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A detailed study of the elementary excitations of an electron gas confined to a tubule system is
presented. The system could consist either of a single cylindrical tubule or of several tubules sharing a

0
common axis. Graphene tubules with a radius as small as 11 A have been recently realized. Essential
features revealed from this study are expected to be common to the graphene tubules. The dielectric
function of the quasi-one-dimensional (1D) tubular system has been evaluated exactly within the
random-phase approximation, where both the intrasubband and the intersubband excitations are includ-
ed. The angular momentum (L) is conserved in the tubule system. The excitations, e.g., plasmons, of
different L's are thus mutually decoupled. At any given L, only a small number of plasmon branches ex-
ist, every one of which can be studied systematically. Intertubule interaction for coaxial tubules has
been included. The coupling among coaxial tubules adds unique features that distinguish the tubules
from other quasi-1D systems.

I. INTRODUCTION

Recently, Iijima' reported observation of the coaxial
tubules made of graphitic carbon. A graphene tubule is
just a graphitic sheet that is rolled up in the cylindrical
form. One of the graphene tubules consists of only two
rolled up graphitic sheets, and the smallest graphene tu-
bules have a diameter as small as 22 A. The small diame-
ter suggests its property to be quasi-one-dimensional
(1D). The graphene tubules are closely related to vapor-
grown carbon fibers which have considerably larger di-
ameters ( —10 pm). Charge carriers could be introduced
onto the graphene tubules in a controlled manner by
means of intercalation, as could be done for carbon
fibers or C6o (Ref. 3) molecules. In this work, we have
studied the elementary excitations of the interactive
charge carriers confined in quasi-1D tubules. Due to the
cylindrical symmetry of the system, we were able to
derive the exact results within the random-phase approxi-
mation (RPA).

A graphene tubule is made of a graphitic sheet. The
tubule and the sheet, therefore, are expected to share
some common properties. Our previous studies on the
graphite intercalation compounds (GIC's) have demon-
strated a close similarity between the graphite system and
an electron gas, but with a noted difference that the
inter-m-band excitations in graphite are absent in the
electron-gas model. %'e thus approximate the charge
carriers on the tubule by a free-electron gas, and hope
that such a model could serve as a first step toward a full
understanding of the elementary excitations in the gra-
phene tubules. We noted that Dresselhaus, Dresselhaus,
and Saito have studied symmetries of carbon atoms in
the graphene tubules.

The cylindrical tubules closely resemble other quasi-1D
electron systems in, e.g. , semiconductor quantum wires
(QW's), which have attracted many studies. Li and
Sarma6 calculated the excitation spectra of the QW's
within the RPA, and found good agreement with experi-

ments. The RPA is also employed here for the calcula-
tion. The theory is actually simpler for the tubules since
the excitations of different angular momentum (L) are
decoupled here but not so in a QW. Decoupling of the
angular momentum means that the intrasubband excita-
tions (L =0) and the intersubband excitations (LAO) are
independent of each other, and so are the dielectric func-
tions of different I.'s. This contrasts greatly from the
complicated coupling among different excitations in an
ordinary QW. The relevant energy scales of the two
quasi-1D systems are also very different. While it usually
involves meV in semiconductor microstructures, energies
in a graphene tubule are of the order 0.1 eV. The small
radius of the tubule ( —10 A) makes the energy difference
between subbands large. On the other hand, its Fermi
energy (E~) is expected to be -0.5 —1.0 eV—if the
charge carriers are introduced through intercalation as in
GIC's. Large EF implies that the T=O treatment of
this study is a good approximation. Large energy
difference between the subbands assures that only few
subbands are occupied —a necessary condition for the
system to remain quasi-1D. At such an energy scale, the
quasi-1D excitation s can probably be observed con-
veniently. There is still another special feature about the
graphene tubules: several tubules of different radii may
exist coaxially. The coupling among the coaxial tubules
adds a unique Aavor to this interesting graphite system.
The rich physics of the graphene tubules encourages fur-
ther studies, both theoretical and experimental.

This paper is organized as follows. In Sec. II, the
dielectric function of an electron gas confined to a cylin-
drical tubule is studied within the RPA. The frequency
and the oscillator strength of the plasmon modes are
evaluated. The results are useful for the subsequent dis-
cussions. In Sec. III, an exact formalism of the dielectric
function of an n-tubule system is developed. Approxi-
mated schemes are also developed to analyze the proper-
ties of the plasmons. In particular, plasmons of the n =2
systems have been evaluated and discussed in details.
Concluding remarks are given in Sec. IV.
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II. EXCITATIONS
IN A CYLINDRICAL TUBULE

150—

A free-electron gas confined to a cylindrical tubule ly-
ing on the z axis is considered here. The electrons can
move freely in the axial direction. The azimuthal angle
(P) is quantized due to the boundary condition that the
wave function is single-valued as P is increased by 2m. .
The electron wave function is therefore

lk, /;ri ) =e'"'e' ~o(r —ri )/i/r

where I =0,+1,+2, . . . and r, is the radius of the tubule.
The 5 function describes the confinement that electrons
stay on the tubule. The state with the momentum k and
the angular momentum 1 has the energy (fi = 1 )

E(k, l)=k /2m*+1 /2m'r, ,
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V ( q, L; r i ) =4ne II (qr i )KI. (qr i ) . (3)

II (qr, ) [KI (qr, )] is the modified Bessel function of the
first (second) kind of the order L. L and q are recognized
to be, respectively, the angular momentum and the
momentum transfer of the interaction. The matrix ele-
ments of both the intrasubband interaction
[V(q, L =0;r), solid and solid-starred curves] and the in-
tersubband interaction [V(q, L =1;r), solid circles and
squares] are shown at two tubular radii, r, and r2
(rz ) r, ), in Fig. 1. V(q, O;r), like in a 1D system, is loga-
rithmically divergent as qr~O, while V(q, 1;r) ap-
proaches a finite value at small q. V(q, L;r) of all L
varies as 1/qr at large distances ( —1/q ))r), which is a
characteristic of the 2D Coulomb interaction. Such 1D
behavior at distance —1/q « r and 2D behavior at—1/q &&r& are similar to those found in semiconductor
QW's. ' Also shown in Fig. 1 are intertubule interac-
tion, V(q, L;r„r2), which is discussed in Sec. III.

Here in the matrix element of the Coulomb interaction
[Eq. (3)] lies the major difference between the tubules and
the semiconductor QW's. While the matrix element in
the latter has four indices describing the initial and the
final states involved in the scattering, Eq. (3) only de-
pends on the angular momentum change, I.. This angu-
lar momentum conservation greatly simplifies the calcu-
lation. Most importantly, the dielectric functions, as a
result, are diagonalized in L. Unlike in a QW where all

where m * is the effective mass, and I serves as the sub-
band index. In ordinary QW's, it is the quantum
confinement of electrons to the wire that causes the sub-
band structure; here, it is the periodical boundary condi-
tion in P. We note that, in the latter, subbands with the
indices +I are degenerate in energy. Only certain sub-
bands are occupied at a given electron density. Here we
study the case where the lowest five subbands ( l ll ~ 2) are
occupied. The result could be easily generalized to other
cases. The electron density in a graphene tubule could
probably be controlled by, e.g. , intercalation, as in
GIC's. Parameters used for the numerical calculation
will be introduced later. With the wave functions ex-
pressed by Eq. (1), the Coulomb interaction for electrons
on the tubule is

FIG. 1. Plot of the Coulomb interaction vs qr&. Here, r, = 11
A and rz =14.4 A. Both the intratubule interaction [V(q, L;r)]
and the intertubule interaction [V(q,L;r„ri)] are given. L =0
and 1 are, respectively, for the intrasubband and the intersub-
band interactions.

y(q, L, w)—:g y'(q, L, w),
I

where

(sa)

w E(q, l,L)—
Rey'(q, L, w) = ln2' q w E+(q, l,L)—

Imp (q, L, w)

if lE (q, /, L)l (w (lE+(q, /, L)l
277 q

= ' —m*

2' q
0 otherwise .

if IE+(q, /, L)l &w & IE (q, /,L)l-(5c)

It should be noticed that every occupied subband has in-
dependent [Eq. (5a)], but similar contributions [Eqs. (5b)
and (Sc)] to y of a tubular system. In these expressions

excitations are coupled together, ' here in the graphene
tubules the intrasubband (L =0) and the intersubband
excitations (LAO) are completely decoupled from each
other. The interaction matrix element, Eq. (3), would
have been different if the actual Bloch states of a graphite
layer, ' instead of lk, l;r, ) of Eq. (1), were used. The an-
gular momentum, however, must still be conserved. So,
many of the features discussed here can be readily gen-
eralized for graphene tubules.

The dielectric function of a tubule can be determined
with the use of the self-consistent-field method, "which is
equivalent to the RPA. The result is expressed by

e(q, L, w) =ep V(q, L; r, )g(q, L, w),

where ep is the background dielectric constant. g(q, L, w)
is the response function (the RPA bubbles):
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L +2lL
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1

(6)

I w Im du= wp(q L),
o eqL w 2' (7)

where kz ( l ) is the Fermi momentum of the 1th subband.
~E+(q, l, L)~ describes the boundary within which the e-h
excitations are nonvanishing. It is clear from Eqs. (5) and
(6) that y of different L's are similar in the structure—
their only difference stems from their different excitation
energies (i.e., different E+). As a result, e(q, L, w) of
different L's are similar in structure too, and so are their
plasmon modes. This fact makes analysis of plasmons
particularly simple, since we then only need to study
plasmons of certain L's and to draw inferences from the
results for other modes. We show in the following that a
study on the L =0 and L =1 plasmons is sufhcient for
this purpose.

e(q, L, to) must satisfy the f-sum rule which follows
from the conservation of the number of particles
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FIG. 2. This is the intrasubband excitation spectrum (L =0)
for a single tubule (n =1) with five populated subbands. The
shaded region describes nonvanishing e-h excitations. There
are three branches of acoustic plasmons (AP's) in the system.

where

2kF(l)
w p(q, L)= V(q, L;r, ) +

2m *7 2m + 77.

L) 8 Re@(q,L, w)

Bw u =tt). (q, L)

and similarly of the e-h excitations

2Ep w —1f, h(q, L)= Im .dt's .
Im~&o wo q, L 6 q, L, w

It follows that the total oscillator strength at given L and
q is 1 (see Figs. 3 and 5).

In the following calculations we purposely choose
rI =11 A, m*=m, /4, and so=2.4, so that a graphene
tubule is closely simulated. ' EF is set at 0.6 eV and
hence only the lowest five subbands are occupied. The
electron density per unit length is 0.45 A '. Here we
have assumed that the charged carriers are introduced to
the graphitic sheet by means of intercalation —as in
GIC's. Typical EF of low-stage GIC's is about 0.5 —1.0
eV.

The calculated L =0 excitation spectrum is shown in
Fig. 2. The shaded region, which is outlined by E+ of
Eq. (6), indicates nonvanishing e-h excitations. There are
three plasrnon branches which all go to zero as q~0.

is proportional to the total carrier density. One can show
that e(q, L, to)=Epw p(q, L)'lw as tU~ ~. wo(q, L) is
approximately the plasmon frequency at q ~0. The actu-
al plasmon modes are determined by the zeros of
e(q, L, w) There e.xist several plasmon modes at given q
and L, which are denoted by w~(q, L), j =1,2, . . . . Usu-
ally, wo(q, L) and w (q, L) are different.

We can use Eq. (7) to define the oscillator strength of
plasmons

We call them acoustic plasmons (AP's) here. AP,
denotes the most energetic plasmons, AP2 the next ener-
getic plasmons, etc. These AP's may be interpreted as
coupled intrasubband plasmons. There are three
branches of them since there are three L =0 RPA bub-
bles, respectively, :for the ~l~ =0, 1, and 2 subbands [note
that E+(q, 1,L)=E+(q, —I,L)]. If they were not mutual-
ly coupled, the carrier density in l and —/ would deter-
mine an independent plasmon mode for the subbands,
and there are ~l~+ I of them. The coupling, in general,
modifies the plasm. on energies but not the number of the
collective modes. So, there are (~I~+1)L =0 plasmon
branches and each one is a collective oscillation of charge
carriers from all occupied subbands. The AP, (solid cir-
cles) at small q may be approximated by
top(q, L =0)/Qep. One can show that
w (qo, L =0) ~ q~ln(qr, ) ~' as q ~0, i.e., AP, behaves like
an ordinary 1D plasmon which corresponds to coherent
longitudinal electron density oscillations in the z direc-
tion. This AP

&
alone almost exhausts the oscillator

strength (Fig. 3). The other two branches, AP2 (open cir-
cles) and AP3 (solid squares), exist in pockets surrounded
by nonvanishing e-h excitations. The pocket for un-
damped AP2 is too small to be shown in the figure. AP2
and AP3 are much weaker than AP& and would probably
be diScult to identify experimentally. The calculated os-
cillator strength, f (q, L =0), is plotted in Fig. 3. The to-
tal oscillator strength, with the e-h excitations included,
equals 1—as it should be from the sum rule, Eq. (7).

Similar plasmon branches of intrasubband excitations
in semiconductor QW's have been studied, ' and the
analysis therein is applicable here. The difference is that
the exclusion of intersubband excitations is an approxi-
mation for the QW's, but is exact for the tubules due to
the conservation of L. It has been argued' that the most
energetic intrasubband plasmon is a coherent oscillation
of all electrons in the system and hence f, (q, L =0) dom-
inates. Other plasmon modes (e.g. , AP2 and AP3) corre-
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spond to incoherent oscillations of different subbands.
Their plasmon strengths are therefore weaker; i.e., reso-
nant oscillations coupled to an external field at these
plasmon frequencies are weak. The analysis, ' which is
based on an approximation for intrasubband excitations
in QW's, can, in fact, be extended to the discussion of in-
tersubband plasmons of the tubular system. This is possi-
ble because the L =0 (intrasubband) excitation spectra
and the L )0 (intersubband) spectra are mathematically
similar [see Eqs. (5a) —(Sc)]. It follows that the excitations
of different L's can all be studied independently and eval-
uated exactly. They share the common features which
have already been shown with the L =0 case.

The excitation spectrum of the intersubband excita-
tions (L =1) is shown in Fig. 4. The shaded regions, as
in Fig. 2, are nonvanishing e-h excitations. There are five

2.0—
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~ ~

~ ~
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FIG. 3. The oscillator strengths of the three acoustic modes
in Fig. 2 are given as functions of q/kF(0). Also given is the e-h
contribution (dashed curve). The sum of them (solid curve)
equals 1.

plasmon branches, since each of the five occupied sub-
bands has a different L = 1 intersubband excitation spec-
trum. All five plasmon branches approach finite but
different values as q ~0. They are called optical
plasmons (OP's) here. Similar to the AP's, OP„OP&,
etc., denote the most energetic and the next most energet-
ic optical plasmons, etc. w, (q, L =1) of OP, (solid cir-
cles) roughly equals wo(q, L = I)/Qeo [Eq. (8)] at small
q. It is interesting to note that OP, can also be well ap-
proximated by wo(k, L =0) with k =Qq + I/r,
(dashed curve). This fact suggests to us that AP's and
OP's are similar 1D oscillations, except that in OP's the
minimum momentum transfer is 1/r& instead of zero.
Other plasmon branches are confined in the regions be-
tween E+(q, l, L =1), which correspond to intersubband
e -h excitation energies and are nonzero at small q.
Therefore, L =1 (or L ) 1) plasmons must be optical
plasmons.

The calculated oscillator strength f (q, L =1) is given
in Fig. 5. The total strength equals 1 at each q, as is re-
quired by the sum rule, Eq. (7). The intrasubband
plasmon analysis' can be applied here since the L =0
and 1 excitation spectra are similar in structure, as we ex-
plained earlier. OP&, which may be considered as a con-
tinuation of the quasi-1D plasmon branch, AP& of L =0,
represents a coherent oscillation of all carriers in the sys-
tem; hence, f &

of OP
&

dominates. Both AP
&

and OP& car-
ry a longitudinal component (i.e., along the z axis) in their
oscillations, but OP& has an extra transversive component
which is a rotational charge oscillation around the tu-
bule. Excitations of the optical plasmons, thus, are ex-
pected to accompany quantized magnetic Aux inside the
tubule. Lower-frequency plasmons (e.g., OP2, OP3, . . . )

correspond to incoherent oscillations of charge carriers
from different subbands. They thus have much reduced
plasmon strength.

All L ) 1 plasmons can now be readily understood.
They are similar in structure to the L =1 plasmons but at
higher frequencies —because the excitation energies, E+
of Eq. (6), are higher for L ) 1. There are 21+1 optical
plasmon branches from the 2l +1 occupied subbands for
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FIG. 4. Same plot as Fig. 2, but for the intersubband (L = 1)
excitations. There are five branches of undamped, optical
plasmons (OP's) in the system. The most energetic OP& branch
can be approximated with a quasi-1D plasmon mode (dashed
curve) (see the text).
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FIG. 5. Same plot as Fig. 3, but for the five OP's of Fig. 4.
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each L,. The most energetic plasmon corresponds to a
coherent oscillation of all carriers in the system and has
the dominating plasmon strength. This plasmon mode
may be interpreted as a quasi-1D plasmon branch at
k =Qq +L /r f; its dispersion can be well approximat-
ed by w~(k, L =0). Other weaker plasmons are out-of-
phase oscillations of different subbands. So, the basic
properties of all the plasmon modes are clear in the
single-tubule system, and they can be evaluated exactly
with the use of Eqs. (4)—(6).

If, instead of the 2D plane waves of Eq. (1), the Bloch
states of a graphitic sheet' are used, the interaction ma-
trix elements [Eq. (3)] would be modified. However, the
azimuthal angle quantization would still be true; hence,
the angular momentum conservation would follow. The
important features of the tubular plasmons would thus
remain valid for graphene tubules. For example, there
will be (l+1) L =0 AP modes and (21+1) OP modes
for each L )0, and excitations of different L can be stud-
ied independently. The effect of the inter-m-band excita-
tions in the graphitic system requires further studies.

III. EXCITATIONS IN COAXIAL TUBULES

2

X ~k', l';r ) ~k, l;r, )
R

=4m.e Ii (qr )E~(qr ), (10)

where R is the distance between the two electrons and r &

(r & ) represents the smaller (larger) of r; and r . If r, =r,
the result retrieves to Eq. (3). It is important to notice
that the angular momentum (i.e. , L) is also conserved
here. As a result, plasmons of the coaxial tubules have
well-defined L, too. Also important here is that Eq. (10)
is a separable potential in form. As will be discussed
below, a modified separable potential [Eq. (14)] could lead
to important simplications. The potential of Eq. (10) is
shown in Fig. 1. The small-q (qr& ((1)behavior is simi-
lar to that of a single tubule and exhibits typical 1D char-
acter. At qr& &)1, the potential may be approximated
by exp[ —q(r & r& )]/q, which i—s characteristically the
Coulomb interaction in a layered system. ' ''

Coaxial tubules are more complicated than a single tu-
bule in two essential ways. The first one is related to
different zero-energy levels on different tubules. Charge
carriers, by assumption, are introduced onto the tubules
through intercalation, as in GIC's. ' Consider a neutral
tubular system with intercalants (as donors or acceptors).
At thermal equilibrium, there is but one chemical poten-
tial (i.e., Ez) for the system, but charges on different tu-

The discussion of excitations is extended here for coax-
ial tubules. The intertubule separation is assumed large
compared with the distance between neighboring atoms
on the same tubule. As a result, intertubule hopping is
neglected. A similar assumption has been applied, with
success, to GIC's (Ref. 10) and is expected to be valid for
graphene coaxial tubules. ' With the exclusion of the
hopping, the Coulomb interaction of two electrons on tu-
bules, with the radii r,. and r, respectively, is given by

V(q, L;r;, r ) = (k+q, /+L;r,
~

(k' —q, 1' L;r ~—
e~(q, L, w)=e~5J —V(q, L;r, , r )y (q, L, w) . (12)

y; is the response function of the ith tubule and is expres-
sible by Eqs. (5) and (6); i.e., y of a single tubule. The
constant energy shift, b U(r, ), only affects kz(l, r, ) of Eq.
(6). Linear screening relations similar to Eqs. (11) and
(12) had been derived for GIC's. '

Equation (11) is an n X n matrix equation for an n
tubule system. The plasmons of the system are given by
det[ e~( qL, w)] =0. When the coupling among tubules is
turned off [i.e., setting V(q, L;r, , r/)=0 if r;Wr ], e; be-
comes diagonal and plasmons are just the single-tubule
plasmons given by Eq. (4). This is reasonable since tu-
bules in this case are independent of each other. Compli-
cation from the coupling is, mathematically, in the non-
linear interaction terms. Take the n =2 case, for exam-
ple. Plasmons are determined by

+—[ V(r& )V(ri) —V(r&, rz ) V(rz, r& )]y&hz=0,
1

&o

(13)

where nonessential parameters have been suppressed.
The L =0 and L = 1 plasmons, respectively, are shown in
Figs. 6 and 7. Only the two most energetic branches

bules experience different Coulomb potentials, b U(r; ),
where b U(r& ) =0. Here and thereafter, we use r, to indi-
cate the ith tubule and let r j & rz & r3, etc. r

&
thus denotes

the innermost tubule. h U(r; ) and Ez need to be self-
consistently determined in accordance with the doping
concentration and the distribution of the intercalants.
Once 5U(r, ) have been determined, their only effect is to
be included in the electron energy
E(k, l;r;)=b, U(r, )+(.k +l /r; )/2m* for the rest of
the calculations.

The formalism to be developed below is applicable to
any n-tubule coaxial system. But only the following n =2
model system is calculated for the purpose of illustration.
It has r& =11 A and rz =14.4 A (Ref. 1) and the inter-
calants are assumed to distribute uniformally along the
common axis of the cylinders. e&=2.4, m =m, /4, and
EF =0.6 eV, as in Sec. II. These numbers are reasonable
for graphene tubules and correspond to a doping concen-
tration of 0.91 A '. There are five subbands in each of
the two tubules and b U(ri ) =0.12 eV.

The second complication for the coaxial tubules results
from the mutual coupling among the tubules; i.e., charge
fluctuations on one tubule influence the charges on other
tubules. Consider an external potential on the ith tubule,
u "(q,L), which induces u'. "(q,L) on the jth tubule. The
total effective potential is u (q, L)=u,'"(q, L)+u "(q,L).
Within the linear-response theory, U,

'" is proportional to
v . There thus exists a linear relation

v (q, L, w)=u, '"(q, L, w)+ g e~vg (q, L, w) .
J

The dielectric function e; can be obtained from the self-
consistent-field method:"
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FIG. 6. The intrasubband (L =0) excitation spectrum of two
coaxial tubules {n =2). Only the two most energetic plasmon
branches are given. If the intertubule interaction is switched
off, the plasmons are just those of individual tubules (open cir-
cles and squares). The plasmons of coupled tubules can be well

approximated in the strong-coupling picture (crosses) described
by Eq. (16). The solid curve depicts the boundary of the e-h ex-

citations, below which plasmons may be Landau-damped.

(solid circles and squares) in each case are given; other
plasmon modes are weak in strength and rapidly diminish
due to the electron-hole-pair excitations. Also plotted in
the figures are plasmons from uncoupled tubules (open
circles and squares). Modification of the plasmon modes
due to the coupling is clearly very important.

The plasmons of the coupled tubules can be approxi-
mately understood in terms of Eq. (13) but with its non-
linear terms neglected. Plasmons determined this way
(crosses in Figs. 6 and 7), in fact, agree closely with the
exact results. This is especially true for small q. Linear-
ized Eq. (13) can be expressed as
eo —g; &g' 'I(Vr, )y,. =0; which is very similar to Eqs. Q (r, )Q'(rj ) = Q (r, )Q'(r, ), (14')

(4) and (5) of a single tubule. y,' is understood to be the
response function of the subband I in the ith tubule. So
an n =2 system is not more complex than a single tubule
in this picture. The only difference is that the two sys-
tems have different numbers of occupied subbands: five
subbands in Sec. II but ten now (with five from each tu-
bule). Similar arguments that have been employed in Sec.
II can now be readily applied here. One can easily figure
out that there are six L =0 acoustic plasmon branches
and ten optical plasmon branches for each L ) 1. At a
given L, the most energetic plasmon mode, which corre-
sponds to coherent oscillations of all electrons, by and
large exhausts the plasmon strength; other modes are
much weaker and are associated with incoherent oscilla-
tions of electrons from different subbands. So, as long as
the nonlinear potential terms can be neglected, multitu-
bule plasmons can be readily understood based on the
analysis given in Sec. II.

Several factors help explain why neglecting high-order
interactions makes good approximations here. The
high-order terms actually come in powers of ( V/eo).
Thus the approximation improves with increasing e0. In
GIC's, the interband transitions, which have been
neglected here, enhance e0 from 2.4 to about 6.0.' Our
calculation indicates that the error due to the lineariza-
tion of Eq. (13) could be reduced by —50% if eo is 6.0 in-
stead of 2.4. Thus the approximation is expected to work
well for graphene tubules.

Also, a large cancellation between the nonlinear terms
in Eq. (13) is observed. The cancellation becomes exact if
r2~r, , which corresponds to an increase of the intertu-
bule coupling. This n =2 result can be generalized to
other n's. In the Appendix, w show that if the potential
is separable, i.e.,

W(r, , r, ) =Q (r, )Q'(r, ),
and has the property
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This result is good for any n. The intertubule interaction,
Eq. (10), does not fulfill Eq. (14'). We may, however,
define a modified potential:

the plasmons would be exactly given by the linearized re-
lation [ W(r, ) = W(r;, r; )]

V'( r, , rJ ) = [ V ( r, ) V( r) ) ]
' (16)

0.5
0.0

e-h boundary

q/~F(o)
0.5

FIG. 7. Same plot as Fig. 6, but for the intersubband (L = 1)
OP's. The strong coupling remains a reasonable approximation,
but not as good as in the L =0 case (see the text).

This potential V' clearly satisfies Eqs. (14) and (14'), and
equals V(r; ) if r, =r . Take the n =2 case, for example.
The nonlinear interaction terms of Eq. (13) obviously
cancel out if V is replaced by V'. Plasmons determined
from Eq. (15) with IV= V', thus, are exact for the in-
teraction V' and approximate for V. V' is always greater
than V, as can be checked for the n =2 case using Fig. 1.
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We may thus interpret these plasmons of V' as the
strong-coupling approximation. Plasmons in the weak-
coupling limit, where V( r, , r ) =0 if r, A r, have been
found to be just those of individual tubules. It seems
reasonable to expect plasmons of a coaxial-tubule system
to lie between these two coupling limits. This is clear in
the case with our n =2 results.

We noted earlier that the intertubule interaction at
small q behaves like a single-tubule interaction and at
large q like a typical interlayer interaction, which carries
a factor exp[ —

q (r &
—r & )]. As a result, the plasmons of

coaxial tubules are well described by the strong-coupling
approximation at small q «(r& —r& )

' but become
more and more weakly coupled as q increases. For inter-
subband plasmons (i.e., LAO), the effective momentum
transfer is —k =+q +L /r as—was argued in Sec. II.
Therefore the strong coupling becomes a poorer approxi-
mation as L increases. At very large L, all tubules be-
come independent of each other and their plasmons are
those of individual tubules, i.e., in the weak-coupling lim-
it. So, there is a gradual crossover from strong coupling
to weak coupling as q increase, and also as L increases.
This trend is seen clearly in Figs. 6 and 7. At both of the
coupling limits, the plasmon structures are simple and
easy to understand based on the analysis presented in this
work.

The background dielectric constant of graphene tu-
bules should be enhanced due to the inter-m-band excita-
tions, which have been neglected here. A large dielectric
constant would make the nonlinear interaction
unimportant —which effectively validates the strong-
coupling approach [see Eq. (13)]. Our calculation indi-
cates that both the L =0 and 1 plasmons of coaxial gra-
phene tubules, which have an estimated dielectric con-
stant of about 6.0, can be fairly well described within the
strong-coupling approximation.

IV. CONCLUDING REMARKS

In this work, we have studied the elementary excita-
tions of an electron gas confined to cylindrical tubules.
Exact results within the RPA have been evaluated for a
single tubule (n = 1) and also for an n =2 coaxial system.
The results are then generalized for n coaxial tubules. In
the n ) 1 cases, the interaction between electrons from
different tubules has been included. The calculations sug-
gest that the plasmons of small q and small L can be well
described in the strong-coupling picture, which is sum-
marized by Eq. (15).

The cylindrical symmetry of the tubular system greatly
simplifies the problem. The symmetry ensures the con-
servation of the angular momentum, L. As a result,
plasmons of different L's are decoupled from each other.
In contrast to other quasi-1D systems (e.g. , semiconduc-
tor wires) where plasmon modes are mostly coupled to-
gether, the coaxial tubule system allows us to study all its
quasi-1D plasmons in a systematic way.

Besides the very interesting quasi-1D behavior dis-
cussed in this work, tubules also resemble the fascinating
ring system made of metals. ' ' It has been established

that' ' the persistent current in small rings is a period-
ic function of the enclosed magnetic Aux. It should be
noticed that the LAO plasmons in the tubular system
correspond to quantized, rotational charge oscillations.
This quantized current in a tubule clearly resembles the
persistent current in a ring. One can thus expect the
magnetoplasmons of a tubule to exhibit a similar periodic
behavior if the magnetic Aux is varied. This problem is
under current investigation.
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APPENDIX

In this appendix we show the validity of the dielectric
function given by Eq. (15) for the potential expressed by
Eqs. (14) and (14'). This can be seen most clearly with di-
agrams The. screening of the potential W(r, , r ), within
the RPA, contains a series of "bubbles, "as shown by Fig.
8(a). A bubble denoted by r; represents an electron-hole
pair in the ith tubule. The electron and the hole must be
on the same tubule since there is no intertubule hopping.
Figure 8(b) is a typical third-order diagram which con-
tains three bubbles. For the reason that the interaction
potential is separable [Eq. (14)] and is symmetric under
the exchange of r, and r [Eq. (14')], the two vertices of a
bubble at r, can always be associated with one Q (r, ) and
one Q (r;), as indicated in Fig. 8(b). The contribution of
a bubble at r; is therefore always given by W(r, )y,. /eo
[W(r, )= W(r;, r; )]. . Figure 8(b), for example, represents

(b) ----~~—----~O-———~3—----
Q (r,) Q(r, ) Q(r, ) Q {r ) Q(r ) Q'(f, ) Q(r, ) Q'(r )

FIG. 8. {a) Expansion diagrams of screened Coulomb in-
teraction {double-dashed curve). Single-dashed curves represent
unscreened interaction. Bubbles denoted by r; represents an e-h
pair in the ith tubule. {b) A typical third-order diagram is
shown, where the vertices have been indicated in accordance
with the potential given by Eqs. {14)and {14').
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W(r;, rj )[W(r&)y&/ep] [W(r2)g2/ep] . For an n-tubule

system, a diagram with m& r& bubbles, m2 r2 bubbles,

etc. , is hence given by W(r;, r~ ) iit", [ W(rk )gt, /ep] and
these M =gk mk bubbles can appear in M!/m, !/m2!. . .
different combinations. These Mth-order diagrams can
be summarized by W(r;, r )[gk W(rk )y„/ep] T. he
screened potential is therefore

W(r;, r, )/e(q, L, w)

= W(r;, rj ) . 1+
M=1

M

X W(rk»k «p
k

(A 1)

which is just the definition of the dielectric function of
Eq. (15).
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