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The behavior of electrons in quantum semiconductor structures interacting with strong far-infrared
laser radiation is discussed, under circumstances where quantum tunneling is important. The systematic
appearance of avoided crossings in the quasienergy spectrum of a two-state system is related to the fre-
quency spectrum of radiation scattered from a laser-driven double well. The application of the adiabatic
approximation to a periodically forced superlattice explains the collapse of quasienergy minibands and
leads to the prediction of a possible inhibition of wave-packet spreading.

I. INTRODUCTION

In the past two decades, enormous progress has been
made in the field of quantum semiconductor structures.!
In particular, using the technique of molecular-beam epi-
taxy, one can grow artificial layered structures made of,
e.g., Al,Ga,_,As, with spatial modulation on an atomic
scale of the concentration x so that the electrons can be
confined by an almost arbitrary potential in the growth
direction (though they remain essentially free in the plane
perpendicular to that direction). Quantization within the
potential well along the growth direction gives a discrete
set of one-dimensional wave functions; associated with
each is a “subband” of levels corresponding to all possi-
ble values of the wave vector in the perpendicular plane.
For such a “quantum well” with typical width of a few
hundred angstroms the intersubband energy spacings are
of the order of tens of meV-—in the far-infrared region.
A powerful tunable far-infrared laser, such as the one
available at the Center for Free Electron Laser Studies at
UCSB, is therefore ideally suited to drive such a system.

As has been emphasized recently by Sherwin,? these
developments have led to a new field of investigation
spanning the areas of quantum optics and solid-state
physics. Solid-state systems can now be used for the ex-
perimental study of the interaction of electrons with
strong electromagnetic radiation. In particular, quantum
wells exposed to far-infrared laser fields are promising
candidates for a systematic investigation of nonperturba-
tive phenomena.?

One can fabricate not only “solid-state atoms”“ or iso-
lated quantum wells, but also structures in which quan-
tum tunneling is of crucial importance: double quantum
wells or even superlattices—i.e., chains of such wells. It
is the way in which these systems respond to strong
time-periodic fields that we will discuss in this paper.

The low-lying levels of a double quantum well can be
described approximately as a two-state system. Two-
state dynamics, moreover, play a central role in under-
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standing the behavior of more elaborate dynamical sys-
tems. Therefore, after briefly reviewing some mathemati-
cal tools in Sec. II, we study this system in Sec. III, with
special emphasis on a systematic treatment of those
effects which are beyond the scope of the familiar
rotating-wave approximation. The central simplifying
feature of a superlattice, on the other hand, is its approxi-
mate spatial periodicity. This allows us to apply the tech-
niques of crystalline solid-state physics, including the in-
troduction of Bloch states and the equivalent Hamiltoni-
an approximation, to superlattices interacting with an
external time-periodic force (Sec. IV). The paper closes
in Sec. V with some concluding remarks.

II. MATHEMATICAL BACKGROUND

The Bloch theorem,* which plays such a central role in
the understanding of excitations in the spatially periodic
crystals of solid-state physics, is a special case of a result
enunciated earlier by Floquet.® If a linear Hermitean
operator L, acting on functions of a variable s, is invari-
ant under discrete translations by a of that variable, then
the eigenfunctions of £ are of the form e'"Su(s), with
u (s) periodic with the same period a: u(s +a)=u/(s).
Where s is a spatial coordinate (for a crystalline solid) this
gives as the electronic wave functions the usual Bloch
states ¥(x)=e**u(x). The Floquet result is similarly
applicable to systems with discrete time translational
symmetry, such as those in which we are interested here,
whose dynamics are governed by the time-dependent
Schrodinger equation:

[F4(1)—id, 1=0, 2.1

with a time translationally symmetric Hamiltonian:
F(t)=FH(t +T) (we have set Planck’s constant % equal to
unity). Then the eigenfunctions ¥(t) are of the form
e ¥y (¢), with u (t +T)=u (¢). Just as the wave vector k
in the Bloch function is given the name ‘“quasimomen-
tum,” in recognition of its analogy to momentum under
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the discrete translations of the symmetry group, rather
than the continuous ones of free space, so € is designated
as a “quasienergy.”®’ If the amplitude of the periodical-
ly varying part of the Hamiltonian (e.g., the strength of a
time-periodic electric field) is regarded as an adjustable
parameter, then € becomes the energy as that amplitude
vanishes. And in the same way that the Bloch states are
conveniently labeled by the index k, plus a ‘“band” index
to distinguish between different states with the same
quasimomentum, so the time-dependent solutions to the
periodically driven system are conveniently labeled by the
quasienergy €. In analogy to the Bloch solutions for the
spatially periodic situation, the quasienergy label is ambi-
guous within integral multiples of =27 /T, the frequen-
cies which make up arbitrary T-periodic functions of ¢:

Ylt)=e (1)

:e—i(E+mw)teimwzu(t):e—i(t—:+mw)tﬁ(t) , (2.2)
where #(¢t)=#(t+7T) whenever u(t) has that same
periodicity. Then by subtraction of a suitable integral
multiple of w the quasienergy can be restricted to the
range —w/2 <& =w/2, the first “Brillouin zone.”

Moreover, because the time-dependent Schrodinger
equation is first order in the time derivative, in contrast
to the spatial case, the quasienergies can be regarded as
the eigenvalues of a stationary problem analogous to the
time-independent Schrodinger equation:

[H(t)—iod,Ju(t)=¢eu(t), (2.3)

with the time-periodic “Floquet functions” u (¢) playing
the role of stationary states. These functions are defined
within an extended Hilbert space of square integrable, 7-
periodic functions, with a scalar product
1 pT

Cln=—p [ a1 (2.4)
As was first pointed out by Sambé,? this direct analogy
permits, among other things, the immediate translation
of the complete formalism of stationary-state perturba-
tion theory to the current problem. Of course, the matrix
elements now must employ the scalar product defined by
(2.4) and the “energy denominators” become differences
between unperturbed quasienergy values.

We will examine the functional dependence of the
quasienergies on the strength of the applied periodic
external field (of fixed frequency). Then as the field
strength is varied adiabatically (as it is physically with
typical laser pulses), one expects the system to evolve
through a set of time-dependent Floquet states described
by the calculated functional dependence of € on the field
amplitude. In the common situation when the number of
energy eigenstates in the absence of a periodic field is
infinite, this picture is complicated somewhat by the
denseness of the quasienergy spectrum within the re-
duced zone scheme.” The set of eigenvalues from all
“bands” then, in general, fills the first zone densely, but
the weakness of the connection between states from well-
separated zones (or, mathematically speaking, the low de-
gree of spectral concentration at a particular quasienergy)
still makes this a useful picture.
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III. THE TWO-STATE SYSTEM

A particularly simple system for analysis, which is also
of great practical importance, is one in which there are
only two important energy eigenstates in the absence of
the T-periodic potential. This is effectively the case, e.g.,
for a single pair of quantum wells, when the lowest-
energy pair of states, split by tunneling between the wells,
is separated from the next pair by an amount much
greater than all other relevant energies, including the
tunnel splitting, Hamiltonian matrix elements (the field
strength must not be too large), and the periodic frequen-
cy, o=27/T. Within that two-state space the Hamil-
tonian describing the interaction with a linearly polarized
sinusoidal electric field of frequency @ can be written as

H(t)=(wy/2)0,+0 Acos(wt) , (3.1)

where o, and o, are the usual Pauli matrices. Note that
the level separation w, is a superfluous parameter, in that
it only sets the overall energy scale, and we will choose
dimensionless units with wy equal in unity in the numeri-
cal examples below. This Hamiltonian has been well
studied,'®!! not only in connection with the nonlinear
response of atomic systems to lasers!? but also, e.g., for
the magnetic resonance of spins 1 (Ref. 13) and for the
radiation of pions from fast nucleons passing through nu-
clear matter.!* It is instructive for the problems in which
we are interested here to examine its behavior in terms of
the associated quasienergy spectrum as a function of cou-
pling constant A for different frequencies w.

As is well known, the Schrodinger equation (2.1) with
the Hamiltonian (3.1) cannot be integrated in closed
form, essentially because #(¢) does not commute with
itself at different times: [F(¢),7(t')]7#0 (since the
Pauli matrices do not commute with one another:
[0x,0,]=—2i0,). Nevertheless, we will see that we can
understand the important features of numerical solutions
to the problem from suitable simple analytic approxima-
tions.

For a numerical solution it is convenient to intro-

duce the wusual time-evolution operator U(t,t’) by
PY(1)=U(t,t')P(t’), or as the 2 X2 matrix,
U, (t,t)=(n"()|n(t"))
={(n"(0)|U(t,t")|n(0)) . (3.2)

From the Bloch form (2.2) of the solution to the
Schrodinger equation (2.1) we have immediately that in
the basis of those solutions U, ,(T,0) is diagonal, with

eigenvalues e ~‘¢T, where T is again the period. Thus,
using the initial condition U(0,0)=1I, the identity
operator, we numerically integrate the equation

i9,U(t,0)=F#£(t)U(¢,0) over one period and diagonalize
U(T,0) to obtain the quasienergies €. The results are
shown in Fig. 1 for o=27/T=0.23, and in Fig. 2 for
®=0.18; in both case we take units so that the level sepa-
ration wg=1.

For an analytic approach we make use of the insights
to be gained from an approximate reduction to a time-
independent problem, the familiar ‘“‘rotating-wave ap-
proximation.”!® The physical idea is perhaps clearest
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1.5 1 TTT T T[T T T TR T T A unitary transformation to the frame rotating about the
B . S ’ z axis with frequency o then gives
= B ioto, /2 —ioto,/
. __ ; ezwtoz [ﬁ(t)—lat ]e ioto, /2
S R _ Nwg—w)o,+Aro,
- v _ 2
3 e
~ 5 — N — A .
© B o 7 +E[axcos(2wt)—aysm(2a)t)]—iB,
0 - Va =Hopwa+Heg(t)—id, , (3.4)
I ] where the subscripts refer to “rotating-wave approxima-
- 7 tion” (the static piece) and ‘“‘counter-rotating” (the explic-
S I NS E Liri Lo itly time-dependent piece at frequency 2w), and the super-
0 2 A4 .6 .8 1 script r denotes operators in the rotating frame. The
A solutions to the eigenvalue equation in that frame,
FIG. 1. Two Brillouin zones of quasienergies (in units of ) (H—id,)u"(t)=(etw/2)u'"(t)=c"u'(t) , (3.5)

for the driven two-level system (3.1) as functions of the coupling
strength A for wy=1 and @=0.23. Note that there are no cross-
ings at the zone boundaries. The first “gap,” indicated by the
arrow, is an avoided crossing with N=4 that appears in
second-order perturbation theory (cf. Fig. 3); the second one is a
third-order effect (N =6; see Fig. 4). In this and the following
figures the quasienergies are given in the laboratory frame;
rotating-frame values are simply shifted by /2 from these.

within the magnetic resonance interpretation of (3.1). If
the “magnetic field” A cos(wt), linearly polarized along x,
is decomposed into two fields oppositely circularly polar-
ized along the z axis, then by transforming to a frame of
reference rotating with one of these we reduce it to a stat-
ic field. The other field, now rotating with twice the orig-
inal frequency, 2w, can then often be treated perturba-
tively. Thus we rewrite (3.1) as

= %o A .
7{(!)———024——2—{[a’xcos(a)t)-l-crysm(wt)]

are trivial, if we keep only the static part #xwa of the
Hamiltonian: the spin aligns either parallel or antiparal-
lel to the static field [z component (wy—®) and x com-
ponent A]. Therefore, it is convenient to choose as axes
in this frame one (which we label §) which is parallel to
the static field; as the second we take the y axis at time
t =0, relabeled 7; the third is labeled £. Then we have

N 0 A
H (t)—70§+E{[(wo—w)a§+kag]cos(2wt)
—Qansin(Za)t)} R (3.6)
where
Qr=(wy—w)?+A?. (3.7)

If we neglect the counter-rotating field,'® the time-
evolution operator in this frame takes the simple form
Ugrwa (1,0)=exp(—io ¢ /2), and the Floquet states and
quasienergy eigenvalues are

¢r+(t):e—iﬂt/2

1 o
01, Y(r)=et1N2 1], (3.8)

€. =x0/2 modw .

(3.9)

2
+[o,cos(wt)—0o,sin(wt)]} . (3.3)
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FIG. 2. Two Brillouin zones of quasienergies (in units of w)
for the driven two-level system (3.1) as functions of the coupling
strength A for wy=1 and ©=0.18. The avoided crossing at
A=0.55 appears in third-order perturbation theory (N =6; see
Fig. 5).

The standard formalism of Rayleigh-Schrodinger per-
turbation theory can now be used, with #g(?) as the in-
teraction Hamiltonian and the €” as the relevant “ener-
gies.” Because the scalar product (2.4) is integrated over
a single period T, the complete set of basis states for ex-
pansion must include separately all values of €” differing
by multiples of the frequency o, i.e., the states in all the
“Brillouin zones.” [Notice that the Hamiltonian in the
rotating frame (3.6) is actually T /2 periodic. However,
in order not to lose the one-to-one correspondence be-
tween Floquet states in the laboratory frame and the ro-
tating frame, we continue to work in a space of T-
periodic functions.] We label the state with quasienergy
eL=0/2+Mw by (+,M) and that with quasienergy
. =—Q/2+Nw by (—,N), with M and N arbitrary in-
tegers, so that the periodic parts of the wave functions
are
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|+,M)= Mot | N)= eNor (3.10)

0 1

Within the rotating-wave approximation, there are two
different types of quasienergy crossings. The equation
Q/2+Mo=—Q/2+Nw shows that a crossing occurs at
e"=0modw if (N —M) is even; if (N —M) is odd, the
quasienergies cross at £’=w/2modw. Note from (3.5)
that the relation is reversed for the quasienergies € in the
lab, or nonrotating frame: the crossings for even and odd
(N —M) are, respectively, at the boundary and center of
the Brillouin zone. For fundamental reasons of symme-
try!7 these two types of crossings behave very differently
under the influence of the counter-rotating field. This is
most easily seen in the rotating frame, where the approxi-
mate RWA Hamiltonian is time independent. This con-
tinuous time translational invariance, which allows both
types of quasienergy crossings, is broken by the counter-
rotating field, but not completely; the full Hamiltonian
(3.6) is still invariant under time translations by 7' /2, half
the laboratory period. Moreover, it is easy to see that the
states (3.10) have parities (—1)™ and (—1)" under this
translation. If the approximate quasienergies cross in the
center of the (lab frame) Brillouin zone, then the
difference (N —M) is odd, so that the corresponding
RWA states have opposite parities. But in the case of a
crossing at the zone boundary, the parity of the two
states is the same. Thus, the degeneracies at the center of
the Brillouin zone will persist even for the full Hamiltoni-
an (3.6), but those at the zone boundaries will be lifted
and turned into anticrossings. Figures 1 and 2 illustrate
the effect clearly. It is this splitting of a quasienergy de-
generacy, and its experimental relevance for quantum
double-well structures in strong laser fields, that we will
now study in more detail.

To this end, we will make use of nearly degenerate per-
turbation theory and try to understand the numerical re-
sults from an analytic point of view; the quantitative
agreement will turn out to be remarkably good. We start
from the observation that degeneracies at the Brillouin-
zone boundaries occur for Q=(N —M )w, where (N —M)
is even. Since the perturbation # (i contains only the
frequencies 2w, the degenerate unperturbed states are
first connected in order (N —M ) /2. The matrix elements
are
J

MARTIN HOLTHAUS AND DANIEL HONE 47

« +,M17f’CR!—,N>>=Z%{(Q+w0—w)sN*M,_2
_[Q“‘(wo_w)]SN—M,+z} >
22 (3.11)

<< +’M17{ER|+’N>>=E(8N*M,—2+6N-M,+2)

=—(—,M|HRl—N» .

Note that only the difference (N —M) of the integers
characterizing the two states enters the expressions for
the matrix elements. Thus, without loss of generality we
can restrict ourselves to M =0. In the simplest case we
have N=2—that is, Q/2=—Q /242w, or Q=2w for
some external field strength A. Then near that field am-
plitude we must diagonalize the Hamiltonian projected
onto the space spanned by the two nearly degenerate
states (+,0) and (—,2):

Q72 -y

PH'™=1_, —q/2+20

) (3.12)

where P is the projection operator onto the subspace and
Y=A[Q—(wy—w)]/(4Q). Thus, in either the rotating
reference frame or in the laboratory frame, a quasienergy
gap of size 2y is opened at the value of A where the un-
perturbed quasienergies cross. In the neighborhood of
the avoided crossing at Q=2® the quasienergies are
given by

e =11V (Q—20)+4y? modo . (3.13)

If the degeneracy occurs for N =4, so that Q=4 for a
given field strength A, we must consider the second-order
perturbation Hamiltonian within the corresponding
(nearly) degenerate subspace:

«+,0[HZ|—,4)
{ +,0|Htglo,2 ) Ko, 2| FHEg | —,4 0

o=+,— el 4TE
A | Q—(wy—w)
= =B . .14
320 | 0(Q—2w) B (3.14)

There are now also diagonal matrix elements within the
nearly degenerate subspace:

| +,0|Her]l —u N |?

(+,0l#Z|+,00 ==L —,4|HKR|—.,4N= 3
p=1x2
}\’2

800240

(Note that the contributions from the two other channels
|4+,0)—|+,%+2)—]|+,0) cancel each other.)

Thus the Hamiltonian within this subspace has the
simple structure

Q2+ 4 B

B —Q/2+4o—4 " (3.16)

5 [Q2+H(wy—0)*—4o(wy—0)]= 4 .

Q—pw

(3.15)

[
where A and B are the matrix elements given explicitly in
(3.14) and (3.15). Again the quasienergies are given
within nearly degenerate perturbation theory by the ei-
genvalues of this matrix:

e =+V(Q/2—20+ 4)*+B? modw . (3.17)

For the first numerical example (w0 =0.23; see Fig. 1) we
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use this approximation in the neighborhood of the RWA
degeneracy at }=4w, or A=0.5. As shown in Fig. 3, the
low-order theory does very well in explaining both the lo-
cation (shifted substantially from the unperturbed value)
and the magnitude of the quasienergy gap.

For crossings with higher values of the “photon index”
N, Q=Now with N >4 (and even), the degenerate states
are connected to each other only in third or higher order
(in fact, in order N /2) of the perturbation. However, as
shown explicitly in (3.15), there is a diagonal term, or
quasienergy shift, in every even order starting with the
second. In the simplest case, N =6, the near degeneracy
occurs at the value of A for which Q=6w—24 [with 4
given by (3.15)]. Then the third-order perturbation in the
nearly degenerate subspace in the neighborhood of this
point has the form

_|Q2-30+4 Cc
Py H'= c Q24 30—4 | (3.18)
where

5122 | 02(Q—20)(Q—40) ’ ’

and we have shifted the origin of quasienergy to place the
degeneracy at ¢"=0. The quasienergies in the neighbor-
hood of the resulting anticrossing are given within this
lowest-order correction by

e, =1V (Q/2—30w+ 4)*+C? modw .

(3.20)

This result applies to the second anticrossing seen in Fig.
1. As shown in detail in Fig. 4, the predicted location of
the gap is about right, whereas its size is clearly overes-
timated. But that should not be too surprising, since the
RWA degeneracy occurs only at a relatively large value
of the coupling strength, A~1.14, and one has to consid-
er the fact that the perturbation matrix elements are
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FIG. 4. Magnification of the second avoided crossing seen in
Fig. 1. Full line, exact (numerically computed) quasienergies;
dots, rotating-wave approximation; dashes, third-order degen-
erate perturbation theory.

comparable to, rather than much smaller than, the
quasienergy denominators (so that one is suspicious about
the potential convergence of the perturbation theory). A
more favorable case for the application of perturbative
techniques is the first avoided crossing of Fig. 2. In this
example, the agreement of the third-order approximation
with the numerical data is excellent (see Fig. 5).

In passing, we remark that the rotating-wave approxi-
mation is usually applied close to resonance, o =w, The
present analysis shows that, in combination with pertur-
bation theory for Floquet states, it can also serve as a
good starting point for an analytical understanding of the
low-frequency regime, where w < w,,.

These techniques not only give remarkably clear in-
sight into the quasienergy spectrum of a two-level system

T
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FIG. 3. Magnification of the first avoided crossing seen in
Fig. 1. Full line, exact (numerically computed) quasienergies;
dots, rotating-wave approximation; dashes, second-order degen-
erate perturbation theory. (For A <0.4, the exact and the per-
turbative results are almost identical.)

.5 .55

.6

.65
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FIG. 5. Magnification of the first avoided crossing seen in
Fig. 2. Full line, exact (numerically calculated) quasienergies;
dots, rotating-wave approximation; dashes, third-order degen-
erate perturbation theory.
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in a time-periodic electric field, but they also predict an
interesting observable effect. As we have already pointed
out, a possible experimental realization of a two-state sys-
tem arises in the context of quantum semiconductor
structures.! In the case of a symmetric Al,Ga,_,As
double quantum well, the energy w, is given by the tunnel
splitting of the two lowest states; it is typically of the or-
der of a few meV. The dynamics of such a double well
driven by intense monochromatic far-infrared radiation
can be probed by measuring the spectrum of the emitted
radiation. Under conditions where the rotating-wave ap-
proximation is valid (well away from anticrossings), the
wave function can be written as a linear combination of
the basis solutions (3.8):

a

1pr(t): e*iﬂt/2+ eiQt/Z , (3.21)

a_

where a_ are constant coefficients (notice that the indices
N,M drop out of the physical wave function). It is then
easy to verify that the time Fourier transform of the ex-
pectation value of the electric dipole moment (in the ro-
tating frame) (4'(¢)|u|Y’(¢)) contains only the frequen-
cies 0,(; in the laboratory frame these are shifted by T
to give frequencies w, (w+), and (0—Q), the well-
known Mollow triplet.'?

But this simple pattern changes when different
rotating-wave Floquet states are strongly mixed by the
counter-rotating Hamiltonian, in the neighborhood of an
avoided crossing. For example, in the simplest case,
where |+,0) and |—,2) become degenerate within the
RWA, the proper Floquet states at the field strength A of
the RWA degeneracy are, in the rotating frame,

uﬁ‘r(t)=%2(|+,0> Fl—,20),
with quasienergy eigenvalues e, ~w=*y [see (3.12)], so
the complete wave function is ¥ (t)=~a_ u" (t)e "ot
+a_u’ (t)e "®Y"  Then the time-dependent dipole
moment contains the frequencies 0, 2w, 2y, 2(w+7v), and
2(w—7v) in the rotating frame, or w, 3w, (w+2y), and
(Bw=2y) in the laboratory frame. Similarly, an avoided
crossing that emerges in higher order (Q=Nw, with
N=4,6, . ..) leads to a dipole with laboratory frame fre-
quencies mw, (mw+2y), and (mw—2y), where m =1,
(N —1), or (N +1), and 2y denotes the quasienergy split-
ting.

Thus, the occurrence of an avoided quasienergy cross-
ing due to the breaking of a continuous symmetry by the
counter-rotating field has a characteristic experimental
signature: if one measures the frequency spectrum of the
radiation emitted by a laser-driven double well at a field
strength slightly lower than the “critical” field strength
of an avoided crossing, one should obtain a comparative-
ly simple spectrum. At the critical field strength the
spectrum becomes significantly richer (depending on the
order N /2 in which the anticrossing is generated), but it
becomes simple again when the field strength is increased
further. In principle, such an effect could, e.g., be used to
determine the actual strength of the laser field that is cou-
pled into the double-well heterostructure.

(3.22)
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IV. SUPERLATTICES

A different example for the physics of semiconductor
structures interacting with time-dependent fields emerges
if, instead of a double quantum well, we consider a regu-
lar array of a large number of identical wells, i.e., a “su-
perlattice.”!® If the number of wells is sufficiently large
(or—at least in principle—if the wells are effectively ar-
ranged around a ring), the approximation of perfect lat-
tice periodicity (in one dimension) can be made. More-
over, as a practical matter the wavelength of far-infrared
laser radiation is long compared to the total length of the
physical superlattice (a few thousand angstroms), so the
spatial dependence of the electric field can be neglected.
Then the single particle quantum states?® are character-
ized not only by a quasienergy € due to the periodicity in
time of the external laser field, but also, because of the
spatial periodicity, by a quasimomentum #k (note: in this
section we explicitly include Planck’s constant 7 in all ex-
pressions). In the parameter regime of interest we can
neglect interband effects and describe the states in terms
of independent bands, as follows.

If @, (x)=e™u,, (x) is a Bloch wave solution, in band
n with wave vector k and energy E,(k), of the time-
independent Schrodinger equation in the absence of an
external field, then the periodic piece u,; (x) obeys the ei-
genvalue equation

[(p+#Kk)?/2m* + V(x)]u,, (x)

=F uy(x)=E,(Ku,,(x), (4.1)
where m* is the effective mass for electrons in the semi-
conductor (approximately the same in the wells as in the
barriers separating the wells). We will be interested in
wave vectors k of order the inverse superlattice spacing,
very small compared to inverse atomic separations, so
this effective-mass approximation to the electron dynam-
ics associated with the atomic periodic potential in the
neighborhood of the conduction-band minimum is fully
adequate. Then V(x) is the smooth potential describing
the spatial variation of the conduction-band minimum.
This equivalent or effective-mass Hamiltonian approxi-
mation to the electron dynamics in a crystal with a poten-
tial slowly varying on an atomic scale is a familiar and
well-established one?! in solid-state physics.

It is convenient to describe the time-dependent electric
field in a transverse gauge: c&(1)=—dA(t)/dt, with
A (t) the vector potential, which is introduced into the
Schrodinger equation via the wusual replacement
p—>p—eA(t)/c. The justification for doing this within
the effective-mass Hamiltonian is not trivial. For a static
magnetic field it has been demonstrated?? that the re-
placement is the lowest-order modification within a sys-
tematic expansion scheme, and as is commonly done, we
will assume it to be a valid procedure here. Because the
vector potential does not depend on x, the wave vector k
remains a good quantum number, and the full time-
dependent wave functions v, (x,t)=e**v, (x,t) are
determined by the equation

i‘ha,vnk(x,t)=7{q(,)vnk(x,t) 5 4.2)
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where

q(t)=k—eA(t)/#ic .

eter of the superlattice), for any value of the wave vector
k. For applied frequencies w <<A /#, where A is an inter-
band energy, this requires the change in Hamiltonian ma-
trix elements during the period #/A to be small com-

(4.3)

For the parameters of interest here we can invoke the
adiabatic approximation to solve (4.2). Because the exter-
nal field is homogeneous, the Hamiltonian connects only
states of the same k in different bands. The individual
bandwidths are set by the tunneling rate between wells
and are therefore very small compared to interband sepa-

pared to A. With momentum matrix elements of order
#i/a, the condition is e 6a << A, well satisfied?® for typical
values of the systems we are discussing: electric-field am-
plitudes of a few kV/cm, superlattice spacings a of order
100 A, and (m*/m,)=0.1 (and therefore interband ener-
gies A of order 50—-100 meV). Then the standard adia-

rations, E, (k)—E, (k)=#*/m*a? (a is the lattice param-  batic result? for (4.2) is the set of solutions

e _ik"lﬁnk(x,t)=vnk(x,t)=unq(,)(x)exp - é foldTEn [k —eAd(r)/fic] (4.4)

[The phase at each time is set uniquely by the choice of u,,(x) as real, always possible in one dimension, so that
Ung(n(x) is orthogonal to its time derivative.”*] Although the wave vector k, describing the eigenvalue of discrete
translations, is a constant in the present gauge, the label of the spatially periodic part of the wave function, or that of
the adiabatically varying energy E,[q ()], obeys the familiar force equation #g(z)=e&(t). Because g (t) is a periodic
function of time, it is now simple to write the wave functions ¥, (x,?) explicitly as spatio-temporal Bloch waves which

are characterized simultaneously by k and by a quasienergy €,

i(kx =g, t /%)

Yo(x,t)=e W, (x,t),

(4.5)

with a function w, (x, ) that is periodic in both space and time, w,; (x,1)=w,, (x +a,t)=w,, (x,t + T):

Enk =inOTdTE,,[k —ed(r)/fic],

W (X,1) =exp ——éfoth{En[k-eA('r)/ﬁc]—e,,k} Upg (1(X) -

For a sinusoidal homogeneous electric field,
6(t)=6gcoswt, we have A(t)=(—6Eyc/w)sinot. If,
moreover, the band n is described approximately by a
cosine dispersion relation, as is commonly the case (and
the result of the standard nearest-neighbor tight-binding
approximation that seems highly appropriate to this set
of wells weakly coupled through tunneling barriers):
E, (k)=E,,—(W,/2)coska, then (4.6) gives the simple
expression

En =Eo, — (W, /2)(coska)y(eEpa /fiw) , (4.8)

where J(z) is the zeroth-order Bessel function.

The most obvious remarkable feature of this result is
the degeneracy of the eigenvalues ¢,;, simultaneously for
all values of the wave vector k at values of the field
strength (or of the frequency) given by the zeros of the
Bessel function. One way of interpreting this physically
is to look at the behavior of a wave packet driven by the
sinusoidal electric field. It is one of the advantages of the
present approach that arbitrary wave packets can be con-
structed from the Bloch waves (4.5) with constant
coefficients a; :

i —ie t/h
Yix,t)=Sare™w, (x,t)e ™" .
K

(4.9)

After one period, t =T, the periodic functions w,; return

to their initial values, but in general they are weighted by
different phase factors exp(—ig,, T /%), and an initially
localized wave packet has spread. However, at points of
quasienergy degeneracy (at the special values of the field
amplitude and frequency where the Bessel function van-
ishes, so that €, is independent of k), all phase factors
are equal, and the wave packets returns periodically to its
initial spatial position with its initial width. At the zeros
of J,, wave packets are in that sense similar to the
“coherent” states of standard forced linear harmonic-
oscillator theory, which follow classical phase-space tra-
jectories as wave packets of constant minimum uncertain-
ty width. In the present case the wave packet “breathes”
while undergoing forced oscillations of its center, but it
does not spread indefinitely with passing time, as it does
for other values of the driving field parameters. [Though
it is at first tempting to surmise, we note that these spe-
cial points of quasienergy degeneracy are not those where
the excursion of the wave packet covers exactly one, or a
larger integral number /, of full Brillouin zones in k
space. In this case, we have #8k = [ [/*dt e 6(t)=1nti/a,
which does occur simultaneously for all initial positions
of the wave-packet center but at e &ya /(#iw) =1, rather
than at the zeros of J;.]

This total degeneracy depends sensitively on the as-
sumption of a cosine form of the dispersion relation. If,
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for example, we include second-neighbor overlaps in the
tight-binding model, which adds a term proportional to
cos(2ka) to the cos(ka) term in the dispersion relation
E,(k), then the quasienergies (4.6) will contain an addi-
tional term proportional to cos(2ka )Jy(2e &ya /fiw), and
there is no value of the field strength g, for which the full
expression will vanish simultaneously for all wave vectors
k [there are no mutual zeros of Jy(z) and J,(2z)].

By making one further common approximation we can
make contact with the equivalent Hamiltonian approxi-
mation,?! for the superlattice, which introduces some ad-
ditional simplicity, and which will be valuable for dealing
with potentials which break the superlattice periodicity,
including impurities and other imperfections. The depen-
dence of the periodic functions u,, (x) on the wave vector
k is often weak within a band n; this is certainly the case
in the tight-binding limit appropriate to the problems
here. If we take these functions to be independent of k
within the band, then we have from (4.4) as the adiabatic
wave functions a linear combination of Bloch states
@i (X)=1u,(x)e* from that band:

— _ir _
Yor (%,1) =@, (X )exp ﬁfodTEn[k eA(r)/#c] |,

(4.10)

which obeys the simple dynamical equation (also often re-
ferred to as the “effective-mass equation”):

(E,[p—eA(t)/fic]—i#d,} =0 . @.11)

We note that, with this simplification, the dynamical lo-
calization of wave packets at the special fields where
quasienergies throughout the band are degenerate
[at the zeros of the Bessel functions in (4.8)] can be
applied directly to the localized Wannier states
W, (x—la)=T  exp(—ikla)p,,(x). An electron initially
prepared in such a Wannier state will be found in the
same localized state after an integral number of field
periods T.

At this point, there is a close connection with the work
of Dunlap and Kenkre,?> who have recognized the possi-
bility of dynamical localization of electrons in a tight-
binding band. The present results provide a simple inter-
pretation of this phenomenon. A necessary condition for
this type of localization is that the width of the quasiener-
gy band vanish, because only then is there no dephasing
of the individual components that build up the wave
packet (4.9). But in contrast to the time-independent
case, a vanishing quasienergy bandwidth does not imply
that a wave packet initially localized at a particular site
remains localized there at all times. During one cycle, it
can spread and/or tunnel to neighboring sites, and it
reassembles itself (up to an irrelevant overall phase fac-
tor) only after integral multiples of the period T. A simi-
lar situation was discussed recently by Grossmann
et al.?® for an electron placed in a periodically driven
symmetric double well, where the ‘“bands” consist of just
two states. If the wave function can be approximated by
a linear combination of the two lowest Floquet states,
these two components remain in phase at the points
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where their quasienergies cross (see Sec. I1I), and an elec-
tron placed initially in one side of the well is found there
again after any integral number of periods. But as with
the spatially periodic case, the quasienergy degeneracy
does not necessarily lead to localization in that side of the
well at intermediate times.

In the discussion up to now, we have neglected both (i)
interband effects: the influence of other than a single in-
dependent band, and (ii) departures from perfect spatial
periodicity. The first of these is insignificant for the re-
gime of parameters in which we are interested, as we sug-
gested above, and as is verified by numerical calculations.
The spatial periodicity is inevitably broken in real super-
lattices, first because the total number of wells is finite
(and relatively small as a practical matter—perhaps of
order 20 or so0), and second because (in contrast to atomic
systems) the successive wells are not identical to each
other in size, shape, and separation; fabrication is always
somewhat imperfect. Even if we neglect the breakdown
of translational symmetry within the plane of the well
(from well surface roughness, etc.), so that the dynamics
remain effectively one dimensional, we must recognize
that the wave vector k will no longer be an exact quan-
tum number, and to that extent different states within the
quasienergy Brillouin zone will be mixed by the perturba-
tion and degeneracies will be lifted (there will be an-
ticrossings). In particular, there will no longer be total
quasienergy degeneracy at the zeros of J,. It is, there-
fore, essential to investigate the role of translational sym-
metry breaking. To this end, we compute the quasiener-
gies for a finite chain of identical wells numerically; the
wave functions are required to vanish at the ends of the
chain.?’ As an example, we display in Fig. 6 two Bril-
louin zones of quasienergies for a chain with 20 square
wells as functions of y =e&a /(#iw). The parameters for
the numerical calculation were a =140 A (well width 100
A, barrier width 40 A, barrier height 0.3 eV), Ziw=2.0

1.5 =
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FIG. 6. Two Brillouin zones of quasienergies for the lowest
miniband of a finite chain of 20 quantum wells with lattice con-
stant a which interacts with a monochromatic force of strength
&, and frequency o (see the text for the values of these parame-
ters), plotted vs y=e&oa/(#iw). The arrows indicate edge
states.
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meV, and an effective mass of m*=0.066m, was as-
sumed. As in the preceding section, the frequency was
fixed, and the electric-field strength &, was varied. In
this calculation only a single level per well (split by tun-
neling into a single miniband of width W =3.66 meV for
the whole chain) was retained. First of all, it is obvious
that the overall agreement with (4.8) is quite good: The
quasienergy miniband “collapses” precisely at y =2.405
and 5.520, the first two zeros of J,, although the finite
boundary conditions necessarily imply that the collapse is
imperfect.?® In such a situation, the wave packets will be
accurately, but not perfectly, coherent, so that the
spreading of an initially localized packet can be slowed
significantly, but not suppressed completely. There are
two additional obvious finite-size effects: (i) a pair of al-
most degenerate states (indicated by the arrows), which
physically are edge states spatially localized near the ends
of the chain of wells, show markedly different quasiener-
gy behavior from the others; they do not participate in
the collapse, and (ii) there are avoided crossings. Since
#io < W, the miniband does not fit into a single quasiener-
gy Brillouin zone at low &, and different “copies” (dis-
tinguished in quasienergy by integer multiples of the pho-
ton energy #iw) have to overlap. The appearance of
avoided quasienergy crossings in the regions of self-
overlap is a consequence of the fact that for this finite
model k is only an approximate quantum number.
Whereas the avoided crossings discussed in the preceding
section resulted from the breaking of the rotating-wave
symmetry (continuous time translational invariance, or
time independence, in the rotating frame) by the
counter-rotating field, those under consideration here re-
sult from the breaking of the exact discrete spatial
translational symmetry. But the boundary conditions
have only a relatively minor effect on the principal
features of the spectrum.

The same thing cannot be said for the wave functions.
The probability densities of spatio-temporal Bloch states
(4.5) for the infinite periodically driven system are, of
course, periodic in space with the lattice period a, but a
computation of the Floquet states for the finite model?”-2®
shows that their probability densities do not share this
feature. The phenomenon encountered here is analogous
to that discussed by Rabinovitch and Zak? for electrons
in a finite-range electric field. While the quasienergy
spectrum is relatively insensitive to the boundary condi-
tions, the eigenfunctions are strongly affected.

Again, from the experimental point of view, a way of
probing the quasienergy spectrum (that is, of ‘“‘quasiener-
gy spectroscopy”) of a far-infrared driven superlattice is
to measure the frequency spectrum of the emitted radia-
tion. In analogy to (3.21), the wave function can be writ-
ten as

PY(x,t)=Fau(x,tlexp(—ig;t /#) , (4.12)
1
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where the index / labels the states in the lowest miniband,
and the u;(x,t) are the periodically time dependent (but,
because of finite chain length, not spatially periodic) Flo-
quet wave functions. If the parameter y =e&ya /(#w) is
chosen, say, at a local maximum of the Bessel function
Jy, the time Fourier transform of the mean dipole mo-
ment {¥(¢)|u|¥(z)) obviously contains many different
frequencies, corresponding to transitions between
different miniband states. But if y becomes equal to a
zero of J, (and if edge states are neglected), so that all g,
are (almost) equal, the only possible frequencies of emit-
ted radiation are integer multiples of #w. Thus, the be-
havior of miniband quasienergies as shown in Fig. 6
should leave its signature in the spectrum of scattered ra-
diation. We emphasize that there is an important
difference from the semiclassical result,®® which predicts
that at the zeros of J;, there should be no radiation at all.

V. CONCLUSION

We have outlined two possible schemes for using suit-
ably designed quantum semiconductor structures for the
study of the interaction of strong laser fields with
matter.” A distinct advantage of this approach, relative
to the traditional experiments in which atoms are subject-
ed to intense laser pulses, is that the target can be tailored
so as to optimize physical effects of interest. For in-
stance, double-well structures in far-infrared fields appear
to be well suited to the investigation of a mechanism for
the generation of frequencies considerably higher than
(and not necessarily harmonics of) the driving frequency
at avoided crossings of quasienergies. There are also
effects which have no counterpart in the atomic world.
For example, as we have pointed out, the bandwidth of
minibands in superlattices can collapse nearly to zero
when the sample is interacting with laser radiation,
which leads to the inhibition of wave-packet spreading.
In both of these cases, measuring the frequency spectrum
of the scattered radiation seems to provide a valuable tool
for quasienergy spectroscopy in solid-state systems.
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