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We introduce a technique for the study of semiconductor heterostructures which is more general
than the usual envelope-function approximation. This scheme accounts for material dependences in
the Bloch functions, and also allows a full zone treatment of the constituent semiconductors. How-
ever, it involves only small-dimensional matrices, and thus remains computationally efBcient. The
presented formalism offers, at each energy, what can be considered a "best choice" Aux-conserving in-
terface connection rule between two semiconductors. As an illustration of the technique we consider
the I'-A scattering that occurs in GaAs/A1As heterostructures.

I. INTRODUCTION

Advs, nces in growth technology have permitted the fab-
rication of heterostructures composed of thin layers of
different semiconductors with nearly abrupt interfaces.
The Hexibility in the choice of materials and layer widths
allows one to virtually engineer the electronic and optical
response of these heterostructures. A reliable theoretical
prediction of such responses requires a physically reason-
able quantum mechanical model to describe the nature of
the relevant electronic states. In this article we present
a scheme for the description of these states.

In their review of the theory of the electronic struc-
ture of semiconductor heterostructures, Smith and Mail-
hiot point out that the simplest approximate models
can be classified as empirical boundary condition tech-
niques, in which we are interested here. Since in these
models the heterostructure problem is divided into two
parts, a treatment of the bulk constituent semiconduc-
tors followed by the matching of wave functions across
the. interfaces, small-dimensional matrices are typically
involved. In this paper we are primarily concerned with
the appropriate semiconductor heterostructure interface
connection rules that define the wave-function match-
ing. From the point of view of boundary condition tech-
niques, the basic building block of any semiconductor
heterostructure is the heterojunction formed by two dis-
tinct materials. Hence, we organize our presentation in
this paper around this elemental unit; a successful model
of the heterojunction allows more complicated geometries
to be easily investigated. 2

Consider the abrupt heterojunction formed by growing
material B, in the z direction, on a substrate of material
A. We wish to solve for the wave function at a given
energy, E, and a given value of crystal momentum paral-
lel to the interface (xy plane), k~ ~. The envelope function
approximation (EFA) is a popular approach used to treat
such heterostructures. s In the EFA, the wave function in
material a is written in a fashion similar to the bulk k p
formalism,

where the functions u~ii(r) are a set of bulk Bloch func-
tions at k = 0. The unknown expansion coefIicients, f",
now z dependent, are the so-called "envelope functions. "
The main objective of envelope function schemes is to
derive effective Schrodinger equations for the envelope
functions in each material, along with a corresponding
set of effective boundary conditions that these functions
and their derivatives satisfy across the heterojunction.

There are two main assumptions adopted in the EFA
which greatly simplify this procedure. First, the periodic
basis functions u~o(r) in Eq. (1) are assumed to be the
same in each material. Secondly, the envelope functions
are assumed to vary slowly over a crystal lattice period.
These assumptions allow one to obtain effective boundary
conditions across the interface which are consistent with
the physical requirement of Aux conservation. While
these approximations appear to be well founded for many
heterostructures in energy ranges of interest, there are
situations which are not easily tractable with such a
model. In particular, the case of I'-X coherent scat-
tering in certain GaAs/A1As heterostructures has not
been rigourously formulated within a simple EFA type
scheme. Further, it would be convenient to have a
simple model to investigate the implications of material
differences in the un~a(r), particularly as novel material
systems arise. 6

In this paper, we present a scheme which does not in-
volve the assumptions inherent to the EFA, while still
providing Aux-conserving interface boundary conditions.
For a fixed number of bulk basis functions in each mate-
rial, this scheme supplies, at each energy, what we argue
are the best interface connection rules for the abrupt in-
terface. The formalism is independent of the particular
method one adopts to describe the bulk band structure.
Further, the scheme remains computationally efficient,
since it can involve only small-dimensional matrices, typ-
ically of the same size as those in the EFA technique.
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In Sec. II we summarize the general formalism used to
treat an abrupt interface, highlighting the typical prob-
lem which arises regarding the lack of flux conservation
across the interface. In Sec. III we recast the prob-
lem in the language of scattering theory. This more eas-
ily exposes the origin of the flux-conservation problem,
and also suggests an approximate flux-conserving scheme
which can be followed. Finally, in Sec. IV we present
some sample calculations, mainly to illustrate that this
simple flux-conserving scheme can easily reproduce phe-
nomena expected from more computationally intensive
calculations.

(3), since we feel that those bulk Bloch waves are the
more natural basis. For example, far from the interface
only a few of the Fg are relevant, as the great majority
of the @~ (r) decay rapidly. In contrast, all of the en-
velope functions are important, even infinitely far from
the interface, since they must account for the bulk band
mixing of the k = 0 levels away from k = 0, a property
already incorporated into the @~ (r) basis. In addition,
the current density operator, from which we construct a
scattering theory in Sec. III, assumes a very simple form
in the @~ (r) basis.

The boundary conditions across the interface require
the continuity of the wave function and its normal deriva-
tive at z = zp, which can be written compactly as

II. THE ABRUPT INTERFACE:
GENERAL FORMALISM

Following Smith and Mailhiot, we write the wave
function for the abrupt heterojunction formed by ma-
terials A and B, with interface at z = zp, as

z(zo
z & zo)

(2)

with the most general wave function in each material
written as a linear superposition of bulk Bloch waves.
For example, in material A we have

where the bulk Bloch waves are treated as our known
basis and take the familiar form

gJ (r) el z et~~
~

'1'uG (r)

The u~(r) are periodic functions, and the k~ are in gen-
eral complex. For each bulk Bloch wave which can be
considered traveling towards the interface, there always
exists a wave traveling away from the interface. Expand-
ing over 2m such waves in each material leaves the ex-
pansion coefficients F~, and the corresponding F&~ in ma-
terial B, as the only unknowns. These unknowns are
determined by satisfying the appropriate boundary con-
ditions.

We note at this point that the variables Fg of the
general formalism are always formally related to the un-
knowns in the EFA.7 Specifically, carefully comparing Eq.
(1) with Eqs. (3) and (4) reveals a bulk matrix W~ con-
necting the envelope functions and their derivatives, in
material n, to the F~,

J.(»»zp)1&4 = J.(* y zp)IA)

using the z component of the current density operator,

F~ = T1Fb, (8a)

whereas projecting onto the (@bl provides a difFerent
transfer matrix Tg,

F = T2Fb. (8b)

These matrices have been identified previouslyi and can
be explicitly written as

Ti=(J ) iJ b,

+2 = (Jb ) Jbb

with

(9a)
(9b)

(J n) = (4" IJI@g

where

(10)

Equation (6) must be satisfied at each point (x, y) on
the interface, implying an infinite number of equations.
However, to address the problem in practice we have lim-
ited ourselves to only 4m unknowns, namely the F~& and
Fb~. Further, there are always 2m boundary conditions
that must be satisfied at z = koo. Hence, the "best" we
can do is to reduce Eq. (6) to 2m equations. This can
be achieved by performing some sort of projection onto
a set of 2m states. A natural projection is to multiply
by either the (@~~l or the (@~bl and to integrate over the
interface.

In either case, this natural projection leads to a trans-
fer matrix connecting the unknowns across the interface.
In particular, projecting onto the set of gr~~l results in a
transfer matrix T1,

in obvious vector notation. Thus, one set of unknowns
determines the other. In particular, if we adopt a rule
connecting F and Fb across the interface, we have also
determined the relevant connection rule for the envelope
functions; the decision to work with Eq. (1) or Eq. (3)
is simply a choice of basis. We choose to work with Eq.

J,(x, y, zp) dxdy

is a Hermitian operator. These matrices are easily cal-
culated once the bulk Bloch waves are obtained from a
bulk band-structure calculation.

The main difficulty with the approach summarized
above is that the matrices Ti and Tz are not equal, which
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W IJI@4 = @'bl~l@b),

requires that

+g, JaaFa = Fb JbbFb.

(12)

Flux conservation thus implies a condition that any pro-
posed matrix T must satisfy if it is to be a physically
meaningful transfer matrix. Namely, if F = TFb, we
should have

T+J T = Jbb. (14)

seems to imply an ambiguity or inconsistency. This is,
in fact, a manifestation of the lack of formal flux conser-
vation across the interface in this general formalism. ~ To
see this, note first that the conservation of flux across the
interface, namely the condition

In terms of these new variables, the flux conservation
condition, Eq. (13), takes the form

F+DF = Fb+DFb. {19)
The simple form of D now makes it convenient to decom-
pose the new vectors F and Fb into two vectors of equal
length by writing

((I oil(0 I—j '

where I is the m x m unit matrix. The unitary matrix U,
which is easily found analytically, identifies a transformed
set of variables in each material, labeled as F~ and given
by

Neither Tq nor T2 as constructed above satisfies this equa-
tion in general. In fact, substituting Ti or T2 into Eq. (14)
reveals that flux conservation requires Ty ——Tq, which is
not guaranteed in the general formalism presented above.
Therefore, even if the bulk materials could be perfectly
described, so that the 2m x 2m matrices Ti and T2 defined
in Eqs. (Qa) and (9b) were contructed exactly, we could
not guarantee flux conservation in a model using Ti or T2
as the interface connection rule. In the next section, we
recast this problem in a framework that elucidates why
this somewhat curious result arises.

III. A SCATTERING THEORY

A. Revised formalism

We first choose a convenient normalization for the bulk
Bloch waves. Consider the bulk matrices J and Jbb,
which have a particularly simple form,

(J )'g —= (0'l~l@d = (~')~l„b;. (»)
We choose to normalize the l@Q in each material so that
J~i = +1. The bulk Bloch basis waves g~~(r) correspond-
ing to purely real k~ values (propagating waves) will then
carry "unit flux current, " with the sign of J' indicat-
ing the direction of that current flow. One advantage of
this particular normalization is that the simple product
(F~)*F~ gives the magnitude of flux current carried by
the propagating wave @& (r), a quantity often of interest
in open quantum structures.

We now proceed to transform to a new basis which
will ultimately simplify the flux conservation expression.
First note that, since the matrices J and Jbb are Her-
mitian, we can diagonalize them with a unitary transfor-
mation. That is,

U J U+=D,
where D is a diagonal matrix of the eigenvalues of J ~.
From the form of J~~ and the normalization condition,
it follows that half of the eigenvalues of the 2m x 2m
matrix J are —1 while the other half are +1; thus, we
can always organize the basis of which U~ consists such
that D has the following block form:

&Fb)
(2o)

This allows Eq. (19) to be written in a form involving
only vector products,

(F')+F' —(F')+F' = (F')+F' —(F')+F' (21)

Here the vectors F' and Eb can be considered the ampli-
tudes of waves carrying flux towards (into) the interface,
while F' and Fb determine the flux scattered away (out).
It is then natural to define the composite vectors v, and
vo)

(22)

It is in terms of these new vectors that the flux conser-
vation condition assumes its simplest form,

v vo —v vi )o 0 (23)

which associates with the scattering process a vector the
length of which is conserved.

We next note that we can identify a new transfer ma-
trix T for any proposed transfer matrix T connecting F
and Fb,

T=UTU+
(t21 t22 j (24)

which connects the transformed variables, so that F, =
TFb. In Eq. (24) we have also written T in terms of m x m,

subblocks so that we can easily define a new matrix 8
connecting the composite vectors v, and v„

Uo = ~vi~

with

l~t21(tll) t22 t21(tll) t12
ll

tii —(tii) t12 )

(25)

(26)

S+S = I. (27)

Inspecting Eq. (23) shows that the physical requirement
of flux conservation translates into the condition that S
be unitary,
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B. An approximate Aux-conserving model

A physically reasonable model of semiconductor het-
erostructures demands a flux-conserving interface con-
nection rule. The above argument shows that even if
the 2m bulk basis functions in each material are known
exactly, we will not obtain a Hux-conserving interface
connection rule from the general formalism. Therefore,
the relevant issue to be addressed does not concern the
"correct" interface connection rule, as often implied in
envelope-function discussions. Rather, since any practi-
cal model will involve a finite basis, we must be satisfied
to find a "best choice" interface connection rule.

A "best choice" interface connection rule can be ob-
tained as follows. First, we describe each bulk material
as well as possible, and choose a basis of 2m bulk Bloch
waves. Then, a 2m x 2m scattering matrix S is formed
through Eqs. (24) and (26), using either transfer matrix
Ti or Tz of Eqs. (9a) and (Qb). Finally, we construct
an efFective scattering matrix S, from this S. We de-
mand that it be unitary S+S, = I, and choose it to be
"close" to S by minimizing the Hilbert-Schmidt norm of
the difference S, —S,

(T [(S.—S)+(S.—S)j~'~', (28)

Since S connects the incoming waves ii; to the outgoing
waves v„reminiscent of scattering theory, we call S the
scattering matrix. Note that while S is similar to the
scattering matrices used by other authors, there are
crucial difFerences. Namely, the "incoming" and "outgo-
ing" waves are now not defined simply by whether they
decay towards or away from the interface. Rather, this
classification is based on the direction in which relevant
waves carry fIux.

The appearance of a unitary scattering matrix high-
lights the origin of the lack of Hux conservation encoun-
tered in the general formalism. An exact solution to the
heterojunction problem would involve an infinite dimen-
sional scattering matrix, S~, which of course would be
unitary. However, if we use Eqs. (24) and (26) to form a
2m x 2m scattering matrix S from a transfer matrix T,
which itself is obtained from a projection of Eq. (6), then
S will not be unitary. This should not be surprising since
even an exact 2m x 2m subblock of a unitary S~ is it-
self not necessarily unitary. Flux conservation cannot be
guaranteed in the general formalism once we have chosen
a finite basis of bulk Bloch waves in each material. This
is a consequence of the fact that the separate bases of 2m
Bloch waves, the Q~ (r) and @b(r), are "distinct, " because
each basis will in general span a different subspace of the
functions of x and y. In essence, a projection of Eq. (6)
can never lead to a Hux-conserving interface connection
rule if the state on the left-hand side of Eq. (6) is built
from basis states spanning a subspace which is difFerent
than the subspace spanned by the basis states used on
the right-hand side. In particular, it is clear that the
transfer matrices Tq and T2 presented in Sec. II cannot
in general be expected to guarantee the conservation of
flux.

An analytic solution to this problem can be obtained,
yielding the result

S = SOP G+, (29)

This choice for S, preserves the time reversal symme-
tries present in the original S, which should be required
on physical grounds. Having obtained S„an effective
transfer matrix T, can be uniquely identified by invert-
ing Eqs. (24) and (26).

The unitary efFective scattering matrix S, can be con-
sidered a new version of S, slightly adjusted to ensure
Hux conservation. As Eq. (29) shows, S, is obtained from
S by post-multiplying by the Hermitian transformation
GP G+. This transformation reduces to the identity if
P itself is the identity; P I serve—s as an indicator of the
lack of unitarity of the original scattering matrix S. As
the value of m increases, more of the allowed scattering
channels (k~) in each material are accounted for, and the
eigenvalues of S+S, and hence the diagonal elements of
P, are expected to get closer to unity. The value of m
should be chosen large enough so that post-multiplying
by the matrix GP iG+ can be considered only a small
adjustment to S. If S is not "almost" unitary we cannot
expect the results predicted by S and S, to be close.

It is obvious that a different norm than Eq. (28) may
lead to a completely difFerent choice for S,. This is not
our concern here since we only wish to stress the spirit of
the technique and hence view our constructed S, as only
one possible choice. Finally, we point out that we have
formed efFective interface connection rules by considering
the scattering matrices rather than the transfer matrices
directly. This results because Hux conservation implies a
condition (i.e. , unitarity) on scattering matrices which is
more transparent and easy to take advantage of than the
condition (14) on transfer matrices.

The scheme outlined above may appear overly com-
plicated, considering that the EFA itself already pro-
vides a Hux-conserving interface connection rule. The
EFA transfer matrices, however, involve only bulk
parameters, ' whereas transfer matrices Ti and T2 of the
general formalism suggest that envelope-function con-
nection rules should involve nonbulk matrix elements.
Therefore, we argue that the assumptions inherent to the
EFA, while leading to Hux-conserving interface connec-
tion rules, result in simplistic transfer matrices. We are
not suggesting that the EFA interface model is wholly
inadequate, but rather, from the point of view of our ap-
proximate scheme, suggest that perhaps the EFA connec-
tion rules are in general not the "best choice. " The trans-
fer matrices suggested in this paper inherently account
for material difFerences in the Bloch functions, since each
material is described individually and as accurately as
possible. Another scheme has been suggested to account
for such material differences; however, it is a perturba-
tive technique and does not ensure flux conservation. A

where G is a unitary matrix which diagonalizes the pos-
itive definite Hermitian matrix S+S, and P2 is the cor-
responding diagonal matrix of eigenvalues,

G+S+SG = Pz
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further advantage of our scheme is that there is no use of
a slowly varying envelope approximation, in contrast to
the EFA, so that all k~ values throughout the Brillouin
zone can be naturally included. Hence, I'-2C scattering
problems can be easily treated.

Finally, we wish to stress that our suggested scheme
is an attempt to construct a formalism which can still
involve small-dimensional matrices. Of course, the ac-
curacy of the results should improve as the basis set
gets larger (larger m) and such computationally inten-
sive schemes have been discussed. However, even with
large m one will find a lack of formal flux conserva-
tion, and a unitary efFective scattering matrix should be
adopted on physical grounds. Our main interest is in a
computationally efficient scheme, and hence we are will-
ing to exchange some accuracy in return for a small rn.
We assume that m is large "enough" if 8+8 is "almost"
unitary. The main point is that only a few of the Bloch
waves, those with k~ having a small imaginary part, are
expected to be strongly excited in the problems of inter-
est. Hence, the relevant physics should still be captured
if only these waves are included. However, the neglected
bulk Bloch waves, those with k~ having large imaginary
parts, may be important for the description of localized
interface states. Further, as in any boundary condition
technique, as the distance between interfaces decreases
the neglect of these waves should be reconsidered.

IV. EXAMPLES: I'-X' SCATTERING

In this section we present some calculations that will
illustrate our technique. For this purpose we wish to in-
vestigate the I'-X coherent interfacial scattering problem
in the GaAs/A1As material system s' i and so we con-
sider heterostructures grown in the [001] direction. While
the scheme is applicable to arbitrary k~~ we only consider
the case k~~ = 0 for simplicity. We also neglect any spin-
orbit coupling and strain effects, but this is not a funda-
mental limitation. As discussed elsewhere, iz the calcu-
lated results will be sensitive to the choice of location for
the abrupt interfacial plane. In this paper we have taken
the abrupt interface at an As plane. For all heterostruc-
tures we take 6E„= 0.36E& to be the valence-band
ofFset, where EEg is tbe band-gap difFerence.

In order to do any calculations we must adopt a band-
structure model for the bulk materials. The choice here
is not limited by the boundary matching technique in any
way; for illustration we adopt a simple numerical scheme,
performing an empirical pseudopotential calculationis
for the energy levels and states at some point kp in tbe
Brillouin zone. We then choose a subset of these states
as a basis set and expand the wave function for arbitrary
A: as

N

@i,(r) = e'"'e'"~~' ) Cy„u„i„(r).

As discussed in detail elsewherei this choice of basis set
is advantageous for complex band-structure calculations
since it leaves the energy eigenvalue problem in a simple
form,

0k+g(r) = "Pk(r) (33)

where g is a reciprocal lattice vector. In our specific case
this implies that a calculation at the I' point (kp = 0)
will not provide bands which have the correct symme-
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FIG. 1. The calculated complex bulk band structure of

GaAs, k~~ = 0, for energies around the conduction-band min-
ima. Purely real (imaginary) k values are shown as solid
(dashed) lines, while complex k values are represented as
dash-dotted lines.

(H2k + Hik+ Hp)CA, , = ECi„

where the H, are Hermitian matrices. In a complex band-
structure calculation it is the energy and k~~ which act
as input while all allowed complex k are the sought af-
ter results. The quadratic form of Eq. (32) allows this
problem to be solved in a numerically effieient manner.

We have used pseudopotentials and lattice constants
given elsewhere 4 and performed two such calculations,
one at the I' point and another at the X point, for reasons
explained below. We used 181 and 230 plane waves at
the I' point and X point, respectively. The 27 lowest
energy states at each of these points were then used as
the bases required in Eq. (31). Part of the calculated
complex band structure for GaAs is shown in Fig. 1. The
27 states used are a much larger number than is necessary
to obtain reasonable bands. We have worked with such
a large basis here in order to ensure that the bulk wave
functions, and hence Ti and T2, are well described so that
any flux discrepancy can be assumed to result primarily
from the use of difFerent bases in each material.

An interface is completely characterized by the matrix
J b, and a reliable estimate of this matrix requires a good
approximation of the bulk band structures and states in-
volved. While these bulk states will never be completely
accurate, it is crucial that they are constructed in a man-
ner that ensures they possess all expected symmetries, in
order for J g to refIect these symmetries. The use of
the finite basis in Eq. (31) does lead to some problems
concerning this point. In particular, the calculated wave
functions will not have the k-space periodicity expected
of Bloch states,
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try around the X point, and vice versa. We circumvent
this problem by performing separate calculations around
the I' and X points to obtain those portions of the band
structure close to these respective points. Note, how-
ever, that with this model one must be careful to use a
consistent treatment of the waves representing @y(r) and

i,.(r) in order to ensure that time reversal symmetry
is incorporated into J b.

Further problems related to the failure to satisfy Eq.
(33) should be mentioned as well. Consider a matrix
element of operator J between states ~g&) and ~Qq) which
includes the factor

) e'~ "(Ck)+(H2(k'+ q+ gz) + H&)Cq+~ (34)

This orthogonality condition implies that all g~ g 0
terms in J and Jpp should vanish exactly. However,
since Eq. (33) does not hold, these terms are not exactly
zero in the calculation. We simply ignore these small
gg g 0 terms in J and Ji,i, . Even with this simplifi-
cation, the matrices J and Jgi, still have small compo-
nents which should vanish according to the orthogonality
condition (35). These artifacts appear due to our use of
two different Hamiltonians in the separate I' point and
X point calculations. They are also ignored. We assume
any errors in the calculated J b associated with the above
effects will be small.

Regardless of the above problems related to the choice
of basis in Eq. (31), we choose to work with this scheme
due to the numerically eKcient algorithm it provides for
the complex band structure. Further, this type of basis
is known to provide good estimates of effective masses,
which suggests that the calculated J b may be satisfac-
tory. Lastly, in this scheme the only empirical param-
eters needed are the pseudopotentials and the adopted
band ofFset. Any other bulk band-structure calcula-
tion is acceptable, and it may be that a localized or-
bital techniqueis is circumvents many of the encountered
problems.

It has been suggested 7 that within a specific energy
range the GaAs/A1As heterostructures may be modeled
by considering only six bulk Bloch waves (rn = 3) in each
layer. As Fig. 1 suggests, this set consists of two waves
whose k values have real parts close to the I' point and
another four waves whose real k parts are near the X
point. Over the energy range of interest any of these
six waves may possess purely real k values (propagating
waves). Propagating waves can always carry Hux away
from an interface, and hence should always be included
in an analysis. In contrast, bulk Bloch waves having a
k value with a large imaginary part are not expected to
be strongly excited at a single interface by an incoming
propagating wave. Even in the multiple interface case,
if the interfaces are suKciently far apart then very little
flux is expected to be carried away from any one interface

where g~z is a reciprocal lattice vector in the growth
direction. It is easy to show from Eq. (32) that the
following bulk orthogonality relation exists:

(35)

by such nonpropagating waves. Thus, it seems plausible
that scattered fluxes could be approximately predicted
by neglecting these strongly evanescent waves.

A. GaAs/A1As heterojunction

Ex,

E

GaAs

z zo

AlAs

FIG. 2. A schematic drawing of the relevant energy min-
ima for the GaAs/A1As heterojunction. The energies Ex&
and E~& are defined by the minima labeled in Fig. l.

The heterojunetion formed by GaAs and AlAs is the
simplest example to consider. A schematic drawing of
the energy minima lineups is shown in Fig. 2. We choose
our conditions at z = +oo so that one I'-like Bloch wave,
Re(k) —0, carrying unit Hux is incident on the interface
from the GaAs side. For energies below E~+'+' we ex-
pect all the incident flux to be reflected back into the left
propagating I'-like wave. For higher energies, it becomes
possible for some of the incident flux to be scattered into
any of the other existent propagating channels. The re-
sults of the heterojunction calculation are presented in
Figs. (3a) and (3b), which show the reflected and trans-
mitted Huxes, respectively. Total reHection is verified for
energies below ELIAS as expected, while near ErAIAS the
shape of the curves is similar to that expected for a free
particleis and similar to an EFA calculation. s A detailed
analysis of the scattered fluxes would entail a deeper in-
vestigation into the influence of the location of the abrupt
interfacial plane within the unit cell, which is not the
main concern here.

In the above calculation flux conservation is exactly
satisfied at all energies due to the use of the unitary ef-
fective scattering matrix S,. Also, the above results are
insensitive to the choice of the initial transfer matrix.
That is, obtaining S, from either Ti or T2 of Eqs. (9a)
and (Qb) leads to the same curves in Fig. 3. A calculation
that simply adopts Tj or T2 as the transfer matrix with-
out "unitization" readily illustrates a lack of flux conser-
vation. The results of such calculations, presented in Fig.
4, clearly show that the sum of all scattered fluxes is not
always equal to the flux incident on the interface. These
calculations suggest that the effective unitary scattering
matrix provides a flux-conserving compromise between
the Ti and Tq results.

This heterojunction F-X scattering problem has been
treated previously by including many bulk Bloch waves
in each material, which ensured that any flux discrep-
ancy would be small. A main concern in our work is to
be able to include only a small number of Bloch waves
within a flux-conserving scheme. We assume that the er-
ror induced by neglecting the strongly evanescent waves
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will be small. We can test this hypothesis by includ-
ing a greater number of Bloch waves in our calculation.
For this purpose the results of a simulation involving 32
bulk Bloch waves (m = 16) in each material, 22 near the
I' point, and 10 near the X point, are shown as points
in Fig. 3. These latter results clearly suggest that the
simpler calculation with only six waves ofFers reasonable
predictions of the scattered fluxes.

For several reasons, including differences in the calcu-
lated band structures, a detailed comparison of our work
with earlier resultsis cannot be made. In particular, the
transfer matrices used in Ref. 19 are not obtained from
matrices similar to J t, but rather from a significantly
difFerent projection of the interface boundary conditions.
Nonetheless, both results show many of the same quali-
tative features.
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B. GaAs/AIAs double barrier

As a second example we calculate the transmitted flux,
for the same incident conditions, through a symmetric
double barrier structure composed of A1As barriers and
a central GaAs quantum well. The barrier and well thick-
nesses are five and ten lattice constants, respectively. The
use of a unitary efFective scattering matrix for each inter-
face ensures flux conservation throughout the structure.
However, as discussed elsewhere, 2 the thickness of the
heterostructure requires that a numerically stable rou-
tine be implemented.

The calculated transmitted flux presented in Fig. 5
shows the many resonances that are expected in such
structures. Those resonances labeled A and t are as-
sociated with resonant tunneling through I'-like states,
and are also predicted by an EFA calculation. The re-

0.4

~ 0.2
05

(b)

I

BC D

0 I I I I I

0 0.2 0.4 0.6 0.8
Energy (eV)

FIG. 3. Calculated scattered fluxes for the GaAs/A1As
heterojunction with energies measured from the I' minima of
GaAs; (a) reflected fluxes in GaAs and (b) transmitted fluxes
in AlAs. Solid lines give the results of the 6 x 6 model while
the squares represent the 32 x 32 model calculations. Note
that all X-like fluxes have been multiplied 10 or 20 times for
clarity.
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FIG. 5. Calculated Aux transmitted through the symmet-
ric double barrier structure described in the text.
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maining resonances are associated with resonant tunnel-
ing through the X-like states which are not included in
an EFA calculation. These resonances B,D, E are re-
lated to quasibound states localized in the A1As layers
by the efFective quantum well potential defined by the X'
minima profile. A zero I'-X coupling would give these
states an in6nite lifetime causing them to become dis-
crete bound states. It is the nonzero coupling of these
bound X-like states to the I'-like continuum which leads
to their classification as Fano resonances. zo The shape of
the curves around these resonances can be thought of as
arising from a quantum mechanical interference between
the different I'-like and X-like paths that a tunneling
electron can travel along, and is a signature of the non-
parabolicity of the bulk band structures involved. On a
higher energy resolution one can see that the B,D, E res-
onances are split due to the interaction of the two wells;
a single barrier calculation does not show this splitting.

This geometry has also been previously investigated
with a technique involving many bulk Bloch waves in
each material. While a qualitative comparison with
those results shows similar resonances, the detailed struc-
ture of those resonances differs. This is not surprising
since this structure will depend significantly on subtleties
such as how the interface boundary conditions are pro-
jected to obtain transfer matrices.

tifying the relevant scattering matrix for the problem.
The technique is more general than the envelope-function
approximation, because material differences in the cell-
periodic part of the Bloch functions are described and
a full-zone treatment of the constituent semiconductors
is allowed. Further, since only small-dimensional matri-
ces need be involved the calculations can be numerically
efficient. At each energy, the technique ofFers a "best
choice" flux-conserving interface connection rule between
two semiconductors.

A lack of fiux conservation arises in general when the
wave functions to be "matched" on opposite sides of an
interface are expanded with finite bases spanning differ-
ent subspaces. This is the case for semiconductor het-
erostructures, since the underlying bulk microscopic po-
tentials involved are different, leading to distinct bulk
band structures and Bloch waves. We would also expect
an effective unitary scattering matrix approach to be of
use in the study of optical waveguides or electron trans-
port through quantum con6ned constrictions. In such
problems, the natural Gnite bases for different regions of
the structure will in general be distinct due to the varia-
tions in the lateral and transverse directions.
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