium; from this the pa-
rameter a characterizing the nonlinear response perpen-
dicular to the surface can be obtained. In the following
we shall present such model calculations of a for the
metal-solution interface; in particular we shall investigate
its dependence on the electrode charge q and on the elec-
tronic characteristics of adsorbed monolayers.

III. THK SURFACE ELECTRONIC
DENSITY PROFILE

For the calculation of the ground state electronic den-
sity we shall apply the trial function version of the varia-
tional procedure. In the case of bare metals in the vacu-
um or in contact with an electrolyte solution we shall use
the two-parameter class of trial functions proposed in
Ref. 12 which, in contrast to the functions commonly

with no(z;q ) being the ground-state electronic density for
a given surface charge density q. When calculating the
derivatives required by Eq. (3) we must keep in mind that
at the metal-electrolyte interface the derivatives over the
static charge dq and the oscillating charge dq are
equivalent only for electronic degrees of freedom.
Indeed, the other degrees of freedom (vibrational and li-
brational) can respond only to dq but they are too slow to
react to dq„. Within the approximation adopted here the
parameter a(co) is independent of frequency and Eq. (3)
reduces to
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used, accounts both for Friedel oscillations in the metal
and for the Budd-Vannimenus theorem. ' This class of
trial functions reproduces the results of the exact calcula-
tions by Lang and Kohn' remarkably well, and seems
particularly suited for the investigation of charged sur-
faces and such complicated systems as the electrochemi-
cal interface. The functions in question can be written as
follows

1 —Ae 'cos(yz+fi) for z &0
n (z, )=n

e ~' for z)0 (5)

Here the constant positive background charge, which
represents the metal ions, occupies the half-space z &0;
the external medium (solution or vacuum) occupies the
half-space z )0, and in our model is characterized by its
optical dielectric constant s„(for aqueous solutions we
used the value E„=1.88). We chose the optical dielec-
tric constant for the following reasons. (1) The incident
laser beam typically has a frequency in or near the optical
region, so that the optical dielectric constant must always
be used in the calculation of 6n2 (2) T. he penetration
length 1/P of the electrons into the solution is of the or-
der of 1, which is of the same order of magnitude as the
correlation length of the electronic polarization of the
solution, while the correlation lengths for the vibrational
and librational polarization are larger, of the order of the
diameter of the solvent molecule (-3). So, to a first ap-
proximation, it is reasonable to use the optical dielectric
constant both for the calculation of no(z, q) and its varia-
tions. Nevertheless, second-order effects due the interac-
tion of the static electronic distribution with the other
polarization modes may exist. Several groups have used
a somewhat higher "effective" dielectric constant in the
range c.=4—6 for this reason; however, this value must
not be used for the calculation of 5nz since this varies
with a frequency in the optical region.

The trial functions in Eq. (5) contain six undetermined
parameters: A, 8, a, P, y, and 5; they must satisfy the
following relations: (1) continuity of n(z, co) and (2) its
first derivative, (3) charge balance, and (4) the half-
moment condition (Budd-Vannimenus theorem), ' which
has been modified to account for the presence of a dielec-
tric medium in the half-space z) 0. The remaining two
free parameters are determined by minimizing the func-
tional of the surface energy. For negative charge densi-
ties on the metal the energies of the one-electron states do
not have a lower bound, since the energies of states local-
ized in the vacuum outside the metal can be arbitrarily
low. Minimization is then performed within the subspace
of states pertaining to the metal, which decay in the bar-
rier region in z) 0. We have used the Wigner approxi-
mation for the exchange and correlation energy as given
in the paper by Smith; for the kinetic energy we have
employed the gradient expansion keeping terms up to
second order. The latter term was taken in the form pro-
posed by Ma and Sahni. '

The true solution for the electronic density of jellium
exhibits Friedel oscillations in the surface region, which
decay as 1/~z~ and have a wave number of 2k~. The pa-
rametrization (5) does not have this asymptotic behavior.

However, as it was shown in Ref. 12, variational solu-
tions obtained with this family do have the correct ampli-
tude and frequency of oscillation in the important interfa-
cial region, and they give very good values for the work
function and the position of the effective image plane.
Use of the Budd-Vannimenus theorem ensures that the
contributions of the region z & 0, which encompasses the
Friedel oscillations, to the work function, the image plane
position, and to the second-harmonic response a, are cal-
culated exactly.

Calculations for the adsorbate covered metals were
done with the three-parameter family of trial functions
used previously in Ref. 13. Following the work of
Lang, we represent the adsorbate layer as a jellium slab
of thickness d and a background charge density n, d

placed on top of the jellium substrate. In the adopted
model the positive background charge is

n+ (z ) = n 8( —z )+n, d8(z)9(d —z ),
where 8(z ) denotes the Heaviside function. For the prob-
lem at hand, we have taken electron-density trial func-
tions of the form

n [1—Ae '] for z &0

n(z)= n Be ~'+nd[l —Ce~' '] for 0&z &d

n Be ~'+ndDe ' "' for d &z .

Continuity of n (z ), its first derivative, and the condition
of charge balance reduce the number of unknown param-
eters A, 8, C, D, a, I3, y, and 5 to three independent ones.
These free parameters are determined by minimization of
the same surface energy functional which we used for the
bare metal surface. This simple family of trial functions
has been successfully employed in a model for the adsorp-
tion of a metal overlayer (underpotential deposition) on
the surface of a metal substrate in electrochemical sys-
tems. '

IV. RESULTS AND DISCUSSION

A. The electrochemical interface without a metallic overlayer

We have performed model calculations of the non-
linear response both for uncharged and charged jellium
surfaces at different values of the bulk electronic density
n of the metal. Figure 1 shows the dependence of the
parameter a on n or, equivalently, the Wigner-Seitz ra-
dius y, =(4m.n /3) '~, for uncharged surfaces in con-
tact with an aqueous electrolyte and in the vacuum. For
comparison the results of the local-density approximation
(LDA) calculations of Weber and Liebsch (WL) carried
out for metals in the vacuum are also presented. Our
vacuum curve and that of WL agree very well with the
exception of the point at r, =2 a.u. To verify the correct-
ness of our approach at large values of the electronic den-
sity we have calculated the parameter a also for a jellium
model using the exact expression for the kinetic energy
and the expansion technique proposed by Mola and Vi-
cente. For n =26.8X10 (Al), using 48 basis func-
tions, we obtained —a =24. This value lies between that
of WL and the result of our variational calculation. It
should be noted that calculations with the two-parameter
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FIG. 1. SHG parameter a on bare metals as a function of the
electronic density n

trial function (which simulate the asymmetry of surface
electronic profile) agree much better with the LDA re-
sults than calculations using one-parameter syrnrnetric
trial functions. ' For the metal-electrolyte interface the
absolute value of the parameter a is smaller than for the
vacuum case due to the screening of the electric field in
the solution (e„=1.88).

Figure 2 demonstrates the charge dependence of the
second-order response a(q) for Al (note: 1.8X10
a.u. =l pC/cm ). We see that in the presence of the
solution this dependence is weaker than in the vacuum;
the absolute value of a is also smaller for reasons dis-
cussed above. This difFerence disappears in the range of
large positive charges since the overlap between the elec-
tronic tail and the medium becomes smaller. For posi-
tively charged surfaces, the electronic distribution is
pushed into the metal and becomes stiffer. This leads to
an overall decrease of the second-harmonic polarizability.
These results illustrate the remarkable sensitivity of the
normal component of nonlinear surface polarization to
the state of the surface.

Figures 3 and 4 give the dependence of the nonlinear

FIG. 3. SHG parameter a for silver as a function of the
charge density q. The curve labeled GTL was obtained from
Ref. 24 as described in the text. Experimental points are also
from Ref. 24.

optical coefticient a on the surface charge q for Ag either
in the vacuum or in contact with an electrolyte. Our
treatment of the electronic properties of Ag is based on
the paper by Amokrane and Badiali, according to
which we have included 1.5 electrons per silver atom into
the free-electron density (n =0.013 a.u. ). The points
are the measured values of —Rea(co) at fico=1. 17 eV
Since in aqueous solutions silver is oxidized at higher pos-
itive potentials, we have not considered experimental
points in this region. The imaginary part of a(co) is rath-
er small at this frequency. The solution curve is closer
to the experimental one than the vacuum curve, but still
a(q) is too large at negative charges. For comparison we
also show the theoretical curve of Ref. 24 (labeled GTL)
for silver based on an exact calculation for jellium with a
density of 8.6X10 a.u. (one free electron per silver
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FIG. 2. SHG parameter a for aluminum as a function of the
charge density q.

FIG. 4. SHG on silver in contact with an aqueous solution
(1) without an external barrier, (2) with a barrier of slope
Vo =0.5 eV/A, and (3) with a barrier of slope V0=1.0 eV/A.
The diamond-shaped symbols indicate the experimental points
from Ref. 24.
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atom) in the vacuum. However, the authors of that paper
scaled the results of their calculation by multiplying all
charges by a factor of 6 to account for the presence of the
solution. Since we think that this procedure is unjustified
we have reconstructed their original curve. The GTL
curve and our vacuum curve differ because of the
different electronic densities employed in the calculations.
Using the model of Amokrane and Badiali for silver and
accounting for the presence of the solution in the jelliurn
calculations leads to a much better agreement with exper-
imental data.

The discrepancy between our calculated curve and the
experimental data at negative charges may be due to the
repulsion that the electrons experience from the water
molecules, an effect which must surely be present but
which is not included in our model. To mimic this effect
we have performed calculations with an external barrier
of the form V(z)= Vozg(z) on the solution side. This in-
troduces an extra term into the energy functional, and
also modifies the Budd-Vannimenus sum rule; details are
given in Ref. 26. Such a barrier is most effective at nega-
tive charges, where it pushes the electronic tail back into
the metal and reduces its linear and nonlinear polarizabil-
ity, and brings the calculated curve closer to the experi-
mental values. Curves 2 and 3 in Fig. 4 were obtained for
values of V0=0. 5 and 1 eV/A, respectively. The latter
curve is seen to fit the experimental data quite well.
However, it should be mentioned that there are other
possible reasons for the reduction of the calculated values
of a(q) at negative charges. Whereas the jellium model
gives quantitative agreement with SHG measurements on
Al, " in the case of Ag it seems to overestimate the sur-
face nonlinear polarization. Electronic structure calcula-
tions for Ag(100) using the surface embedding method
give a value for a(0) at zero charge which is about one-
third the jellium value as a result of band-structure
effects. Calculations for jellium with pseudopotentials
give a similar reduction of the nonlinear polarizability
compared with the simple jellium version. Further-
more, an additional reduction of —a(q ) at negative
charges could be caused by the orientation of water rnole-
cules at the surface, an effect not included in our model.

Figure 5 shows the results of calculations for the total
SHG signal (p-in, p-out configuration) at a silver-
electrolyte interface as a function of the electrode charge
q for various angles of incidence 0. It is seen that the po-
sition of the minimum for each curve depends strongly on
the angle of incidence. This effect was observed in a re-
cent report by Guyot-Sionnest and Tadjeddine, and was
attributed to the interference of charge-dependence and
charge-independent sources of the nonlinear polarization,
and the angular dependence of the Fresnel coe%cients ap-
pearing in Eq. (1). For 9=45' the minimum is right at
the point of zero charge (PZC), but this is a purely ac-
cidental phenomenon for silver. A parabolic behavior of
the SHG response near the PZC was observed in a num-
ber of experimental papers' where an angle of incidence
close to 45 was used. Corn et al. proposed a phenome-
nological model for the observed behavior from these
studies. Their model predicts that the SHG signal should
scale quadratically with the surface charge density.

0.050 I

4S
!~ 0.040--

g
& 0.030--

30

I

I60 Ag &n SOlut1On

(g 0.020--

g 0.010--

Q3

C 0.000'—3.0
I ~ I

—2.0 —1.0
I I

0.0 1,0 2.0 3.0

q (10 a.u. )

40 50 6 0

FIG. 5. SHG response at various angles of incidence for Ag
in an aqueous solution.

There were also attempts ' to use the parabolic behavior
of SHG near the PZC to determine the latter. However,
our calculations show that this behavior is not general
and depends on the nature of the metal and on the angle
of incidence. It should be also mentioned that surface
roughness afFects the experimentally observed charge
dependence of SHG. '

a,d(n, d/n ) =(n /n, ) (dna, ),d

B. The electrochemical interface with metallic overlayers

Numerous experimental studies' ' ' show that
SHG is very sensitive to the presence of even submono-
layers of metals deposited or absorbed on the surface of a
metal substrate. To describe the inhuence of metallic
overlayers on the SHG response from an electrochemical
interface we shall apply the model discussed in Sec. III.
The density-functional (LDA) treatment of a similar mod-
el ' was successfully used for. the explanation of SHG by
alkali-metal overlayers in the vacuum.

Figure 6 demonstrates the effect of metal monolayers
of various densities n, ~ adsorbed on Al (n =0.0268 a.u. )

in contact with an electrolyte or in the vacuum. The
nonlinear parameter —a is much larger in the presence of
a metal overlayer than for bare metals with the same elec-
tron density (see Fig. 1), and increases with increasing
difference n —n, d between the densities of the substrate
and adsorbate. These effects can be explained by the fol-
lowing arguments. ' The quantity n in the definition of
a(q ), Eqs. (2) and (4), refers to the average electron densi-
ty deep inside the substrate, which determines, via the
bulk plasma frequency, the asymptotic behavior of the
electric field in the interior. Thus, for the metal over-
layers shown in Fig. 6, this quantity is enhanced by the
ratio n (Al)/n, d compared to bulk metals with an elec-
tronic density n =n,d. The values of the parameter
a(q) for metal overlayers are also enhanced by about
these ratios as compared to the bare surfaces of the same
metals (compare Figs. 1 and 6):
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where a(n, d) and a,d(n, din ) are the nonlinear parame-
ters for bare metals with electronic density n, d and for
the metal overlayer with density n,d on the substrate with
density n . For bare metal surfaces the nonlinear param-
eter —a decreases slowly (slower than n~ ) with decreas-
ing electronic density n (see Fig. l). This effect and Eq.
(8) lead to the increasing of the quantity —a with de-
creasing adsorbate density n, d as shown in Fig. 6. Obvi-

ously such behavior cannot go on indefinitely: for n, d
=0

the enhancement must disappear.
Figure 7 gives the dependence of the parameter —a on

the thickness of a metal overlayer on Al. We modeled
the overlayer by using a slab with a constant density n,d,
and by allowing the thickness to vary from zero to any
value. One can also model the overlayer using a homo-
geneous positively charged slab of thickness d whose den-
sity n increases from zero to that of the bulk metal as the
coverage is increased from zero to one monolayer. The
second overlayer then has the same thickness d and its
density also varies from zero to the bulk value of the
overlayer metal. The two models can yield different be-
havior during the deposition of the second layer. This
disagreement between the two models is a consequence of

an oversimplified simulation of an atomic overlayer by a
thin jellium slab. But results for coverages between zero
and one monolayer usually show qualitatively the same
behavior in both models.

For overlayers with an electronic density of n, d =0.010
a.u. in the vacuum or in an aqueous solution the parame-
ter —a increases at small coverages and has a maximum
at 0=0.7 in the former case and 0=0.6 in the latter; —a
becomes smaller if the coverage is increased further. The
physical reason for this variation is that the electronic
density becomes more polarizable as it is pulled out of the
metal in the presence of the overlayer with an electronic
density n, d & n . Within the jellium slab model partial
coverages correspond to thinner adsorbed jellium layers.
Thus (see also Fig. 6), the stronger enhancements of non-
linear response, —a could be obtained at coverages less
than a full monolayer. Similar conclusions were obtained
in Refs. 7 and 10 on the basis of LDA calculations of
alkali-metal overlayers in the vacuum. For the electro-
chemical interface the maximum in the —a vs q curve is
not so pronounced as in the vacuum case.

Figure 8 shows the intensities of the rejected SHG sig-
nal (p-in, p-out configuration) in the vacuum and at
metal-electrolyte interfaces as functions of the metal ad-
sorbate coverage. Both curves demonstrate a drastic
coverage-dependent enhancement of the second-
harmonic intensity due to the formation of the overlayers
with maxima at coverages below that of a single full
monolayer. Again at the metal-electrolyte interface the
effect is not so pronounced as in the vacuum case. Quali-
tatively similar enhancements of the SHG signal by an
adsorbed metallic overlayer have been observed experi-
mentally both in the vacuum and at the electrochemical
interface. ' ' ' Our calculations show that, even
without considering optical transitions in the interfacial
region, changes in the electronic density profile induced
by metal overlayers can lead to a dramatic enhancement
of the parameter a characterizing the nonlinear response
perpendicular to the metal surface. The effect of adsorp-
tion on this parameter is stronger than that of double-
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adsorbate layer for an angle of incidence of 45' in the p-in p-out
configuration for an uncharged surface.
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layer charging. We hope that this effect can be used for
in situ studies of the electronic properties of adsorbates.
However, it should be noted that for low-density metal
adsorbates (such as alkali-metal atoms) the frequency
dependence of the parameter a neglected in our static
theory can be important.

V. CONCI USIQN

The work presented above is one of the first theoretical
investigations into second-harmonic generation at the
electrochemical interface. We have used much better
representations for the electronic density profile than pre-

vious studies ' and, with the exception of the two curves
in Fig. 5 showing the effect of an external barrier, our cal-
culations contain no adjustable or arbitrary parameters.
Our model suggests a noticeable effect of the solution on
the SHG signal, in particular a significant reduction of
the absolute value of the parameter a characterizing the
nonlinear response perpendicular to the surface; this
effect is more marked at negative charge densities, where
the electrons penetrate more deeply into the solutions,
and disappears at high positive charges. Our results ex-
plain at least qualitatively a number of effects observed
experimentally; in particular they illustrate the sensitivity
of the SHG signal to the electronic properties of the elec-
trode surface.
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