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Electronic states in compositionally disordered quantum wires are studied using a tight-binding
Hamiltonian to determine the electronic density of states and localization lengths. The quantum
wires are generated using the statistics of the structural roughness extracted from the results of
computer simulations of molecular-beam-epitaxy growth of quantum-well wires on a vicinal surface.
For monolayer structures, interface roughness and islands strongly suppress the subband structure.
The electronic states are found to be localized to within several tens of lattice spacings, which
implies severely reduced mobility in narrow quantum wires. Enlargement of the cross section of
the wire by depositing additional layers does not improve the subband structure of the density of
states. However, the localization lengths will be longer, except for energies near the band edge. The
maximum localization length is proportional to the number of layers. Characteristic features of this
model in the strong scattering regime, such as a spike in the density of states at the center of the
subband and the gap around it, and strong reduction in the localization length for these energies,
are observed for a monolayer structure. For multilayer structures spikes also occur at E = +V, but
the gap has disappeared.

I. INTRODUCTION

In this paper we examine the effects of compositional
disorder on the electronic density of states (DOS) and
localization lengths of simulated quantum wires (struc-
tures where quantum conflnement of carriers occurs in
two dimensions). For this purpose we have used vic-
inal surface-grown quantum wires, ~ because only for
the molecular-beam-epitaxy (MBE) growth process are
suKciently accurate details available. This enables one
to perform Monte Carlo simulations of these wire struc-
tures and therefore, to define structural disorder in the
system. The effects of various types of compositional
disorder considered here also have implications for the
electronic behavior of quantum wires fabricated by other
techniques.

The study of the electronic properties of semiconductor
quantum wires is of interest not only for practical devices
but also for a more fundamental research. Quantum wire
structures have been predicted to have extremely high
electron mobilities5 due to strong suppression of both
impurity and optical-phonon scattering. They also have
features in the DOS which are very useful in laser appli-
cations, with the possibility of smaller current threshold
density and better temperature stability than in lasers
produced from higher-dimensional structures. On the
other side, quantum wires also provide a good model for
studying electronic transport in ordered and disordered
quasi-one-dimensional systems.

The MBE growth on slightly misoriented ( 1'—4 )
surfaces (so-called vicinal surfaces) with submonolayer
control over deposition has facilitated a new generation
of very narrow (on a scale of a few nm) quantum wire
structures. When a GaAs crystal is cut and polished
with a small misorientation angle from a main crystallo-
graphic surface, in our case (100), the resulting surface

consists of alternating steps and terraces. Then, appro-
priate fractional monolayers of A1As and GaAs are al-
ternately deposited by MBE. Under the correct condi-
tions of flux and temperature, these adatoms are incor-
porated at the step edges. z Thus, growth takes place by
step advancement and quantum wire structures are even-
tually obtained. The feasibility of this approach by us-
ing metal-organic chemical vapor deposition~ (MOCVD)
and migration-enhanced epitaxy (MEE) has also been
demonstrated.

However, the growth technique does not produce per-
fect wires. The interface between the GaAs and the A1As
regions is not smooth and, in addition, within. the region
of would be pure GaAs, there will inevitably be islands
of A1As. Even in two-dimensional (2D) heterostructures
the interfaces can be imperfect since the growth front in
MBE might be spread over several layers, which can in-
fluence some of the optical properties of quantum wells.
Disorder induced during the production of lateral con-
finement in quantum wires is usually stronger than in
the epitaxial layer interface.

An important question is how compositional disorder
affects the above-mentioned attractive features of quan-
turn wires. Decreasing the lateral dimensions of the wires
produces a wider separation of energy subbands but in-
terface fluctuations become more important. Also in the
quasi-one-dimensinal case there is a much higher proba-
bility of multiple scattering from the same site compared
to the 2D or three-dimensional (3D) case. This could be
in contradiction with the predicted extremely high mo-
bility in quantum wires.

We suppose that the atoms of the wire are located at
the sites of a simple cubic lattice. The one-electron tight-
binding Hamiltonian for this system is given by

H=) li)s, (il+ ) li)&, (il, (1)
z ~ ID

(~89)
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where ~i) is the s-state atomic orbital on a site i, s, is
the "site energy, " and V~ is the hopping matrix element
between sites i and j, which we shall assume to be zero
unless the i and j sites are nearest neighbors, when V~~

=
V = 1 (i.e., V is a unit of energy). The Green's function
of the system is de6ned by

C (z) = (zI —H) (2)

The methods used in this work, and described below,
attempt to exploit the nearest-neighbor features of the
tight-binding Hamiltonian in the quasi-one-dimensional
geometry. Also this model allows for an exact treatment
of the disorder.

Here we simulate GaAs/A1As wires, and therefore
we choose zA~ &) ea . It has been shown that, if
(sAi —sa )/(2V) ) 6, then the spectrum of (1) splits into
two subbands centered about sG and sAi, respectively.
Due to the high value of the Al site energy, off-diagonal
disorder is not relevant. We have adopted zG = 0. It is
not our intention to describe a realistic GaAs/A1As sys-
tem in all detail, but rather to treat a system for which
the scattering structure is similar to that of a realistic
system.

II. DESCRIPTION OF THE QUANTUM WIRE
STRUCTURE

tory generating algorithm. Sections of a simulated wire
(as in Ref. 3) and a generated wire are given in Figs. 1(d)
and 1(c), respectively. Since the generated wire is equiv-
alent to the simulated one, i.e. , to the real experimental
wire, from now on we shall refer to it as a real wire. Fur-
thermore, we are going to investigate the inHuence of dif-
ferent types of disorder separately, and therefore we are
also treating real wire without islands [Fig. 1(b)], perfect
wire (one with Hat edges) with islands [Fig. 1(a)], and
a meandering wire (wire with probability distributions
of c and 6c as for a real wire but with constant width).
Most islands in this simulation are in fact single sites and
the number of larger islands is satisfactorily reproduced
by the probability of occurrence of several neighboring A
atoms. ~2

We have also examined the eKects of the number of lay-
ers in the wire on the electronic properties. Each layer in
the wire is generated using the same statistics and cor-
relations parameters. However, correlation between the
layers is left as a functional parameter. We will examine
three diferent levels of correlation between the layers.

(1) Maximum correlation is when the layers are iden-
tical. This means there is no disorder in the direction
normal to the substrate surface.

(2) Medium correlation describes the case when corre-

The structure of the quantum wires examined here is
obtained in the Monte Carlo simulations of A1As/GaAs
quantum wires grown on (100) vicinal surfaces by
MBE.i 2 Growth was simulated on a 120 x 80 lattice
with four terrace steps each with a width of 20 lattice
sites. Wires are grown by alternately depositing the ap-
propriate fraction of a monolayer of materials A, i.e. ,

Al(As) and B, i.e. , Ga(As) for a total of ten layers upon
a substrate of material A. However, the growth simula-
tions do not provide us with suFiciently long wires for
the DOS and localization length calculations described
below. Therefore we have developed an algorithm for
quantum wire generation which enables us to deal with
structures as long as we need (or equivalently, to create
as big an ensemble as neededii). Firstly the structure
of the wires from the growth simulations (Ref. 3) is ana-
lyzed and the form or compositional disorder extracted.
Then arbitrarily long wires are generated with similar
structural properties. Compositional disorder in the sim-
ulated structures is characterized by the wires' lateral
edge (A/B interface) Huctuations and island structures
of A atoms within the B wires, independently in each
layer of the wire. The edge Huctuations and meandering
are defined by the position of the center, c = (y„+yi)/2,
and the width of the wire, tu = y„—yi, for each slice
along the wire (x direction). Here y„(x, z) and yi(x, z)
are the positions of the left and the right edges of the
wire, and z is the direction of the MBE growth.

Using this data for m and c, the probability distribu-
tions and two-point correlation functions were calculated
for m, c, bm, and bc. This set of functions contains a large
part of the information describing the systems from the
growth simulations and an accurate reproduction of these
distributions was taken as a requirement for a satisfac-
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FIG. 1. Plot of sections of the monolayer quantum wires of
average width ten: (a) perfect wire, with addition of islands,
concentration p = 0.05; (b) real wire, without islands; (c) real
wire, with island concentration p = 0.05; (d) as in the growth
simulations (Refs. 3 and 4).
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lation in the direction of growth (z) is identical to that
along the wire (x). This can be achieved by sliding a
layer for one slice, compared with the previous case of
maximum correlation.

(3) ¹ correlation is when layers are generated inde-
pendently. This does not necessarily mean that all values
for the difference in the positions of the lateral inter-
faces in the neighboring layers (A,y) are equally prob-
able. The average width of the wire ((m) = 10 or 15)
is comparable to the total width of the system (that is
the width of a terrace, typically 20), so smaller values for
A, y are more likely to occur than bigger.

In the simulations ' quantum wire growth was modeled
by considering a system where both constituent compo-
nents A and B have identical kinetic properties. There-
fore, the structure of any new deposited layer is com-
pletely independent of the structure of the previously
grown layer. This leads us to the case of no composi-
tional correlation between the layers. Nevertheless, not
only for theoretical reasons, the other two cases are still
interesting because, in reality, possible affinities between
the same or difFerent atoms cannot be completely ruled
out.

III. DENSITY OF STATES

We shall erst examine the influence of the is-
lands of strongly scattering material on the DOS for
the perfect wire (See. IIIA). Satisfactory results were
obtained using the coherent-potential approximation
(CPA) technique. is This approach enables us to carry
out calculations for relatively large cross sections (e.g. ,
20 x 10) in an acceptable CPU time (roughly a few min-
utes on a GRAY X—MP/48 computer, per energy). Al-
though this approximation cannot provide the small tails
in the DOS diagram near the band edge, it is generally
successful for this type of disorder because the islands are
uncorrelated.

The edge roughness of the wire can also be treated
by a similar technique, but only the generalized CPA
method yields good results (see Ref. 13). If there is any
correlation in the position of the edges at neighboring
slices these generalizations become too complicated for
our purpose. Therefore, in this case we have decided to
rely on a numerical algorithm which counts eigenstates
of the wire (Sec. III 8).

A. Inhuence of the islands

function of the effective wire. For s~ —+ oo and s~ =
0, Eq. (3) gives the self-energy o(m) at the position m
across the wire

o(m) =—,m = 1, 2, . . . , M.p~(m)
C, m, m'

where C corresponds to a semi-infinite bar and is
given byi

G& ~" = EI —H&'& —Vta' "&V
d & d

Here superscripts designate the length of the system. V
contains the nearest-neighbor hopping elements between
two slices. H, } is the Hamiltonian for an isolated effec-
tive slice, given by

H&'& = ) ~m)~(m)(m~+)
-

~m)(n],
m=1 m)A

where the sites designated by labels m and n are nearest
neighbors.

In the subband representation, i.e. , in the basis of the
eigenvectors of H, , the Green's function Gg is diagonal,
with elements

g, (E)=+, i =1,2, ..., M, (8)
(E —e, )2 —4

where the e, are the eigenvalues of H, . The sign of the(1}

square root is chosen so that Im(g~& l) and the DOS have
the proper sign.

The total DOS per site p(E) is defined as

—1
p(E) = Im TrGg(E + i0+)

vrM

p&(m) is the probability of finding an A atom at position
m in a cross section of the wire and M is the number of
sites in a cross section. Using the concentration distri-
bution across the wire [p~(m)] one is able to define some
wire structures (like a perfect wire with islands), but the
price is a position-dependent self-energy o (m) instead of
a single scalar self-energy (as it is in the case of binary
alloys). The G, (m, m)'s are the elements on the main
diagonal of matrix Cg, which corresponds to a slice of
the effective wire, and by definition is the submatrix on
the main diagonal of C, . For an infinite bar one hasi4 is

G—:G = EI —H& l —2VfG V

Using the model of a perfect wire with islands
[Fig. 1(c)] we have examined the effects of islands on the
DOS. Calculations are done using the CPA with position-
dependent self-energy. An outline of this method is given
here. For a more detailed description see Ref. 13. The
method uses the single-site CPA condition

~ ~

6'q —CT

1 —(s', —o)C, (i, i)

where s', = s, —s~ and G, = (G), „s is the Green's

In order to calculate the DOS, the set of equations (4),
(7), and (8) is iterated until self-consistency is achieved.

In Fig. 2 are presented the results of calculations for
the perfect wire of width 10 with one, two, Ave, and ten
layers and island concentration p = 5%. The presence of
the islands in the wire structures substantially degrades
the (inverse square-root singularity) peaks of the DOS.
The eÃect is similar in each subband of the wire. This is
consistent with Eq. (4) for the self-energy, which is not
dependent on the subband index.

If one multiplies the DOS per site by the number of
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the wire is increased, the main effect on the DOS at the
band edge is due to the different normalization factor.
Looking at the subband representation [Eq. (8)], in each
case channels (i.e. , subbands) open one by one as the
energy is increased. So in each case the same channels
near the band edge are first opened with similar value
for Im[gI )]. The small difference in the height of peaks
in Fig. 3 comes from different subband mixing due o
disorder (see Ref. 13).

Also, Re[cr(m)] increases as the number of layers
increases, therefore the diagrams are shifting towards
higher energies. This can be understood by compari-
son with Eq. (4): the Green's function in the denomina-
tor has the same normalization factor as the wave func-
tions, which is the number of layers. Therefore, o(m)
near the band edge increases with the number of layers.
We conclude, therefore, that the best peak resolution, for
a perfect wire with islands, is achieved in the case of a
monolayer wire.

B. Real wires with or without islands
FIG. 2. The density of states (number of eigenvalues per

site per unit energy) for a one-, two-, five-, and ten-layer
perfect wire with island concentration p = 5'Fo, calculated
using the CPA. The energy E is expressed in terms of the
ofF-diagonal H matrix elements V.

The term "real wire" refers here to any kind of quan-
tum wire with uneven interfaces, i.e., rough edges. In
order to determine the DOS, p(E), of a real wire we have
first calculated the integrated DOS

layers (i.e. , normalize the density of states to the num-
ber of layers instead of to unity) and shift the origin o
the bands (for the perfect case) to the same position (see
Fig. 3) then the effect of islands on the wires with di-
ferent numbers of layers can be easily compared. From
Figs. 2 and 3 we see that when the number of layers in
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pic. 3. The density of states (per site, per unit energy)
multiplied by the number of layers in the wire, for the cases
of one, two, three, four, five, and ten layers in the wire. The
origin of the band is shifted to 0 in each case. The energy is
in units of V.

p(E') dE'.

The integrated DOS of the system described by the
Hamiltonian H is given by the number of negative eigen-
values of the characteristic matrix C = (H —EI), where
I is a unit matrix of the same order as H. The numerica
method used for the calculation of the integrated DOS
was given by Evangelou. 18

According to Ref. 18, for a real and symmetric block
tridiagonal matrix C, after transforming to upper trian-
gular form by Gaussian elimination, the number of neg-
ative eigenvalues of C is equal to the number of neg-
ative diagonal elements of the reduced triangular ma-
trix. Hence, the lower triangle of the matrix C, for the
Hamiltonian given by Eq. (1), has to be reduced to zero.
Due to the nearest-neighbor character of the interactions
only an (M + 1) x (M + 1) matrix needs to be stored
during this calculation. This method allows very long
quasi-one-dimensional systems to be considered. For the
t rage requirement of the algorithm the only important

factor is the cross section, i.e. , the number of sites in
slice M = nl x width (where nl is number of layers and
width is the width of the system, i.e. , "terrace" in our
case). The integrated DOS is calculated by counting t e
negative diagonal elements generated by the elimination
procedure. The DOS, p(E), is obtained by differentiation
which is performed simply by a finite-differences method:
P((E) = AJV/AE so that the DOS is represented as a)

histogram rather than a continuous line.

1. Monolayer toires

The DOS for real monolayer wires without and with
islands [sections of wires given in Figs. 1(b) and l(c)] are
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FIG. 4. The density of states (per site, per unit energy)
for a monolayer wire, together with the perfect case (dotted
line), corresponding to (a) only meandering wire; (b) wire in
Fig. 1(b); (c) wire in Fig. 1(c). The lower diagram shows the
region around energy E = 0 in more detail.

given in Ref. 12, but only for energies close to the band
edge. The whole energy range is given here, in Fig. 4 (dia-
grams are symmetric in respect to energy E = 0). Curve
(a) in Fig. 4 corresponds to the wire with a constant
width and without the islands, only meandering (fluctu-
ations of the center of the wire) is included. This type of
disorder has little efFect on the spectrum, but the inclu-
sion of width fluctuations [Fig. 4, curve (b)] severely de-
grades the peaks, leaving only the Erst subband distinct.
The inclusion of islands in this structure wipes away even
this remaining characteristic feature of the DOS [curve
(c)].

The broadening and weakening of the peaks of the
DOS, caused by the roughness of the boundaries of the
wire, increases with increasing energy, i.e. , the subband
index. This is clearly shown in Ref. 13 on diagrams 4(a)
and 4(b) where the DOS is given in each one-dimensional
subband of the wire. A rough estimate for the change in
the DOS (6p„) in the subband n due to the width fluc-
tuations (b'ts), is given by~a

(11)

where a is the lattice constant and (tU) is the average
width of the wire. Relation (ll) also suggests that peaks
are more affected than flat parts (term ps) and the ef-

feet decreases as average width of wire increases. If (w)
is treated as an effective width of the wire "seen" by
an electron on a length scale equal to the longitudinal
wavelength of the electron A, then this argument could
be extended to the case of a meandering wire, when the
width of each slice is the same.

The DOS has a sharp dip with a very narrow gap in
the center of the B subband (Fig. 4, lower diagram).
There are also spikes in the DOS at the energies E = 0
(for all wires) and E = +1 (noticeable only for wires
with islands). These spikes, as well as the energy gap
in the DOS diagram attracted special attention from
Kirkpatrick and Eggarter. ~o They found that the tight-
binding nearest-neighbor model for a substitutional al-
loy in the strong-scattering (i.e. , band separation) limit
gives rise to the following three difFerent types of localized
states.

(1) Localized states decaying exponentially (Anderson
localization) .

(2) States localized on small clusters of B atoms iso-
lated by a boundary of A atoms.

(3) Kirkpatrick-Eggarter (KE) states: molecular states
that, in practice, appear at special energies (e.g. , E =
0, kU), localized partially by interference and partially
by a physical boundary of A atoms. The wave function
of these states is nonvanishing on only a finite number of
sites and strictly zero elsewhere. Although it has been
shown that, for the quantum percolation model, molecu-
lar states can be constructed arbitrarily close to any en-

ergy in the band, the configurations supporting them
are significantly less probable then those of E = 0, kV
and generally they will not be observed as spikes under
numerical examination.

The spike at E = 0 for the wires without islands is solely
due to type-3 localized states, because isolated B-atom
clusters cannot appear. The inclusion of islands in the
wire structure creates the possibility of type-2 states. A
single isolated B atom (surrounded by A atoms) has a
single eigenenergy zero and this state contributes to the
spike at E = O. A cluster of two B atoms surrounded
by A atoms has two eigenstates, with energies +U, and
these states will account for most ( 95Fo) of the spike
at E = +1 in Fig. 4, curve (c). The rest of the states
in this spike are KE states, while at the same energy
type-1 states apparently coexist, unlike the case E = 0.
This is important for the localization length (Sec. IV A).
The probability of occurrence of other types of isolated
clusters is so small, in our system, that they are not no-
ticeable on the DOS diagram.

Our numerical calculations show that the DOS near
the energy E = 0 appears to vanish, and this gap exists
in all three cases (a), (b), and (c) in Fig. 4. The narrow-
ing of the gap and the dip in the DOS diagram (Fig. 4,
lower diagram) as the amount of disorder decreases is
in agreement with the results of the quantum percola-
tion problem, 20 where a concentrat;ion-dependent gap or
depletion in the spectrum around the band center is ob-
served. However, the form of the decay of the DOS im-
mediately before (and after) the gap is fairly represented
by the Lifshitz tail [p(E) exp( —A~E~ sj ), where A
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is a constant, see also Ref. 21]. This could suggest that
the spectrum decays continuously to the energy E = 0
(which is forbidden22 for the type-1 states).

2. Wi'res zoith more than one Layer

(13)

where the E, are the lower subband edge energy shifts
(due to quantization in the direction of growth of the
new layers) given by

27t
E, = 2Vcos

lqN+1 i =1, . . . , ¹ (14)

This can be simply proven analytically using the fol-
lowing argument. Since the z component is separable,
the band splits into subbands indexed by bound states
in the z direction. Eigenstates of a single layer exist in
each z subband but with a shifted eigenenergy [shifts
are given by Eq. (14)]. Hence at the energy E exist all
those X-layer states that correspond to the states in the
monolayer wire with energy E —E, for which condition
lE —E,

l
( 4V is satisfied. It should be possible to ob-

tain the result (13) via the extension theory, s since in
the case of identical layers the problem separates. Each
state lC'z ) in an N-layer system can be constructed us-
ing only the single-layer states lQ@ @,. ),

)

() 1 C2 lg~ ~)

( &iv'l&a-a) )
(15)

The coefficients (C )2 give the probabilities of finding
an electron in the jth layer. They can be determined
from the Schrodinger equation for the N-layer system

We consider first the case of maximum correlation be-
tween the layers (i.e. , identical layers). In this case, the
DOS for the two-layer wire [p21.(E)], made up of two
identical layers, is given by the DOS for a single layer of
the wire [i.e. , monolayer wire, pil, (E)] by an expression
of the form

&21.(E) =
2 lail (E —1) + ail-(E+1)l (»)

The relation (12) can be generalized to the case of N
layers
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Note that in Eq. (17) the numbering of atoms is different
from the numbering that is understood so far, i.e. , instead
of slice-by-slice order here it is layer-by-layer order since
we wish to express HC ~ in terms of H~

The relation (13) preserves the spikes and dips present
in the monolayer structure, although shifted along the E
axis. However, the gap in the DOS completely disappears
for multilayer systems.

Next we consider the cases of medium and zero corre-
lation between the layers of the wire. Figure 5 presents
the density of states of a two-layer real wire, with islands,
for all three considered degrees of correlation between the
layers. As the structural correlation decreases, the DOS
also decreases for energies close to the band edge. This is
evident from Fig. 5, by comparing the region of energies
(—5, —4), where the number of states is decreasing, with
the region (—4, —3), where number of states is increasing.
The example in Fig. 6 confirms this even more dramati-
cally. Hence, the increase in the roughness of the lateral
surface of the wire in the z direction causes migration of
some states near the band edge towards higher energies.

The reason for this can be found by analyzing a cross
section of these wires (see the inset to Fig. 6). The sides
of the wire are rough and contain inlets. These inlets are
not accessible to electrons with wavelengths longer than
the size of the inlet. Therefore the states with the low-
est energy, i.e. , near the band edge, cannot be extended
over the whole cross section of the wire, but only over
the central region. This means that the effective width
of wire for these states has been decreased (in the inset
to Fig. 6 depicted by a broken line). The decrease of the
wire width implies that the boundary roughness of wire
has a stronger effect [according to the relation (11)] on

H'~ & lc ') = E lc
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FIG. 5. The density of states (per site, per unit energy)
for the two-layer real wire with islands, for zero correlation
(full line), medium correlation (broken line), and maximum
correlation (dotted line) between the layers. A section of a
layer is given in Fig. 1(c).
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=— (18)

The existence of such breaks will drastically reduce the
transport capabilities of the wire. In particular, for our
electronic model it would lead to zero mobility. The
quantum wire structures considered here are such that,
in a classical connectivity sense, they remain connected
over very long distances (more than 104 slices). How-
ever, the fact that the structure is extended does not
imply that the electronic states supported on it will also
be extended.

Johnston and Kunzz4 rigorously proved that the ele-
ments of the transmission matrix for a very long disor-
dered wire show asymptotic exponential decrease with
the length of the system. The exponent is the small-
est Lyapunov exponent (pi) associated with the system,
multiplied by the length of wire. This means that all
states are at least exponentially localized in our real
quantum wire system. The localization length (A) is
equal to the inverse of the smallest Lyapunov exponent
(A = 1/pi) and determines the transmission probabil-
ity T of a quasi-one-dimensional disordered system of
length L by T = exp( —2L/A). Hence, the quantum-
mechanical connectivity of a wire is defined by the local-
ization length.

It was also proved (Ref. 25) that for each of the el-

ements (Gi L), ~ of the submatrix Gi L of the Green's(L) ~ (I )

function

the DOS, and also that the band edge is slightly shifted
towards higher energies. Purthermore, this region of de-
pleted density of states can be roughly estimated by com-
paring the transverse energy levels for the rectangular
cross section of height 2a and Sa. For the tight-binding
model, the quantizations in the z direction are given by
E,(h) = 2U cos(ivra/h), where h is the height of the wire
and i = 1, ... , (h/a —1). Hence the possible shifts in the
energy are, for h = 2a, E, = 0 and for h = Sa, E, = —1.
Therefore the energy of the state that extends over the
parts of the wire with the height 6 = 2a has to be at
least Eb + 1, where Eb is the lower band-edge energy.

The dip in the DOS again appears around the center
of the band (E = 0, Fig. 5), but there is no gap. Spikes
are seen at E = 0 and E = +1 for both cases.

From the previous discussion it is apparent that the
addition of any new layer, which is not identical with the
previous one, decreases the efFective width of the wire
for an electron with energy close to the band edge. This
means further suppression of the subband structure for
the DOS near the band edge. Also the density of states
per site decreases due to difFerent normalization factors
(i.e. , creation of new z subbands) when the number of
layers increases. Hence the best peak resolution, for real
wires, is achieved for monolayer structures.

C i I couples pairs (i, j) of sites at opposite ends of a(L)

bar of length L. It can be calculated using the Green's
function iterative method

(L+1) (L} t (L+1)
1,L+1 1,L L,L+iGL+1,Lgl & (1 a)

(I.+1) (i) (I.)
GL+i,L+i ——[EI —HL+i —VL+i LGL LVL L+i]

(19b)

This method uses quasi-one-dimensional geometry to
perform iterative calculations by successively adding
slices to the end of the bar, as in the integrated DOS
calculations. This numerical technique has proved very
reliable for the Anderson localization problem.

According to Eq. (18) A is the decay length for the
amplitude of Gi L. The equation that is usually used for(L,)

calculations of localization length is

(20)

A is a self-averaging quantity (Ref. 25) and, in practice,
the statistical accuracy of A can be controlled by its rel-
ative error, which is empirically given by (see Refs. 14,
27, and 28)

IV. LOCALIZATION LENGTH
2A

L (21)

The process of wire generation gives a finite probabil-
ity that the wire structure will be broken at some length.

for fixed cross section M. Note that the error depends
on the value for the localization length.
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A. Monolayer quantum wires

The results for the localization length as a function of
energy for the monolayer real wire with/without islands
are given in Fig. 7. Values for A were calculated using
systems of 10 slices, which means a maximum error of
~ 4% in Fig. 7(a) (no islands), and ~ 2.5% maximum
error in Fig. 7(b) (with islands). Apart from the peak
near the band edge, interface disorder alone is sufficient
to localize all of the states to within 70 lattice spac-
ings. The addition of islands has a strong inHuence on
the localization length near the band edge and further
reduces A to the maximum of ~ 35 lattice spacings.

In order to get a better understanding of the peak in
case (a) we have presented the DOS for the same case in
Fig. 7. It is apparent that the localization length peak
appears at the same energy where the DOS has a local
minimum. Also, the following local minimum in the lo-
calization length corresponds exactly to the small peak
in the DOS, which is the last remaining feature from the
subband inverse square-root singularities. This "inverse"
DOS characteristic for the energy dependence of the lo-
calization length of a quantum wire can be explained by
a phase-space argument: the scattering cross section of
the electron is proportional to the number of available
states into which it can be scattered by disorder. This
is clearly evident from Figs. 8(a) and 8(b), where we have
results near the band edge for a meandering wire and a
perfect wire with island concentration p = 1%, respec-
tively. The energy dependence of the DOS and A in these
two examples show almost completely opposite trends: a
strong reduction in the localization length when the DOS
is increasing (i.e. , when a new subband emerges) and then
an increase in the localization length while the DOS goes
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down. However, when KE states (see Sec. III B) are dom-
inant, i.e. , at E = 0 (Fig. 4), this relationship in trends
is not so local on the energy scale.

The localization length decreases abruptly around the
B-subband center (Fig. 7). At the subband center (E =
0) it is reduced to a single lattice spacing. Very strong lo-
calization at the center of the B subband is also reported
elsewhere. ' For this energy, in the extreme split-band
limit, no Anderson localized states are observed, but
only type-2 and type-3 states exist. Type-2 states are
obviously isolated single atoms, but type-3 (KE) states
extend over an unspecified length, which cannot be de-
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FIG. 7. The locahzation length (in units of lattice spacing
a) as a function of energy (diagrams are symmetric in respect
to E = 0) for the real, width ten wires: (a) without islands
[section of wire given in Fig. 1(b)), (b) with islands, concen-
tration p = 5' [section given in Fig. 1(c)]. DOS for the case
(a) is given as well (dotted line). The energy is in units of V.

FIG. 8. The localization length (full line) and the density
of states (dotted line) for energies near the band edge for a
monolayer: (a) meandering wire (width of each slice is con-
stant and equal to ten lattice spacings, no islands, only center
of wire is fluctuating), and (b) a perfect wire with islands,
concentration of islands p = 1'Fp.
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termined using our Green's-function method [Eq. (20)].
The KE states behave like traps for electrons and, since
there are no current-carrying states in the gap, the lo-
calization length (which is now transmission probability)
is strongly reduced. Furthermore, it seems that the in-
ffuence of these states is not strictly limited to E = 0.
Since states close to E = 0 must be similar to KE states
but also orthogonal to them, the KE states behave as
extra scatterers of an electron. Thus the presence of the
KE states acts to reduce the elastic mean free path for
electrons with energies close to E = 0, and therefore to
reduce the localization length.

B. Multilayer quantum wires
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60

O 50I-

4O

0'0 30
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~ ~ ~ a maximal correlation-- b medium correlation
c no correlation

A21,(E) = max (Apl, (E —1),A&1, (E + 1)) . (22)

The validity of Eq. (22) can be checked in Fig. 11, but also

Here we are dealing mainly with the two-layer systems.
Results for this type of system lead us to conclusions
which can be extended to systems with more than two
layers. The localization length for the two-layer real wire
without islands is given in Fig. 9 for the three typical cor-
relation functions between the layers. Figure 10 presents
results for the same wire but with islands.

Results for the case of two identical layers (maximum
correlation) look unexpected at first glance: the maxi-
mum value of the localization length for the two-layer
wire does not exceed the maximum localization length
in a single layer. Furthermore, the localization length
for the system of two identical layers, A2L, (E), can be
expressed in terms of Aqr, (E) for a single layer by the
relation

0 ~ ~ ~ ~ % Tl ~ ~ ~ ~ lo I ~ ~ 0 \ ~ ~ ~ 1% ~ ~ 1% ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ 0 ~ IW ~ ~ ~ l ~ ~ ~ I ~ 0 ~ ~ ~ ~ I\ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ l ~ ~ ~ ~ I ~ ~ ~ Ill ~ ~ IV ~ ~
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ENERGY

FIG. 10. As in Fig. 9, but for a wire with islands.

proved analytically. However, we shall Brst generalize
Eq. (22) to the case of N layers,

ANL(E) max( A1L(E El) A1L(E E2)
AgL, (E —E~)), (»)

where E, are the subband energies given by Eq. (14).
Previously we have seen that, when the problem sepa-
rates, in the N-layer system exist only states ~C {& ) which
depend solely on a single-layer state ~@@ @,. ) [Eq. (15)].
The state [Q& @,. ) is a type-1 state (Anderson localiza-
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F1G. &. The localization length (in units of lattice spac-
ing a) as a function of energy (in units of V) for a two-layer
structure without islands, layers have the same disorder pa-
rameters, and the correlation between them is (a) maximum,
(b) medium, (c) no correlation.

FIG. 11. The localization length (in units of lattice spac-
ing a) as a function of energy (in units of V) for a two-layer
wire with islands (as in Fig. 10 maximum correlation case,
here full line) along with the localization lengths for a mono-
layer wire, but shifted for +1 (dotted line) and —1 (broken
line) along the energy axis. Within the error-bar relationship
between these quantities [Eq. (22)] is correct.
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tion) and therefore its amplitude is dominated by the
factor

f r
a(-~)l - exP

I

—
A E (24)

Hence the N-layer state ~4& ) also has a localization
length A(E —E,). Now, in an N-layer system at energy

E, the states ~C'@ ) define a set of Lyapunov exponents
associated with individual z subbands. The localization
length of an electron at energy E is determined by the
smallest Lyapunov exponent, which means the largest
Air, (E —E,) (i = 1, . . . ,j & N). This is expressed by
Eq. (23).

The first consequence of Eq. (23) has already been
mentioned: by adding identical layers to the quantum
wire, the localization length, and therefore the transport
properties, cannot be improved, despite the creation of
additional sp'ace for electron movement. There is no mix-
i.ng between the subbands created by adding new layers
and hence the additional space does not become avail-
able. Does that, paradoxically, mean that the creation
of disorder in the z direction gives rise to longer localiza-
tion lengths? The diagram in Fig. 9 gives us an answer
(this case is more transparent than in Fig. 10 because
it excludes efFects due to islands). These diagrams have
three characteristic parts, roughly the following: (i) be-
tween —5 and —4, (ii) between —4 and —3, and (iii) be-
tween —3 and 0. Now case (b) (medium correlated layers)
gives a similar A to case (a) (maximum correlation) for
small energies [region (i)], while it is more similar to case
(c) (no correlation) for higher energies [region (iii)]. For
small energies the electron wavelength is relatively large
and therefore less sensitive to the small-scale edge rough-
ness. Hence, if structural fluctuations over long lengths
are dominant, then cases (b) and (a) are similar. On
the other hand, for higher energies and smaller wave-
lengths short-scale disorder dominates, and hence case
(b) is more like case (c). Part (ii) is a transition region,
where disorder-induced mixing of z subbands gives rise
to an increase of the localization length. The same expla-
nations are also valid for Fig. 10. islands have a stronger
impact for smaller energies and they also cause stronger
z-subband mixing between the region of mainly one z
subband [part (i)] and two z subbands [part (iii)].

Comparing the results for monolayer and double-layer
quantum wires one can say that by increasing the num-
ber of layers in the wire the localization length can be
increased, but not uniformly over the whole energy band.
Near the band edge it is dificult to achieve longer A

than for the monolayer wire. This is the region of en-
ergies, like part (i) in Figs. 9 and 10, where the wire is
efFectively narrower for electrons due to the long elec-
tron wavelength. This region shrinks when the average
width of a layer increases but expands when the num-
ber of layers increases, because the wave function nodes
in the z direction can only be Btted into the central
part of a cross section. Beyond these energies, as the
Fermi energy increases the localization length also grows,
with a gradient which increases monotonically with dis-

order. This increase of A with energy saturates when all
of the z subbands are involved. It seems that the max-
imum value for A is linearly proportional to the number
of layers (we have checked this for few energy points).
This is consistent with the well-known behavior of elec-
trons in the quasi-one-dimensional systems far from the
metal-insulator transition, i4 and can be understood in
terms of the Buctuations of the average potential seen
by an electron. Also this is in agreement with the well-
known approximative relation for the localization length:
A = N/, i, where N is the number of occupied subbands
(which is proportional to the number of layers) and t,i is
the elastic scattering length. Hence the upper limit for
the localization length is determined by the disorder in a
layer.

The edge fluctuations along the wire, by(x), determine
the upper limit for A, while the edge Quctuations in a
cross section, by(z), further modulate the shape of the
A(E) diagram. We can conclude, therefore, that the
localization length in structurally disordered quantum
wires is predominantly limited by the disorder along the
wire.

V. CONCLUSION

We have obtained DOS and localization length plots
as a function of the energy E for compositionally disor-
dered quantum wires. The disorder in the wire is gener-
ated using concrete simulations of vicinal surface-grown
quantum wires. Results for the DOS of monolayer real
wires with islands show strong suppression of the sharp
subband features of ideal quasi-one-dimensional systems.
All states are localized within a few tens of lattice spac-
ings. This implies a very low mobility for these struc-
tures, contrary to the predicted high mobility for perfect
quantum wires. The case of quantum wires without is-
lands is more promising. Since the states near the band
edge are less afFected by interface roughness than those
elsewhere in the spectrum, the first few subbands are ob-
served in the DOS spectra as well-distinguished features.
The localization length is at least doubled right across
the band, with a sharp peak in the Grst subband.

Studies that go beyond monolayer structures show that
the increase in the number of layers does not necessarily
result in an improvement of the above-mentioned elec-
tronic characteristics. Firstly, the results depend on the
correlations between the layers. The DOS for any mul-
tilayer structure cannot produce better resolution of the
subband peaks (rounded and broadened due to disorder)
than in the monolayer case. Localization lengths do in-
crease with the addition of new layers, but actual val-
ues for this quantity depend on the energy and on the
correlations between the layers. It seems that the max-
imum localization length is proportional to the number
of layers, although near the band-edge uncorrelated lay-
ers produce smaller localization lengths than monolayer
structures.

Some other fabrication techniques usually produce
wider quantum wires and, therefore, these results are
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less applicable, since the inHuence of edge disorder de-
cays as the width of the wire increases. Nevertheless, the
ultimate aim of reducing device size as much as possi-
ble justifies work in the domain of very narrow quantum
wires.
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