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Mesoscopic rings with finite aspect ratio: Magnetic-field correlation function
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We analytically calculate the ensemble-averaged magnetic-field correlation function of the conduc-
tance in a mesoscopic ring. The ring is coupled to external leads and has a finite aspect ratio. To aver-
age the correlation function we employ a recently introduced formalism (based on statistical scattering
theory and the supersymmetry method) which we extend to include the magnetic field. Our results en-
able us to discuss the dependence of the correlation function on the length of the connecting disordered
leads and on the thickness of the ring. In particular, we study the decay of both aperiodic fluctuations
and Aharonov-Bohm oscillations. Our findings are consistent with experimental observation.

I. INTRODUCTION

Measurements of the conductance of small metallic
rings in a perpendicular magnetic field were among the
key experiments opening the field of mesoscopic physics. '

Quantum coherence has been identified to be responsible
for novel fluctuation phenomena. In ring geometries one
expects an interplay between aperiodic fluctuations (the
so-called universal conductance fluctuations) and periodic
Aharonov-Bohm (AB) oscillations. In principle, the ori-
gin of these effects is well understood. However, an
analytical quantitative model for a realistic ring geometry
is still lacking. At least three features have to be included
in a realistic model: First, the mesoscopic ring should-
as in the experiment —be coupled to the external world.
Otherwise we deal with a closed system and the definition
of transport coefficients and their relation to experimen-
tally observed quantities is at best unclear. Second, the
magnetic field should actually penetrate the body of the
ring and modify the phase relations among different elec-
tron paths. It is well known that the aspect ratio (the
area of the ring itself as compared to the area enclosed by
the ring) decisively determines the observability of the
AB effect. Therefore a truly two-dimensional model is
called for. Third, it should be possible to investigate the
influence of the geometry of,the mesoscopic device, both
for general reasons (geometry dependence is a main issue
in mesoscopic physics) and for comparison with experi-
ment.

The analytical model presented in this paper is the first
one to incorporate all three properties just mentioned.
Our main result is an analytical expression for the
magnetic-field correlation function depending on the
thickness of the ring and on a certain geometry pararne-
ter (c ). Qualitatively, c can be interpreted as the ratio be-
tween the radius of the ring and the length of the at-
tached disordered leads. In particular, our result enables
us to explain the geometry dependence of the AB ampli-
tude and to compare the decay widths of AB oscillations
and aperiodic fluctuations both with each other and with
experiment. It has been reported that AB oscillations
decay approximately twice as fast as aperiodic fluctua-
tions. We find good agreement with this observation.

Furthermore, the geometry dependence of the ratio of
these decay widths is predicted.

Let us recall why we have to calculate a rather compli-
cated quantity like the magnetic-field correlation function
to study the AB effect. According to an ergodic hy-
pothesis averages over the magnetic field (necessary to
study statistical properties) can be replaced by averages
over an ensemble of random potentials. We will denote
these latter averages by ( ). The average conductance,
(g ), does not exhibit AB oscillations but displays instead
so-called AAS (Al'tshuler, Aronov, and Spivak) oscilla-
tions having period Po/2. There is a simple semiclassical
explanation for this phenomenon. The AB effect origi-
nates from the interference of two electron paths which
together enclose the magnetic flux through the ring. The
relative phase of these paths will, however, be random-
ized upon averaging over an ensemble of random poten-
tials, and the effect vanishes. The only exception is a
path which surrounds the whole ring and interferes with
its time-reversed counterpart. Electrons following these
paths will scatter from identically the same impurities so
that ensemble averaging cannot introduce a random
phase. Therefore the corresponding oscillations persist.
They have period $0/2 since the pair of paths encloses
two times the actual magnetic flux. These AAS oscilla-
tions vanish as the increasing magnetic field breaks time-
reversal symmetry and pairs of time-reversed paths cease
to exist.

The averaged magnetic-field correlation function
F(B,hB) [see Eq. (2.12) for the definition] behaves
differently. We again turn to a semiclassical picture. For
each pair of paths which encloses the flux through the
ring and contributes to g (B) we find a geometrically iden-
tical pair contributing to g(B+b,B). Again, averaging
over the ensemble cannot aff'ect the relative phase which
is therefore entirely determined by the flux difference
b ttp= bBA. Here, A is the area of the ring. The resulting
oscillations have period tbo and do not depend on time-
reversal sym. metry. Hence, we deal with AB oscillations.

Many theoretical papers have been concerned with the
problem of mesoscopic rings in a magnetic field in recent
years. At the beginning of the development several
works discussed the importance of distinguishing be-
tween open and closed systems. ' Using a numerical ap-
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proach Stone and Imry showed that AAS oscillations
are a consequence of ensemble averaging. The authors
demonstrate the equivalence of ensemble and energy
averaging (another type of ergodic hypothesis) and thus
conclude that both AAS and AB oscillations should be
observable in single rings at finite temperature. They em-
ployed a nearest-neighbor tight-binding model allowing
for a magnetic field in the body of the ring. A similar
model was investigated by Sawada, Tankei, and Nagao-
ka. However, these authors restrict themselves to a
magnetic Aux tube in the annulus of the ring. They find
that the variance of the conductance only weakly de-
pends on the system size and the number of open chan-
nels. Most interestingly they observe a rather sensitive
dependence of the AB amplitude on the system geometry:
Increasing the lengths of the disordered leads enhances
the amplitude while increasing the radius of the ring
suppresses the oscillations. DeVincenzo and Kane' con-
sider a ring coupled to four external leads. Again, the
magnetic field does not penetrate the ring itself. Using
analytical, diagrammatic methods these authors show
that the energy correlation lengths for aperiodic fIuctua-
tions and AB oscillations differ qualitatively. Aronov
and Sharvin derive analytical expressions for the Fourier
transform of the magnetic-field correlation function of
the conductivity in a ring without external leads. Finally,
Feng and Hu" consider the relation between AB oscilla-
tions and aperiodic fluctuations in the magnetic-field
correlation function. However, their analytical pro-
cedure, a variational ansatz for the lowest eigenvalue of
the diffusion propagator, turns out to be insufficient for
quantitative investigations. Therefore the authors re-
strict themselves to numerical simulations and semiclassi-
cal explanations.

In this paper, we present (within a certain approxima-
tion) an analytical calculation of F(B,b,B) in a ring of
finite width coupled to two external disordered leads. We
extend a recently developed statistical scattering model'
based on random matrix theory and the supersymmetry
method' to include a magnetic field. A similar model for
the calculation of the average conductance in a meso-
scopic ring can be found in Ref. 14. In our model, the
magnetic field penetrates the body of the ring, giving rise
to the decay of the correlation function as AB —+ ~. To
simplify our calculation we investigate the dependence of
F(B,bB) on 8 and AB separately. As a function of 8
(b,B =0) we expect a crossover from orthogonal to uni-
tary symmetry reflecting the breaking of time-reversal in-
variance. It is well known that this effect reduces the
variance F(8,0) to one-half of its original value at 8 =0.
Nevertheless we discuss the crossover to a certain extent
in order to compare this situation to our second case: We
assume that time-reversal symmetry is completely broken
by a sufficiently strong magnetic field B and consider
F(B,AB) to be a function of 68 only. In this way we
derive our analytical expression for the conductance
correlation function F.

Our paper is organized as follows. In Sec. II we devel-
op the general formalism with special emphasis on
the effect of the magnetic field. Similarities and differ-
ences between the two cases just discussed [the cross-

over F(B,b,B =0) and the correlation function
F(8~ ~,68)] are pointed out on a technical level. In
Sec. III we introduce our model geometry and derive an
analytical expression for the conductance correlation
function as a function of AB. Section IV comprises the
presentation of the results and their discussion. Appen-
dixes A —C contain some necessary technical considera-
tions. In Appendix D we complete the discussion of the
crossover from orthogonal to unitary symmetry.

II. STATISTICAL SCATTERING THEORY
AND NONLINEAR SIGMA MODEL

In this section we describe in some detail our ap-
proach, which uses a nonlinear o model in supersym-
metric representation. It is actually an extension of pre-
viously published models' ' ' and we will not repeat
every step of the derivation here. But we will be quite ex-
plicit about the treatment of the magnetic field. Readers
who are not interested in the forrnal aspects of our
method and are acquainted with the representation of the
magnetic-field correlation function in terms of diffusion
propagators may directly proceed to Sec. III.

A. Model Hamiltonian

(E,a, ~~E', a', ~') =5(E E')5„.5„.. — (2.1)

With e, the energy of transverse mode a, k the electron
momentum along the lead, and m, the effective mass of
the electrons we have

AkE=e, +
2P1e

(2.2)

y, n

g) m

FIG. 1. The rectangular model system. The disordered re-
gion is divided into boxes of linear dimension l. Dashed lines
indicate the ideal leads.

For simplicity, we start by considering a rectangle
rather than a ring. It will become clear in the course of
our calculation that different geometries amount to only
minor changes in the formalism. Our model system
is depicted in Fig. 1. The disordered region
[ (x,y) ~

(x,y) e [0,L
~~
] X [0,L ~ ] ] is divided into K~~ K~

boxes of linear dimension l, the elastic mean free path for
electrons. At x =0 and LI~ we attach ideal, ordered
leads. Electron states ~E, a, lr) in these leads (so-called
channel states) are characterized by their total energy E,
the channel number a which labels different transverse
modes, and an index ~ distinguishing between right and
left lead. The normalizations of these states are given by
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At zero temperature only electrons at the Fermi surface
are relevant for transport properties, so E =EF in all that
follows. The number of different transverse modes for
fixed E (the channel number) is typically given by
A=10 . This parameter will later serve to construct a
perturbation series. In each box which we identify by its
coordinates (m, n) we introduce N mutually orthogonal
electron states l(m, n)p) ((M= 1, . . . , N). The model
Hamiltonian is then constructed by defining its matrix
elements. Writing H =Ho+ V we first define the box- (or
site-) diagonal part:

& (m, n )i(i, lHOI(k, l)v) =(Ho)„"5 "5"' . (2.3)

The quantities (Ho)„" are chosen to be the elements of a
random matrix. For the time being, we consider alterna-

I

tively the Gaussian unitary ensemble (GUE) and the
Gaussian orthogonal ensemble (GOE) defined by

mn kl
& (H, )„;"(H,)„"', &

= 5,.5.„.5-"5"' (GUE),
(2.4)

mn kl
& (Ho )~ "(Ho )p' ~ ) = (5„„5„,+5„5„)5 k5"'

0 pv ~ pp

(GOE),

respectively.
The magnetic field is introduced by means of the

Bethe-Peierls substitution. ' In this way, the matrix ele-
ments of V, defining nearest-neighbor hopping between
sites, acquire Aux-dependent phase factors:

I VI (l l) ) Vmn, ki (( 5m, k+ i in(y/2)+5m + i, k —in(y 2/) ]5nl+ ( 5nl+i , —im(p 2/)+5n + i, i im(y 2/) q5mk)5m, n p pv pv.

(2.5)

Here, p=(e/R)81 =2m/ &I/0, where ()(O=h/e is the elementary fiux quantum and P 2 denotes the magnetic flux
through a single box. The phase accumulated by an electron which follows a path enclosing Aux (() is given by 2vrglgo.
For the parameters A, and u appearing in Eqs. (2.4) and (2.5) we have the estimate' u /A, =1/(kFl), where kF denotes
the Fermi momentum. Finally, we connect the ideal leads with the disordered region through

&E,a, al Vl(m, n)p) = W,„"(E,~)(5,+5 k )= W,„. (2.6)

We neglect the dependence of the quantities W,„"(E,~) on E, ~, and n and assume (without loss of generality' ) that
they obey the orthogonality relation

(2.7)
p

Here, 8,„=8'„, for the GOE and 8' „=8'„,' for the GUE. Our complete Hamiltonian now reads

H= g g J dEIE, a, i(&E&E,a, a+I g I(m, n)p&(Ho)„"&(m n)vl
K a m, n, p, v

+ g I(m, n)p) V„,"'" &(k, l)vl+ g g J dEt IE,a, ii) W, ~"(E,v)&(m, n)p +c.c. J .
m, n, k, l, p, v m, n, p a, K

(2.8)

The corresponding S matrix can be written as'

S,„=6,b 6 —2vri
m, n, k, l, p, v

Wm (D
—i )mn, ki Wk

ap pv vb (2.9)

with

Dmn, ki —E5 5mk5ni (H + V)mn, ki+ ~ ~ Wm Wk
PV PV 0 pv ~~~ pa av

(2.10)

The conductance coefficient between lead ~ and lead ~' is
then given by the multichannel Landauer formula

g, =yllgn"
I

+I@
I ]

a, b

(2.11)

The average magnetic-field correlation function, the
quantity of central importance in this paper, is defined by

F(B,bB)= &g(B)g(8 +bB))—&g(8)) &g(8 +bB)) .

(2.12)

In general it depends on both B and hB. As explained in
the Introduction we will examine the dependence on
these arguments separately. Assuming B to be large
enough to completely break time-reversal symmetry we
arrive at the case of unitary symmetry. We employ the
GUE to model the disorder and investigate the AB
dependence of Eq. (2.12). This is the main purpose of our
paper. We find it instructive, however, to compare this
case to the situation where time-reversal symmetry is
gradually broken by an increasing magnetic field B, and
AB =0. Here, the disorder must be represented by GOE
matrices. Of course, the effect on the correlation func-
tion in Eq. (2.12) is well known (the fluctuations are mul-
tiplied by one-half) so that this case does not require in-
tensive discussion.

B. Supersymmetric functional

To represent the magnetic-field correlation function in
Eq. (2.12) we define a supersymmetric generating func-
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tional (c = 1 for GUE, and c =2 for GOE):
+GOE GE 1&gl 12

Z[J]=fd[+]exp 4—L' (D+J)L'
c

=detg '~'(D+ J) . (2.13) ~GO E
0

0 pT ~ JGOE
J 0

0 J

(2.18)

The definitions of the graded determinant "detg" and the
graded trace "trg" (see below) can be found in Ref. 19.
We have to explain various quantities appearing in Eq.
(2.13) in detail and start with the case of unitary symme-
try.

Let S,. and y; (i =1, . . . , 4) be vectors of commuting
complex variables (S; )„"and of anticommuting variables
(y;)„",respectively. The supervector 4 is then given by

(2.14)

where y; =(S;,y; ). The integration measure is defined
as

The additional structure in the GOE supervector relates
to time-reversal symmetry and serves to define a corre-
sponding operator. For our purposes, it is enough to
note that the graded space is now 16 dimensional,
At~ =AtgAt~ "At~+SAtg Th.e magnetic field explicit-
ly breaks the symmetry in Jk": While the original super-
vector 4 is associated with P; its "doubling image" ql* is
connected with the transpose of the coupling matrix, 0' .
In the following, we will suppress the explicit distinction
between GOE and GUE quantities.

The propagator D ' can be reexpressed as a derivative
of the generating functional in Eq. (2.13) with respect to
the source field:

d[ql]= g d(S;)p "d(S;*)p"d(y;)p "d(y,*)p" . (2.15)
(Z[J]) - =2((D ')„"',) .

V}M

(2.19)

m, n, p, t

Within the supervector 4', we have to distinguish be-
tween the space At+ of states at a site (indices tu, v, . . . ),
the space At l, of boxes (indices m, n, k, 1, . . . ), and the
remaining "graded" space Atg for which we introduce
the indices a,P, . . . . Obviously, At is eight dimension-
al for the GUE. In graded space, the operator D, the
source field J, and the metric tensor L are given by

D =diag[Dies, Dil, D~, , Dil, Dii, Dil, Dil, Dil ],
J=diag[ —J„J,, —Jz, J2, —J3y J3 J4,J4],
L =diag[1, 1, 1, 1, —1, —1, —1, —1] .

(2.16)

D+J=19—P'+J,
(M=M, V= V,J=J ),

(2.17)

we find that the GOE quantities can be defined in terms
of the GUE quantities,

We have abbreviated B ' =B +AB. The structure of
D~/D~. in the spaces ALz and A, b has been given in Eq.
(2.10). The source matrices J; have the same symmetries
as D, i.e., they are Hermitian (GUE). Looking at the first
line in Eq. (2.16) we may view the space At as the direct
product of "conductance space" At' (where we distin-
guish between the arguments B and B', i.e., between con-
ductances), "D space" Atg~" (where we distinguish be-
tween advanced and retarded inverse propagators D), and
"supersymmetry space" A, +: A, =AS'SA, ' "@At +.

In the case of GOE symmetry we have to combine the
necessarily Hermitian coupling matrix V with the orthog-
onal rest of the inverse propagator D. This incompatibili-
ty of symmetries reAects the fact that the original invari-
ance against time reversal (leading to an orthogonal rep-
resentation of the Hamilton operator) is broken by the
magnetic field (which has to be represented by a Hermi-
tian matrix). Writing

This is an essential property since the generating
functional —in contrast to the propagators D ' —can
readily be averaged. It follows from Eqs. (2.9), (2.11),and
(2.12) that we need a product of four propagators (i.e. , a
four-point function) to express the correlation function
F(B,b,B). For this reason we have introduced four su-
pervectors in Eq. (2.14) and four source fields in Eq.
(2.16).

After averaging the functional we perform a Hubbard-
Stratonovitch transformation and integrate over the vari-
ables in the supervector O'. For details, see Ref. 19. The
result is

(Z[J])=fd[Q]exp ~
— gtrg[Q" Q" ]

2CA,

——trg[ln(E +i W+J
c

(2.20)

The relevant degrees of freedom are now represented by
(8c X8c)-dimensional graded matrices Q"'. In graded
space they have the symmetry properties of the dyadic
product 'P% . If we denote by (a,k ) the matrix containing
elements a;k we have for the quantities appearing in Eq.
(2.20)

Q
kl —

( Q
kl

) Q
—

( Q
kl

)@ I

iW= ivrg W„, W," L, (2.21)

+ 1NK K 8c

Further progress relies on the saddle-point approxima-
tion. The general Q matrix can be decomposed' accord-
ing to Q =

QG +5Q where the "Goldstone modes" ex-
plore the saddle-point manifold of the integrand in Eq.
(2.20) while 5Q represents so-called massive modes. The
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The terms L „and Xz are identical to those appearing in
previous models' ' and we will not discuss them in de-
tail. The kinetic term X&;„, however, contains the mag-
netic field. Therefore we will explicitly display its expan-
sion. At the same time we introduce a continuum limit
which simplifies some formulas and their interpretation
considerably. Inserting the explicit form of f' [see Eq.
(2.5)] into Xk;„we get (setting Q =—QG )

(2.22)QG —To QD To,
where

(2.23)QL,
= —iAL .

2

[p gklptgk+1l+p gklptgkl —1]
C k, l

The transformation matrices are given by

&I+ab (2.27)ia
Pl+ ha (2 24) where—ib

latter are integrated out in Gaussian approximation. '

Putting E =0 [by ergodicity the averaged functional in
Eq. (2.20) cannot depend on E] the Goldstone modes may
be parametrized as'

The symmetry properties of the (4c X4c)-dimensional
graded matrices a, b can be found in Ref. 19. The Gold-
stone modes obey the nonlinear constraint QG = —

A, .
Therefore trg[QG ]=0.

Having restricted the generating functional to the
Goldstone modes we expand the exponent to lowest non-
vanishing order in the coupling matrix V. Higher terms
are suppressed by powers of v /X —I/(kFl). Finally we
arrive at

2

(Z[J])= fdp(a, b)exp. + „trg[QVQV]
2ck

——trg[ln(E+iW+ J Q)]-
C

(2.25)

Here, dp(a, b) denotes the measure associated with the
integration over the saddle-point manifold and V is
defined by V=v V. Equation (2.25) constitutes a non-
linear cr model.

C. Continuum limit and perturbation theory

As in previous similar cases' ' ' our strategy will be
to evaluate the integral on the right-hand side of Eq.
(2.25) perturbatively. This treatment is known to give re-
sults equivalent to those derived by disorder perturbation
theory, at least in the cases considered in Refs. 12 and 16.
We express the exponent in Eq. (2.25) in terms of the in-
dependent (unconstrained) variables contained in the ma-
trices a, b and expand the integrand in a Taylor series
keeping only terms of second order in the exponent. The
resulting integrals can be calculated by means of a gen-
eralized Wick theorem. ' The result is a perturbation
series proceeding essentially in inverse powers of A, the
channel number. We write for the exponent in Eq. (2.25)

2

trg[QG VQG V] ——trg[ln(iW'+ J—
QG ) ]

2cA,

N
trg[QG VQG V] ——trg[ln(1 —igG 'IV ')]

2cA,

——trg{ln[l —(1 —igG 'IV) 'QG 'J]l

(2.26)

e ABP =exp it~'
2

'
A 2

(GUE correlation function),
(2.28)

eP =exp ilo." y= —BlI 3 2

Q"' Q(x,y),
gk+ll Q(x +I y)

(2.29)

=Q(x,y)+B,g(x,y)l+ —,'8 Q(x,y)l +
Inserting the continuum version of the Q matrices into
the graded trace in Eq. (2.27) we get

«g[Prg"'Pi'Q"'"] «gl:PIQ(x y)PI'Q(x y)]

+trg[PIQ(x, y)PI d Q(x,y)]l

+ —,'trg[P, Q(x,y)P, 8 Q(x,y)]l

+ 4 ~ ~ (2.30)

Expanding P& to second order in I we find the following
terms contribute to Lk;„..

trg[P&QP& Q]~trg[( icr3a„)g(iver—3a„)g]l
trg [PI QP& d Q ]1—+trg[( —io 3a„)QB Q ]I

+trg[g (icr3a )B„g]l, (2.31)

—,'trg[P(gp(tB Q]l ~—,'trg[QB„Q]l

(GOE/GUE crossover) .

The matrices o3 and o.
3 are Pauli matrices having their

nontrivial structure in At and A, , respectively. It is evi-
dent from the first line in Eq. (2.28) that the generating
functional does not depend on the absolute value of the
magnetic field in the case of the GUE correlation func-
tion: Having broken time-reversal symmetry completely
by the use of a GUE, a symmetry-breaking field is
without effect.

We take the continuum limit by considering the elastic
mean free path I to be very small against all other lengths
involved in our model. In this way, the box indices ac-
quire a quasicontinuous character and we are led to the
replacements

—,jdxdy,1

kl l
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We have defined

a =— (GUE),e AA
2

a =—A (GOE),
(2.32)

NU f dx dy trg[QDQ], D=D +D~ .
2c A.

(2.34)

In Appendix A we prove the gauge invariance of our
model. One can show that the covariant derivative d
obeys the same rules for differentiation as the ordinary
derivative B. Therefore we get the Taylor expansion of
Eq. (2.34) by substituting d for 8 in the corresponding
field-free series. Up to sixth order in the matrices a, b we
have

X„;„=~f dx dy(X' '+X' '+X' ') (2.35)

with

X' '= —4h trg[da db],
X' '=+46 trg[a(db)a(db)+(da)b(da)b],
X' '= —2b, trg[ad(ba)bd(ab)] .

(2.36)

We have introduced (=4Nv /A, -4NI(k~l)-A and the
notation d = [d, dz ].

where A=(B/2)( —y, x, 0) is the vector potential in sym-
metric gauge for a static, homogeneous magnetic field in
the z direction. Introducing a covariant derivative by

d„Q=B Q+ia [o3,Q], D, Q—:d Q

we see that the continuum form of X„;„reads

y yktrg[a klb kl]

k, 1

~f dx dy [5(x)+5(x Lll)]trg[ab] .

(2.38)

In the last line we have taken the continuum limit. The
symbol T, denotes the transmission coef5cient

4A,x,
2 (5k1+5k'

l~

)
(A, +x, )

(2.39)

with x, defined in Eq. (2.7). The coupling y is defined
by y"=g ' g, (T,"). A nonvanishing y indicates that
the disordered probe is coupled to the external leads. The
physics governed by this coupling coeKcient has been
discussed in detail in Ref. 12. Integrating by parts in
Xk;„'=(g/c) fdx dy X' ' and adding X',I we get for the
quadratic action

In the following we explicitly construct the term of
second order in a and b which will be kept in the ex-
ponent. It defines the elementary propagators of our per-
turbation series (the diffusion propagators) and some in-
sight can be gained by its inspection. In addition to Xk;„
we have to consider contributions coming from the po-
tential term X 0,. In discrete notation it reads

X„„=——g g trg[ln( 1+T, a "'b "')]
1

(2.37)
k, l a

leading to a second-order term

g T" trg[a"'b"']1

k, l a

+' '=+' '++' '=~ 1 dx dy trg a D+5(x) d„— 5(x Lll d + +[5(y)—5(y L1)]d b—
C

(2.40)

The magnetic field defines a decomposition of the graded
space A, into two subspaces which we denote by AL'"
and Af' '. From our previous discussion it is clear that

g g

Eq. (2.41). For the quadratic action we get

f«dy «g[a11~D b 1 1 +a22~D
C

+a12(~C ) b21+a21~C b12]
(GUE correlation function),

(2.41)
JN'"=JR"',=Jk1', JR' ", JR ~ with the operators

(2.43)

(GOE/GUE crossover) . A '=a+5(x) a.—,—5(x L) 8 +-x

(2.42)a= b=
21 22 b21 b22

The indices refer to the subspaces Afg" and A,g
' and have

therefore different meanings for the two cases given in

In the case of the GUE the magnetic-field difference
breaks the symmetry in At'. In the orthogonal case, it is
the magnetic field itself which plays the analogous role in
JRg. We now decompose a and b accordingly:

a» a)p b» b

+ [5(y)—5(y —L&)]B

ftc '=(8+2ia) +5(x) 8„+2ia„—

—5(x —Lll) 8 +2ia +

+[5(y)—5(y L~)][c} +2ia ] . —

(2.44)
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Thus the diffusion propagators AD and Ac are given by

b, AD(r, r') = —Sir —r'),
(iI+ 2ia ) Ac(r, r') = —5l r —r'),

(2.45)

a„— AD(r, r )[„,= a. + A~(r, r')[„x
J

D & x —0 x

8„+2ia ——Ac(r, r')~„o= 8„+2ia,+—

together with the boundary conditions [determined by
the 5-function terms in Eq. (2.44)]

exp(X'„;„'+X'„';„')= I +X'„;„'+X„'6„'+—,
' (X'4' )'+

Relevant source term contributions have the form

(2.47)

tions with n =0, the asymptotic terms, survive. They no
longer depend on the coupling parameter y. The contin-
uum limit defined in the preceding subsection (1/L~~ ~0)
has precisely the effect of selecting the asymptotic terms.
We will restrict ourselves to their discussion in all that
follows.

The series contains two asymptotic contributions'
which we denote by A5 and A6. They arise from the
combination of certain source terms with higher-order
terms of the kinetic action X„;„.We have

XAc(r, r')~ L =0,x—

8 AD(r, r')~~ o=i3~AD(r, r')~ L =0,
(8 +2ia )Ac(r, r')~ 0=(B +2ia )Ac(r, r')~

(2.46)

In the following we will use the terms diffusion and
cooperon for AD and Az, respectively. '

Anticipating that cooperons are damped as the mag-
netic field increases (in the sense that f ~ IIC ~

d V gradual-

ly vanishes) we can see important mechanisms already at
this stage. It follows from Eq. (2.43) that connections be-
tween indices "1"and "2" are due to cooperons only. If
the cooperon propagators vanish the spaces A,"' and
A, ' ' will be decoupled. This has the following conse-
quences for the two physical situations we have in mind.

(1) For the GUE correlation function it means decou-
pling of the conductances g (B) and g (B + b,B ) in Eq.
(2.12): A, "I and JR' ' denote their respective "conduc-
tance spaces. " Therefore we expect (g(B)g(B+AB))
—+(g(B))(g(B+bB)) and consequently F(B,bB)~0
as AB increases.

(2) In the case of the GOE/GUE crossover Jkt''I and
A, ' ' are associated with the "doubling image" structure
we introduced to account for time-reversal symmetry. It
is precisely this symmetry which is broken by the mag-
netic field and decoupling of JRs" and A, ' ' reduces the
GOE to a GUE representation.

—IdS dS trg[a»(o)Ib»(L)I]trg[az2(o)Ib2z(L)I] .
I

(2.48)

(2.49)

In the case of GOE symmetry we have to distinguish I,
(for J) and I2 (for J ), see Eq. (2.18):

0

0 ~)fc

S
S*

(2.50)

By fdS dS in Eq. (2.48) we denote two independent sur-

face integrations over the vectors

Here, the indices refer to the conductance space Jk' in
the GUE as well as in the GOE case. We had to take
four derivatives with respect to the source field J to
represent the four-point function F(B,b,B ). The ma-
trices I in Eq. (2.48) refiect the source field structure in
graded space after differentiation. For the GUE [see Eq.
(2.16)] they are given by

D. Asymptotic terms
o=(0,yo), o=(0,y, ),
L=(Li)yL)) L=(Li)yL) )

(2.51)

The structure of the perturbation series originating
from the functional in Eq. (2.25) is well known from the
calculation of ( var(g) ) for quasi-one-dimensional
wires. ' There, the first nonvanishing order (A ) has been
worked out completely, i.e., including also terms
representing the inAuence of the coupling to the leads.
Naturally, these terms are suppressed at the length of the
system increases. Put differently, all terms of the series
scale with (1/Li)" and as L~~ ~ only those contribu-

((f(a, b) )) = Jdp(t)f (a, b)e+ (2.52)

we can write A~ and A6 as

i.e., dS =dyodyL and dS =dyodyL . The asymptotic
terms A~ and A6 are now given by combining XP„' and
(Xz;„') /2 with source terms of the form of Eq. (2.48).
With the definition
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5 4

dSdSdx dytrg a&& o Ib&& L I trg a22 o Ib22 L I + o~L trg ad ab bd ab
32c I
6 4

A6= f dS dS dx dy dx'dy'trg[a»(o)Ib»(L)I]Itrg[a22(o)Ibz2(L)I]+(o~L)]
64c6 I

X trg[a(db )a(db )+(da )b(da )b ],~trg[a(db )a(db )+(da )b(da )b] .~.

(2.53)

In the case of GOE symmetry, I and I may be indepen-
dently identified with I, and I2, respectively, while for
the GUE we have I=—I. The asymptotic correlation
function is now given by the sum of A 5 and A 6,
F(B,bB)= 35+ A6.

III. DIFFUSION PROPAGATORS
AND MAGNETIC-FIELD CORRELATION FUNCTION

In this section we focus attention on the case of the
GUE correlation function. Results and derivations con-
cerning the crossover behavior of F (B,b,B ) are sketched
in Appendix D for completeness.

After expressing the correlation function [which we
denote by F(hB) henceforth] in terms of diffusion propa-
gators we introduce some modifications and approxima-
tions related to the ring geometry. Finally we solve the
differential equations for diffuson and cooperon ' in a cer-
tain limit and derive an analytical expression for F(b B ).

A. Contraction rules

V, =0„+in„,
l l l

V,*=8„—i a„,
l

we get

(3.2)

To evaluate the functional averages in Eq. (2.53) we
employ the following (Wick-type) contraction rules, valid
for the GUE.

(( trg[ Aa;;(r)Bb, , (r') ] )) = ftD(r, r') (( trg[ A ]trg[B] )) /g,
(( trg[ Aa;;(r)]trg[Bb;;(r')] )) = ftD(r, r')(( trg[ AB] )) /g,

(3.1)
((trg[ Aa, (r)Bb, (r')]))=Ac(r, r')((trg[ A)trg[B] )) /g,
(( trg[ Aa; (r) ]trg[B. b~; (r') ] )) =Ac(r, r') (( trg[ AB] )) /g .

It is understood that i' Apply. ing Eq. (3.1) repeatedly
we can write A5 and A6 as integrals over products
of diffusion propagators. With r=(r„r2)=(x,y), r'
=(r&,rz)=(x', y'), y=y/l, and the definitions

A5 = y f—dS dS dr PF, "(r,r)F, "(r,r)[V„V*,ftc(r, r')+ V„*V,A&(r, r')]
I l I l

+—„'B„[F;"(r,r)F; (r, r)][8„Ac(r,r')+8„ ft c(r,r'))(, + —,'B„F, (r, r)B„F; (r, r)AC(r, r)],
(3.3)

A 6y f dS dS dr dr'IF;"(r, r')F;"(r, r')V„V*,Ac(r, r')V„'V, AC(r, r')+B,F;"(r,r')B,F;"(r,r')V„*Ac(r, r')V„AC(r, r')
J

+B„F, (r, r')B„F,"'
(r, r')V'. ftc(r, r')V, ft c(r, r')

+a„a,F; (r, r')B„B,F; (r, r')Ac(r, r')Ac(r, r')
i f~

+ —,'[B„F;"(r,r)B,F~s (r', r')+(o~o, L~L)]B„B,[Ac(r, r')Ac(r, r')]) .4 r,. s ~
& s r,. r,. C

XF, (r, r )B,B,F,'"(r', r') .
j J

(3.5)

Here, a summation over repeated indices is implied and
by F,' (r, r') we abbreviate the following symmetrized
product of diffusons:

F;"(r,r') = AD(o, r)ftD(r', L)+ ftD(o, r')AD(r, L) . (3.4)

Using some technical manipulations detailed in Appendix
8, A 5 and A 6 can be reduced to the rather simple form

35+36=4y fdSdSdrdr'Ac(r, r')Ac(r, r')

X B„B,F, (r, r')B„B,FsL(r, r')

+ ,'y fdS d—Sdr dr' Ac(r, r')Ac(r, r')B„B„

I

This result is manifestly gauge invariant. A change of
gauge in Eq. (2.45) leads to a corresponding phase factor
multiplying ftc(r, r'). This phase factor, however, can-
cels out in Eq. (3.5).

B. Ring geometry

Up to now we had a probe of rectangular shape in
mind. But this assumption —although convenient —has
not been essential for our derivations. The main
geometry dependence of the formalism resides in the cou-
pling matrix P; This matrix determines which sites are
connected via nearest-neighbor electron hopping. The
second important aspect of the geometry is the position
of the ideal leads, reflected in the site dependence of the
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potential term X „.Given an arbitrary geometry, all we
have to do is to specify the decomposition into sites and
the interfaces to ideal leads. The formalism set up in Sec.
II will then be well defined. On the level of the diffusion
propagators this amounts to specifying (i) the region
where the differential equations (2.45) have to be solved
and (ii) the boundary conditions.

To deal with the ring geometry in Fig. 2(a) we intro-
duce the following approximations. First, we neglect the
curvature of the ring. We disregard the fact that the
number of sites at the outer circumference should be
larger than the one at the inner circumference. Conse-
quently the structure of the coupling matrix V is very
similar to the case of the rectangle. Second, we replace
the disordered external leads by radial electron sources
(or sinks). Essential properties of the correlation function
should not depend on the details of the coupling. As a
result of these simplifications we have to consider the
model geometry shown in Fig. 2(b) which is easily de-
scribed in terms of polar coordinates r and 8. We denote
the inner and the outer radius by r & and r &, respective-
ly, and define the mean radius r=(r&+r& )/2. The
electron sources are located at 8=0 and ~. We directly
turn to the continuum formulation for the diffusion prop-
agators. Choosing the gauge

AB
A =0 A~= r 2 =0r i 8 2

~ z

we write the differential operator for the cooperon as

D =—(8+2in)

(3.6)

=(8—i hA)—

1~ 1 . 1
~

1

I bB l 5B
(3.7)

where we have introduced the magnetic length
l~li=hl(eb, B). The electron sources are modeled in
analogy to Eq. (2.44) by 5-function potentials,

d+i b, A— ft (r, r') —+[o(r8 r—vr)+5(r8)]

X A c(r, r') = —5(r —r') (3.8)

leading to the boundary conditions (x =0,~)

[Bqftc(r, r')
~q

—BqAc(r, r')
~q ]

rftc(r, r'))z „=cftc(r,r')~z (3.9)

In radial direction we have, due to the isolating walls at
r=r& and r =r&,

B„IIc(r,r')[„„=B„Ac(r,r')[„=„=0. (3.10)

Therefore we have to solve the differential equation

rB„+8„+—Bz+i Bz— Ac(r, r')
I ~B 4I qB

5(r —r')6(8 8—')—(3.11)

subject to the boundary conditions Eqs. (3.9) and (3.10).
Experimentally relevant rings for the observation

of the AB effect are characterized by ratios o.
=(r & r& ) IF=L—i lr =0.1, . . . , 0.2. ' This justifies
setting c =pr /1 =—Pr =pr =const. We show in Appendix
C that the parameter c may be interpreted as the ratio
r IL of the mean ring radius and the length of the disor-
dered leads in Fig. 2(a). This establishes a close connec-
tion between our model system in Fig. 2(b) and the realis-
tic geometry in Fig. 2(a). The two limiting cases, c=0
and c~ ~, are associated with an isolated ring and two
disconnected half rings, respectively. In the first case, the
angular derivative of ftc(r, r') becomes continuous every-
where while in the second case we must have
Ac(r, r')~z 0 „=0in order to fulfill Eq. (3.9).

Neglecting the ring's curvature as described above is
equivalent to approximating the Laplace operator by its
"Cartesian" form

(3.12)

The Cartesian derivatives 8„ in Eq. (3.5) are replaced by
I

derivatives with respect to r and 8 according to

8„=Byr~

(3.13)

Finally, we have to replace y by p and to interpret the
surface integrations in Eq. (3.5) as radial integrations
ranging from r=r& to r=r& at 8=0 and ~. We are
now in the position to evaluate Eq. (3.5) for the ring
geometry.

FICx. 2. (a) Ring geometry with two attached external leads.
The disordered region is represented by shaded areas. (b) The
ring geometry considered in this paper. The external leads are
replaced by radial electron sources.

C. Surface integrals

To calculate the surface integrals over dS and dS in Eq.
(3.5) we have to solve the difFerential equation for the
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diftuson,

b AD(r, r') = a„+ az ftD(r, r') = —5(r —r'),z

r
(3.14)

with the boundary conditions stated for the cooperon in
Eqs. (3.9) and (3.10). We expand the diffuson in a "radi-
al" series

series to their respective m =0 terms. This means that
the derivatives a„and a, in Eq. (3.16) have to act on

l

f (8,8';m =0) and not on the remaining cosine. Other-
wise, even the I =0 contributions vanish. Therefore the
typical surface integral reduces to

O = f dS a„ ftD(o, r}a, ftD(r', L)
1

AD(r, r') = g cos[k (r r& —)]cos[k (r' r& )]-
m=0

1
aqf (0,6;m =0)aq f(8', m", m =0), (3.17)

Xf(8,6';m), (3.15)

(3.16)

The integrations over ro and r project the associated
I

where k =me/Li (m =0, 1,2, . . . ), co= 1, and e
=2. Typically we have to consider integrals of the form

O= f dS a„ ftD(o, r)a, AD(r', L)

= f drodr a„ ftD(6=0, ro;r)a, AD(r', 6=m, r ) . .
a',f—(a, a', m =0)= —5(~—a } .1

r
(3.18)

This equation can be solved by standard methods,
see Appendix C. With F(8,8') =f(8,8')/r,
8& =min(8, 8'), and 8& =max(8, 8') the solution is
given by

where we have replaced r by r
Inserting the series expansion Eq. (3.15) into the partial

differential equation (3.14) yields an ordinary diff'erential
equation for f:

2+c(m. —6& )+c8&+c(2+c~)8&(~ 8& )/er-

e(4+c~)
(8' ~ m. , 8 & m. )

2+c(2m 8& )+c(—8& m)+c(2+—err)(8& m)(2m —8& )/vr—
(0'&'m 8~ m)

c(4+cn)
F(8,6') =

2 c(~ —8)+c—8'+c28'(~ 0)/vr—
( 6' & m. , 6 &' m )

c(4+ca)

(3.19)

2 —c(m. —8')+c8+c28(~ 8')/a-
c(4+ca)

(8' &' ~, 8 ~ ~) .

Inserting this into Eq. (3.17) we arrive at

0=f dS a„AD(o, r}a,ftD(r', L)= — 5, ,5, .
"i r (4+ca.)

(3.20)

Si P f dS——dS a„a,F, (r, r' }a„a,F, "(r,r')

4- 4

r (4+err)

Sz =—P f dS dS a„a„F;"(r,r)a,a,F,'"(r', r')
(3.21)

16c"
r'(4+a~)' '

we write

The typical surface integral is constant. This leads, of
course, to a tremendous simplification of F(b,B) in Eq.
(3.5). With

F(bB ) = f dr dr'I[tz(r, r')Ac(r, r')
r (4+co)

24c 4

tr[ft c] . (3.22)
r (4+cree)

In the following subsection we present the approximate
calculation of the "volume integral" I =tr[AC ].

D. Volume integral

We take advantage of the fact that the thickness L j of
the mesoscopic ring is much smaller than its circumfer-
ence 2mr: Li/(2~r)=o/(2m). We recall that
o =0.1, . . . , 0.2 for relevant samples. Our strategy will
be to expand the cooperon into radial modes keeping
only the lowest (i.e., the constant) one. This will be an ex-
cellent approximation to the full result for all relevant
values of L~.

We employ a notation similar to the one used in
quantum mechanics. Let

~
mn ) be defined by

(r8~mn ) =f (r)g„(8), where f and g„are orthonor-
mal (radial and angular) systems of functions obeying the
boundary conditions Eqs. (3.9) and (3.10). We write the
diff'erential equation (3.11) in operator form and project it
onto fo('r)=1/(Li)'
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D Ac= —1

—g &onID. Ioq &&oj IA, Ioi &= —&onlol &

—J'de'&oaldloa'& &oa" IA, lot" &
= —&oology" & . (3.23)

Deaning

&oalA, lou'& =F,(a, a') (3.24)

turn can be reduced with an ansatz of the form
F=exp(ico8) to an algebraic equation for co. Its solutions
are given by

and with

&oalD. loa &=(~(a—a ) ln
' a', +

(
4 4

)
16l ~B

we arrive at the differential equation for Fc(8,8'):

L l r ( 2l2~B 16l4~B

(3.2S}

(r) +r() r) r(+CO]/2 2
l8t„ 8l qB

With

r 2(bB )r (bB )mr

2iri h /e po

Eq. (3.29) may be rewritten as

i

4o

(3.29)

(3.30)

40

XF(&,8') = —5(8 —8') . (3.26)

For sufficiently small Li/r ( we can write

1
ln

Jq r&

2
7r) +r&

(3.27)

so that Eq. (3.26) simplifies further:

Bq+i—
~

c)~—
~ (r) +r ( ) F(8,8')

l~B 8l~B

= —5(6—8') . (3.28)

Equation (3.28) can be solved as it stands and the essen-
tial steps of this rather involved (although in principle
straightforward) calculation can be found in Appendix C.
But before we present the result it is instructive to discuss
Eq. (3.28) qualitatively.

The Green's function Fc(8,8') can be constructed
from the solutions of the homogeneous equation corre-
sponding to Eq. (3.28). This homogeneous equation in

(3.31)

We see that the homogeneous solutions and consequently
Fc(8,8') contain oscillatory as well as exponentially
damped contributions. The field scale for the former is a
peculiar mean value of the Aux threading the ring. The
field scale for the latter is just the Aux penetrating the
body of the ring. Obviously, these are the basic manifes-
tations of the AB eft'ect and the decay of the correlation
function due to aperiodic Auctuations, respectively. In
the limit of a one-dimensional ring we have P( =P& and
only the oscillations survive: There is no damping.

The result for the volume integral I=tr[A z] reads
(see Appendix C)

4

y S(i)

I=r (3.32)

g x"'
i=0

where (with cu, rz
=a+i P )

S' '=16P rr [cos(a2m)cosh(2Pm) —1]+8P sr[cosh(2') —c s(o.2'. )]sinh(2Pm. ),
S"'=16cP m. cos(a2m)sinh(2Prr) —8cP a[3 cos(a2vr)cosh(2Pm) 2 c. o—sh(—4Pm}].

+6cP[2 cos(a2vr)sinh(2Pm. ) —sinh(4Pm )],
S' '=16c [[cos(a2m)+1]sinh (Per) —sinh (2Pir) j

—2c Prr[5 cos(a2m)sinh(2Pvr) —3sinh(2'. ) —3sinh(4'. )]+4c P m [[c so( a2vr) +1]cosh(2Pvr)+2],

(3.33)

S' '=4c Pn sinh(2' )+4c m [sinh (2Pm )+sinh (Pm ) ]—14c —sinh(2')sinh (Pm ),
41 4S' '=2c m. sinh (Pm)+c "—sinh(2Pm)sinh (Prr) —4c

z
sinh (Pm. ),
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G~(y) =I dx F (x)cos(xy) (4.1)

The structure of the Fourier transform G (y) is quite sim-

ple. Apart from higher harmonics which determine the
actual shape of the oscillations we have a peak at y =0
(aperiodic fluctuations) and another one at y =2' (princi-
pal period of the AB oscillations). We take the widths of
these peaks as a measure of the damping. Denoting these
widths by A,„and A&B, respectively, we then calculate
the ratio A, =b,~B/b, ,~. The result turns out to depend
only on c, and not on cr The .curve A, =k(c) is presented
in Fig. S. It rises from A, =1.4 with increasing c until
A, =2.2. Assuming c = 1 to be the experimentally relevant
regime our calculation is in good agreement with the ob-
served value A, =2.

For all values of c the AB oscillations decay consider-
ably faster than the aperiodic fluctuations. This is to be
expected from semiclassical arguments. " Furthermore,
our model predicts a monotonic increase of A, with c. We
ofFer the following qualitative explanation (based on the
semiclassical picture given in Ref. 11) for this
phenomenon: The magnetic correlation function of a rec-
tangle is reduced to one-half of its value when the Aux
penetrating the probe is /=&3/0. This is the maximum

coherently. Therefore the AB effect must vanish. These
results complement and explain the outcome of the nu-
merical simulations mentioned in the Introduction
where a similar dependence of the AB amplitude on the
lengths of the disordered leads was found.

In Fig. 4 we present the correlation function for fixed
c= 1 as a function of b,glgo and the ring thickness,
characterized by o. =L~/r. We can see the crossover
from the quasi-one-dimensional, periodic case to the re-
gime of strong damping. At the same time, the period
length of the oscillations decreases because the effective
AB Aux increases with the thickness of the ring.

We come to our most important result where we com-
pare the relevant field scales for the damping of the
aperiodic fluctuations and the AB oscillations, respective-
ly. Our procedure is as follows: For different, but fixed
values of c, and for a given value of cr =I&/r we calculate
F (AB) as a function of b, P/$0. To separate the periodic
and the aperiodic fluctuations, we perform a numerical
Fourier transformation

Aux two electron paths forming a simple loop can en-
close. Let us consider such pairs of extremal paths in the
ring. Electron paths contributing to the aperiodic fluc-
tuations do not have to surround the ring. We assume
for the moment that they stay in the upper half, say. On
the contrary, AB paths have to go around the ring and,
therefore, can enclose approximately twice the fIux com-
pared to extremal paths leading to aperiodic Auctuations.
This is the root of the argument in Ref. 11. Now, it is of
course not true that paths associated with aperiodic Auc-
tuations are confined to one-half of the mescoscopic ring.
They may coherently cross the coupling potentials at
8=0 and m. so that the enclosed fIux increases. The same
is true for the AB paths but their probability to increase
the enclosed area by the same percentage is lower: They
have to catch a larger absolute amount of Aux. We con-
clude that the possibility of coherently crossing the cou-
pling potentials reduces A, . But this mechanism is des-
troyed for large coupling parameters c. Crossing the po-
tentials becomes extremely probable and coherent paths
are indeed confined to one-half of the ring. This might
explain the monotonic behavior of A, .

In summary, we have derived an analytical expression
for the magnetic-field correlation function of a mesoscop-
ic ring. We have taken into account the coupling to the
external world, treated a ring with finite aspect ratio, and
established a parameter (c ) governing the geometry
dependence of our results. In terms of this parameter the
dependence of the AB amplitude on the length of the
disordered leads could be fully understood. This depen-
dence was observed previously in numerical simulations
but remained unexplained up to now. Furthermore, it
was possible to investigate the damping field scales for
the aperiodic fIuctuations and the AB oscillations, respec-
tively. We found satisfactory agreement with observed
experimental values and were able to predict the behavior
of the ratio of both decay widths as a function of the
geometry parameter c.
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APPENDIX A: GAUGE INVARIANCE
OF THE GENERATING FUNCTIONAL

We introduce the notation

A. ~
—l A'~ 0 3, A y

—
L Ex' 0 3

1.6—

1.4—
=ia o.3, (A 1)

1.2
0 4 6

C
10

FIG. 5. The ratio A, of the decay widths of AB oscillations
and aperiodic Auctuations, respectively, as a function of c.

d=B+[M, . ],
where a„and a have been defined in Eq. (2.32). We
consider two different gauges for the vector potential, A
and A', which are connected by the gradient of a scalar
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function:

A+Bg = A', (A2)

in addition the relation

To = (KLM ) To (KLM ) (A10)

. e cU=exp —i ——go
A 2

(A3)

The corresponding gauge transformation acting on A,
reads

which determines the structure of To in the subspace JM, .
The actual representation of K and the time-reversal ma-
trix M (Ref. 20) are not important in the present context.
It suSces to know certain commutation properties. Dis-
tinguishing explicitly between UGoE and UzUE we have

since [A, U] = [A, U] =0 and

w'=Un v ' (av-)v—'=A+-i —' —'age~ .
A 2

(A4)
and

[ UoUF, K]= [ UGoF, K]=0,
GUE ] [ GOE

(Al 1)

Defining new Q fields

Q'= UQU

we have, due to the essential property

(DQ)' =D'Q' =—UDQ U

the identity

trg[Q'D'Q'] =trg[QDQ]

(A5)

(A6)

UooEM =MU~oE
—1 (A12)

Now, it is a simple matter to show that T0 = T0 U
indeed fulfills Eqs. (A9) and (A10):

T' L KL T' =UT~i KL T U '=L KL0 0 & 0

(A13)

(KLM) To*(KLM)=(KLM) To (KLM)vooF =To

This completes the proof of gauge invariance.

and gauge invariance seems to be trivially fulfilled. How-
ever, we still have to check that the reparametrization in
Eq. (A5) does not contradict the original definition of the
Q matrices as elements of a saddle-point manifold. In
other words, we have to prove that Q'= UQU ' still be-
longs to the saddle-point manifold. Using Eq. (2.22) we
may write

APPENDIX B: SIMPI.IFICATION PROCEDURE

We perform the calculation simplifying the expressions
in Eq. (3.3) for a rectangle. We choose a gauge where

=0 so that

Q'= UTO 'Q~TOU '=(To U ') 'Q TDUO (AS)
V„=B„+i+„

1 1 1

(B1)
V„=B„The transformations T0 are determined by certain sym-

metry requirements. ' In the case of the GUE they have
to obey the pseudounitarity relation

T+/ 1/2KL 1/2T L 1/2KL 1/2 (A9)

The following treatment is in principle a generalization of
Appendix A in Ref. 16. We are guided by the aim to re-
move all derivatives from the cooperon propagators. Let
us denote the contributions to A6 in Eq. (3.3) by a, b, c,
d, and e, respectively. Inserting the identity

(82)

(B3)

(B4)

+ —,'a„(f(r, r') Ia„a,a, (ftcftc)+a„[5(r—r')(Ac+Ac )]—25(r —r')a, (Ac+Ac )]
J J l

—a„f(r, r') Iar'ar'. (ftcA&)+5(r —r')(Ac+ftc) }

The transformation matrices for the GOE have to fulfill
I

V„V',A, V„*V,A,*=-,'(a„a„)(a,a, )[A,A,*]+-,'(a„a„+a„a„)[5(r—r')(ft +A" )]

—
—,
' g a„[5(r—r')a, ( ftc+ Ac )]+—,'5(r —r')a„a, ( ftc+ ftc )+ —,'a„5(r—r')( ftc+ ftc ),

I,J

where a summation over repeated indices is implied into

a = f dS dS dr dr'Fs"(r, r')Fz"(r, r')V„V*.Acv„*v Ac

we get after some integrations by parts and with f (r, r') =F,' (r, r')F (r, r')

a = f dS dS dr dr'[ —' ft, A,*a„a„a,a,f(r, r')

+a„(ft ft* )a,a,f(r, r') —a„a,a,f(r, r')ft A" )

+ [-,'a„a„f(r, r')(Ac+ ftc)+ —,'a„f(r, r')a, (ftc+ ftc)

+ —,
' f(r, r')a„a, (Ac+ Ac)+ —,

' f(r, r')(a„) (Ac+ Ac )]5(r—r') ] .

(B5)

(B6)
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Repeating this procedure with

b = f dS dS dr dr'B, Fs"(r,r')B,Fs (r, r')V„*ACV„Ac
l l

(87)

and the identity

v „* A,*v„ft, =-,'a„a„(A,ft,*)+s(r—r )-,'(A, +it,*)

we arrive at

b = IdS dS dr dr'(ACA&B„B,Fg"(r, r')B„B,Fss (r, r')

+ —,'B„[B„(AcA&)B,Fs (r, r')B,Fz (r, r')] —
—,'8„ IAcACB„[B,Fs (r, r')B,Fs"(r, r')]j

J J J

+ —,'(Ac+Ac)B,Fs"(r,r')B,Fss (r, r')5(r —r')) .
J J

Term c is analogous to b and leads to the same result. Term d is already of the desired form and the expression

e = J dS dS dr dr' ,'[c)„F—s(r, r)B,Fs (r', r')+(o~o, L~L)]B„B,(AcAC)r,. S & r S r,. r C C

(89)

(810)

(811)

(812)

can be directly transformed to give

e = IdS dS d r d r'( ,' Ac A cd—„d„Fg"(r,r )d,B,Fz "(r', r')

+ —,'B„(B,(AcAC)[B„Fs (r, r)B,Fs"(r', r')+(o o, L L)j]

—
—,'B, I Ac Ac [B„B„Fs"(r,r)B,Fs (r', r')+(o~o, L~L)]] ) .

J J

(813)

(814)

—,'8„ If(r, r') [2(B„V*,Ac V,AC+ V', Ac B„V,Ac )
J

—25(r —r')8, ( ftc +Ac ) ] j
l

—
—,'B„[B„f(r, r') [2V*,Acv, AC j ] .

(815)

(816)

For the expression in the innermost parentheses in Eq.
(815) we may write V„V*,AC V,AC+ V*,Acv„*V,AC.

We decompose these terms into a regular and a singular
part,

v'„v*,A, =s,,s(r —r )+v„v*,ft„„,
J

V„*V,Ac =6; 5(r —r')+V„*V,Ac „,7 C EJ l j

(817)

At this stage we realize that (i) the contributions Eqs.
(84), (89) (taken twice), (813), and term d constitute the
result Eq. (3.5) given in the text and (ii) the contributions
Eqs. (86) and (811) (twice) just cancel the expression 3,
in Eq. (3.3).

We still have to deal with the surface terms in Eqs.
(85), (810), and (814). The first two lines of Eq. (85) can
be rewritten with the help of Eq. (88):

least a factor 1/l.
~~

due to the boundary conditions for
Al, and ftc. At the isolating walls, the surface terms
vanish identically: Each of the expressions contains at
least one transverse derivative. Hence, we may neglect
all surface contributions.

We have performed the calculation for a rectangle in
explicit coordinates. A6 was decomposed into a term
compensating A5, a volume term, and a contribution
which could be expressed as a divergence. These state-
ments do not depend on the coordinate system nor on the
particular shape of the probe. They are therefore gen-
erally valid.

APPENDIX C: DIFFUSION PROPAGATORS
AND THE VOLUME INTEGRAL

In this appendix, we solve the differential equations
remaining after projecting to the lowest transverse mode
for (i) the diffuson and (ii) the cooperon. In (ii) we then
proceed to calculate the volume integral I =tr[ ftc ].

(i) The differential equation for the diffuson reads

gF(6, 6') = —5(6 —8') .

so that Eq. (815) can be written as

4'B„[f(r, r )2(V„V*,A, „,sv, A*, +V*,A, V,"V,A*, „,g)] .

(818)

The boundary conditions are given by

&~(&,8')~~ o+ + —B~(8,&')~s

=cF(8,8')
~ g= o (C2)

All surface terms are now expressed in the form of a
divergence. This explicitly shows that these terms con-
tribute at the boundary of the disordered region only. At
the interfaces to the ideal leads they are suppressed by at

For fixed O', F(8,6') is a linear function of 8 and we may
draw F(8, t'7') schematically as shown in Fig. 6(a). The
function F(8,8') is completely determined by the param-
eters ho, h, m &, and m&. These obey the following
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hp ho

m&=

m& =

1+(2+cm )(2—8'/ir )

4+ca
3+cir (—2+err)(2 8—'/rr)

4+c~
(C5)

ho= 2+cvr cv—r( 2 8'—/m).
c(4+em )

hp -hp

h
2+ca(2 —8'/rr)

c(4+cur)

The expressions for F(8,8') in the regions 8'~ m, 8~ ir
and 8' ~ m, 8~ m. follow immediately. Noting that

F(i'f, 8') =F(8', 8),
F(8~ ~,8'~ m ) =F(8 vr, 8' —m), —

FIG. 6. (a) F(8,8') for fixed 8' in a ring geometry without
leads. (b) F(8,8') for fixed 8' in a ring geometry including
leads.

we also get the remaining terms in Eq. (3.19).
(ii) To calculate the cooperon propagator we define

Fc(8,8')=Fc(8,8')/r and solve instead of Eq. (3.28)

Be+ 2
r Be r ,'(—r ) +—r( ) Fc(68')

lq~ 4lq~

four conditions (m &, m ) & 0): = —5(8—8'), (Cj)

I (h —ho) jir+m) =cho,

II m ( —(h —ho) /sr=eh

III h +m((8' —m. )=ho+m)(2m. —6'),

IV m +m =1 .

(C3)

with the boundary condition Eq. (C2). The typical fre-
quencies co, and co2 are still given by Eq. (3.31). In con-
trast to the case of the di6'uson the solutions of the homo-
geneous equation are no longer linear in 8. Assuming for
the moment that ir (8' (2ir we construct Fc(6,6')
piecewise from the homogeneous solutions in the regions
I (0(8(m ), II (m (8(6'), and III (8' ~ 8( 2rr ). With
the ansatz

To interpret the parameter c in Eq. (C2) we attach disor-
dered leads of length L/r to the ring, see Fig. 6(b). At
the boundary to the ideal leads the propagator has to
vanish. Conditions I and II in Eq. (C3) have to be re-
placed by the following relations (current conservation at
the junction points):

I' (h —ho) jm+m) =—ho,
T

rII' m &
—(h —ho)/ir= —h

I f&(8)=Ae ' +Be

II f„(8)=Ce ' +De

III fiii(8') =Ee +Fe

(C8)

we have six conditions for the six unknown quantities 3,
B, C D, E, and F: (i) fi(~) =fn(~), (i»fii(&')=fiii(~'),
(iii) f«, (2rr) =f,(0), (iv) f,'(0) —f '„i(2m) =cf,(0), (v)

f&i(m) fi(m)=cfi(rr), (vi)—fit&(v9') —fii(0')= —1. We
denote with f ' the derivative of f with respect to 8. We
will only need the first four unknown terms 3, B, C, and
D. They can be written as

Comparing this to the original equations I and II demon-
strate the correspondence c~r/L claimed in the text.
The solution of Eq. (C3) is given by

ZA ZB Zc ZDB=, C=, and D=Y' Y' Y' Y

where (b,co=co2 —co, )

(C9)

i cg2(2~—8')
~ f Q~ i co l ( 2 f7

—6' )Z„= ihcu[2ce ' ——[c

idaho+(c+i

hen)e—' "]e
i col (2m —8') —fb,~ f ~2(2~—8')

Zs = i b co [2ce ' —[c+ib—co+ (c i

bee�)e

' ]e—
gl

Zc=e '
[ —c(c+ibco)e' " +c(c ibco)]+e ' [—c e' " —(hco) e ' —(c —ihco) ],

gt Pl

ZD =e ' [+c(c id')e ' " —c(c+ibco)]+e ' — [ —c e ' " +(bco) e +(c+ibco) ],

(C10)
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and

(Cl 1)

The volume integral is given by

I=r'f dada'~F(a, a')~'
0

=r 'f dada'IF(e, a')I'
0

=2r4f da'f da~F(e, a')~'

=2r f d8' f d8iF(6, 8')i + f d8' f ddiF(8, 6")i + f d8' f d6iF(6, 8')i

—=2r [I, +I2+ I3 ] .

Due to the symmetry of the ring we have I, =f3. We get

I, =I,= f' d8'f d8 f„(8)f,*,(6)

f d6' f dB(Zce ' +Z ' )(Z* ' +ZDe ' ),

I,= f'' d8'f

deaf,

(8)f,*(8)

f d8' f dV(Z„e ' +Zee ' )(Z* ' +Zse '
) .

o

(C12)

(C13)

After a lengthy calculation we arrive at Eqs. (3.32)—
(3.34).

APPENDIX D: CROSSOVER FROM ORTHOGONAL
TO UNITARY SYMMETRY

In the case of GOE symmetry we face an additional
technical difficulty. The contraction rules Eq. (3.1) have
a comparatively simple form because they were formulat-
ed with matrices a, b that were decomposed in conduction
space JR'. Such a formulation was useful because the

l

symmetry breaking induced by the magnetic field acted in
the same subspace. Therefore the decomposition in W'
naturally distinguished between diffusons and cooperons.
In the present case, however, the magnetic field breaks
the symmetry in "GOE-doubling" space JM". This forces
us to perform an additional subdivision so that the con-
traction rules acquire a rather complicated structure.
Suppressing indices referring to conductance space
[which should be chosen according to Eq. (3.1)], but ex-
plicitly indicating the GOE indices we have

(( trg[ Aa»Bb;, ] )) = (( trg[ A a 'z2Bb 2z ] )) =
ftD (r, r') (( trg[ A ]trg[8] )) /g,

(( trg[ Aa
& &

]trg[Bb ~ & ] )) = (( trg[ Aa 2z ]trg[Bb z2 ] )) = ftD (r, r') (( trg[ AB] )) /g,
(( trg[ Aa', 28b2, ] )) = (( trg[ Aa2, 8b', z ] )) = fthm(r, r')(( trg[ A ]trg[B] )) /g,
((trg[ Aa', z]trg[Bbz& ]))= ((trg[Aaz& ]trg[Bb~&z] )) =A (rc, r')((tr [AgB ] )) /g,
((trg[Aa &&Baze ] )) = ((trg[ Ab~&&Bb22])) =AD(r, r')((trg[cr3~AB ]))/g,
((trg[Aa» ]trg[Ba22])) =((trg[Ab» ]trg[Bbz2])) =ftD(r, r')((trg[AB ]))/g,
(( trg[ Aa ', 28a z, ] )) = (( trg[ Ab', 28b'2, ] )) =Ac (r, r') (( trg[ AB ] )) /g,
((trg[ Aa &z ]trg[Ba~2& ] )) = (( trg[ Ab', 2 ]trg[Bb~& ] )) = ftc(r, r')(( trg[cr3+AB ] )) /g .

(D 1)

Here, o3~ has a nontrivial structure in Jkz~. The contraction rules Eq. (Dl) have already been derived in Ref. 14. In
view of the many different contraction schemes arising from Eq. (Dl) it seems to be hopeless to calculate the crossover
for the magnetic-field correlation function. The following construction, however, allows for a more compact formula-
tion.
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Let us define auxiliary matrices Q' and Q ' having the following form in W:

0'=
r (D2)

We associate diffusons and cooperons with products of the auxiliary variables a' and p' according to

a'a'= p'p'~fthm (r, r'),
a'p'~fthm(r, r') .

This gives, for example,

((trg[ A Q']trg[BQ' ] )) = (( trg[a'A»+p'A&2]trg[a'8» +p'822 ] ))

~ftD(r, r')(( trg[ A» ]trg[8» ] )) + ftD(r, r')(( trg[ A 22]trg[Bq2] ))

+ ft~(r, r')(( trg[ A» ]trg[Bz2] )) + ftc(r, r')(( trg[ A ~2 ]trg[8» ] )) .

With the help of Q and Q, Eq. (Dl) can be reformulated and simplified to give

(( trg[ Aa (r)Bb (r') ] )) = (( trg[ A Q']trg[B Q' ] )),
(( trg[ Aa (r}]trg[Bb(r') ] )) = (( trg[ A Q'BQ' ] )),
((trg[Aa(r)Ba(r')])) =((trg[Ab(r)Bb(r')])) =((trg[AQ'MB M Q'])),
((trg[Aa(r)]trg[Ba(r')])) =((trg[Ab(r)]trg[Bb(r')])) =((trg[AQ'MB M Q'])) .

(D3)

(D4)

(D5)

The lower indices at the auxiliary matrices indicate the
number of the contraction step where they were created
(pairwise). As already stated at the end of Sec. II, the
projector matrices I and I may be independently
identified with either Ii or Iz, see Eq. (2.50). Therefore
the possible combinations are

The time-reversal matrix M has already been mentioned
in Appendix A. The auxiliary matrices Q, 0 represent
the symmetry breaking on the level of the contraction
rules. In the limit of vanishing magnetic field we have
a'=p' and Eq. (D5) reduces to the ordinary contraction
rules for the GOE. We can therefore start from the cal-
culation of var(g) with GOE symmetry' ' ' [which
gives the result Eq. (3.5) multiplied by 2 and with ftc re-
placed by ftD] and look for the changes introduced by
nontrivial auxiliary matrices. In a very abbreviated nota-
tion a typical term originating from A6 in Eq. (2.53)
reads

IIII~ (I,I i +I2I2 )(I i I i +I2I2 )

=IiIiIiI, +I2I2I2I2+I)IiI2I2+I2I2IiI, . (DS)

We come to the decisive step. The contractions 3, 4, 5,
and 6 connect identical projectors and therefore lead to
diffusons when applying the identification scheme Eq.
(D3}. But the first two contractions connect two traces
containing I and I, respectively. It follows from Eq. (D8)
that half of the generated diffusion propagators are
cooperons while the other half is formed by diffusons.
The advantage of introducing auxiliary matrices is obvi-
ous: the difference between finite and vanishing magnetic
field comes in in the very last step.

Our example Eq. (D6) turns out to be the generic case.
Propagators depending on r and r' originate from con-
tractions connecting I and I. All we have to do is
to replace in the result for var(g) the product of two
diffusons IID (r, r') ftD(r, r') by [ftc(r, r') ftc (r, r')
+ftD(r, r')ftD(r, r')]/2 leading to [cf. Eq. (3.5)]

tl g[a i iIb i iI ]trg[a 22Ib p2I ]trg[a 1 1 b 1 I a12b21 ]

X trg[a i2b2qa22bqi ], (D6)

The indices refer to conductance space Af' and we have
left out all differential operators. Without specifying
whether or not there is a magnetic field Eq. (D6) can be
fully contracted in a series of steps identical to those per-
formed in the calculation of var(g):

trg[IQ3Q4 ]trg[IQ3Q4QiQ2]trg[Qi Q2Q& Q6I ]

Xtrg[Q~Q6I] . (D7)
I

F(B)=4y f dS dS dr dr'(ftcftc+ftDftD )B„B,F,' (r, r')B„B,F,' (r, r')
J

+ ,'y f dS d—Sdr dr'(ftcftc+ftDftD)B„B„F;"(r, r)B,B,F;"(r',r') . (D9)

With growing magnetic-field strength the cooperons are gradually suppressed and we are left with the GUE result Eq.
(3.5) (with b,B =0).

The result of this appendix is certainly not new but it has not been derived in the framework of a random matrix
model. We feel that this treatment instructively complements the discussion of the GUE correlation function.
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