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orbital magnetism of mesoscopic metals: Extension to the nonperturbative regime
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We extend our investigation of orbital magnetic response of mesoscopic metallic systems to the limit
of temperature and inelastic level broadening being comparable to or less than the average interlevel
spacing. We address the role of level repulsion and derive a level density correlation function that inter-
polates between the perturbation result and the Wigner-Dyson statistics. We plot out the magnetic-field
dependence of the magnetic moment of the system for the entire range of experimentally relevant tem-
peratures, including the limiting dependence at near-zero temperature. We address the relation of our
results to the response of ideal rings and classically integrable systems in the context of their respective
level structures. We emphasize the semblance between the response of small metals and (compound)
atomic and nuclear systems, in particular, the interplay of Curie orientational paramagnetism, Van-
Vleck polarization paramagnetism, and Langevin precession diamagnetism. We also touch upon the re-
lated issues in the subject of quantum chaos.

I. INTRODUCTION

For many years the quantum nature of the orbital mag-
netic response remained a gripping topic in condensed-
matter physics. In metals, the orbital magnetism' has
long been associated with the notions of diamagnetic
Landau susceptibility and the de Haas —van Alphen
(dHvA) oscillations. The latter are specific to the Landau
quantization whose observation requires strong magnetic
fields; otherwise, both the disorder and the thermal distri-
bution act to suppress the dHvA oscillations exponential-
ly. On the other hand, the magnitude of the Landau sus-
ceptibility is only insignificantly affected by the tempera-
ture and disorder. Henceforth, it was identified with the
skewing of the electron orbits by the magnetic field.

As the quantum coherent phenomena, such as electron
localization, came to prominence over the past decade it
was realized that the Landau susceptibility can be strong-
ly renormalized due to the electron scattering off impuri-
ties and its effect on the electron-electron interactions.
The emergence of the mesoscopic field has propelled a
body of research on persistent currents in metallic rings
subject to the Aharonov-Bohm Aux. Although the accu-
mulation of experimental data required truly remarkable
advancements ' in magnetic sensitivity, it is still limited
and is seemingly in contradiction with the present state of
the theory. As of this writing, there exist a number of
theories which cover various aspects of the orbital
response of small metals. These include the mesoscopic
fiuctuations, the interaction corrections (both of Coulom-
bic origin and induced by scattering off Kondo impuri-
ties), and magnetism of systems with the fixed thermo-
dynamical average number of electrons. The latter clear-
ly represents a sharp departure from the conventional
grand-canonical-ensemble description of bulk metals
whereby a fixed chemical potential is assumed.

In a preceding paper, which hereafter will be referred
to as I, we made an emphasis on the congruous treatment
of persistent currents in narrow rings and the orbital

magnetism of grains by means of expressing either
response in terms of the Landau susceptibility. We point-
ed to the difference in Aux scales of different effects. In
particular, we showed that at low temperature the typical
Aux scale for the Kondo-induced interaction and the
canonical-ensemble response is much smaller than the
Aux quantum which, in turn, defines the typical Aux scale
for the usual electron-electron interaction and mesoscop-
ic Auctuations. We argued that the existence of the form-
er scale is directly related to the absence of phase and en-
ergy relaxation at the sample boundary in the absence of
electron reservoirs, such as the current leads, attached to
the sample. '

Building on the fact that the magnitude of the orbital
response of mesoscopic metallic systems far exceeds the
Landau susceptibility (and that the electrons in such sys-
tems retain quantum coherence), we proposed its inter-
pretation using the nomenclature ordinarily reserved for
atomic and nuclear objects, namely, as the competition
between the Lanevin precession diamagnetism and the
Van Vleck polarization paramagnetism. In this picture
the electrons fill up the states, up to the Fermi energy, of
the effective combined potential of the impurities and
sample walls. We extended this analogy" to the feedback
of the orbital motion into spin degrees of freedom in the
presence of spin-orbit scatterers and argued that this
same mechanism responsible for the renormalization of
the electron g factor in magnetic atoms' should lead to
the orders-of-magnitude fluctuations of the electron g fac-
tor in mesoscopic systems. ' We applied our picture to
the analysis of the magnetic response of semiconductor
quantum dot structures as well, where the Curie orienta-
tional paramagnetism and the analog of the atomic
Hund's rules play a central role. '

In this paper we continue our investigation of the aver-
age orbital response of disordered metallic systems ' us-
ing the model of noninteracting electrons in a random po-
tential and assuming no contact with electron baths. We
wi11 extend our analysis to the nonperturbative' regime
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where the temperature and/or the inelastic level broaden-
ing become comparable or less than the mean interlevel
spacing. We discuss the sign of the response in connec-
tion with the numerical work on the disordered and in-
tegrable systems, as well as the analytical results for the
quasi-one-dimensional rings. This manuscript is struc-
tured in the following sequence. In Sec. II we give the
derivation of the density-of-states correlation function,
which provides the interpolation between the perturba-
tive regime and the regime with the pronounced level
repulsion. The relation to the problem of the "analytic
bootstrap" of the density of states' in the theory of quan-
tum chaos is discussed. We also derive a very general
transformation establishing the link between the
responses of a narrow ring and a disk of the same cir-
cumference. In Sec. III we review the results derived
with the help of the standard Green's-function perturba-
tion technique and make several clarifications to I. In
Sec. IV we derive the formula for the orbital response in
the nonperturbative regime and plot out its magnetic-
field dependence for a range of relevant temperatures as
well as the limiting dependence at near-zero tempera-
tures. We also obtain the analytical result for the zero-
temperature linear response. Finally, in Sec. V we dis-
cuss our results and future problems.

r

X 1 —exp (i g y—)
2n-

(2a)

The correlation function of Eq. (2) is shown in Fig. 1.
For large, y, it approaches the perturbative result. For
small y, it approaches the results of Ref. 16:

to —ice+6 for convergence purposes; at the end of the
calculation 5 is set to zero. For finite broadening, the
substitution —i co+y should be maintained throughout
the calculation. For simplicity, we first illustrate the out-
come of this procedure for the unitary ensemble. The
perturbative result is just a half of the result given by Eq.
(1). The complete expression is as follows:

S2 1

( g+ )&

II. CORRELATION FUNCTION
OF THE DENSITY OF STATES

In this section we will derive the correlation function
of the density of states in the nonperturbative regime
where the level repulsion is strongly manifested. The ex-
pression for the correlation function E ( „EzE)
=(v(Et)v(E2)) —(v(E, ))(v(ez)) in the perturbative re-
gime was obtained in Ref. 18 as

$2
K „,(e„e2)= Re[ —i(e, —Ez)+y]m'V'

+2~2
Re[ i(c,—Ez)+—y],

where V is the sample volume, 5=[voV] ' is the mean
interlevel separation, vo is the mean density of states, y is
the inelastic level broadening, and angular brackets
denote averaging over the impurity configurations. Only
the zero-mode contribution is represented here which is
sufficient in the temperature regime of interest to us (see
I).
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The validity of the perturbative approach in this
derivation is defined by the condition that y )&5, which
implies that the single-electron levels are smeared out
into bands. In this circumstance, it is clear that the level
repulsion will only be observed at the energy scales of
~g~

=
~ e, —e2~ ~ y and will be relatively small. On the oth-

er hand, it was demonstrated in Ref. 16 that in the ab-
sence of level broadening the repulsion is very strong on
the energy scales

~ g ~

~ h. A simple modification of the
technique of Ref. 16 allows us to obtain the result applic-
able to both regimes. Indeed, even for zero level
broadening the term containing —iso in the action of the
supersymmetric nonlinear o- model' has to be modified

t"

o.s
I
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FIG. 1. Correlation function of the density of states in the
unitary case [see Eq. (2a)] for y= 1 (heavy line), y= ~ (normal

line), y= —,'6 (dotted line), and y=0 (dashed line), respectively.
The inset magnifies the onset of oscillations with the decrease of
level broadening characteristic of the discrete spectrum.
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K„„;,(g')= .
—,'K„„(g), y»b, ,

z sin (mg/b, )

(n g/b, )

(2b)

Notice that the limits y ~0 and $~0 do not commute so
that for y ~ b, only the scales ~g~

)y are relevant.
The problem of matching the perturbative and nonper-

turbative regimes has been extensively discussed in the
problem of quantum chaos. There the Fourier transform
of Eq. (1), K (~), can be obtained by using the quasiclassi-
cal sum rule of Hannay —Ozorio de Almeida. The latter
is based on Gutzwiller's representation of the level densi-
ty in terms of the sum over periodic orbits' and the can-
cellation between the exponential smallness of the ampli-
tudes of such orbits and their exponentially large number
for a classically chaotic ergodic system. The energy
averaging utilized in that approach eliminates the phase
incoherence, just as in the disorder averaging for mesos-
copic phenomena. Unfortunately, the diagonal approxi-
mation, whereby the interference between periodic paths

I

is excluded, ' extends the similarity to the inability of
reproducing the discreteness of the level structure as well.
In fact, the correlation function of the level density ob-
tained in the diagonal approximation coincides with the
perturbative result for disordered metals given above.
The "analytical bootstrap" is an identity' which relates
the level density correlation function (as well as the
higher cumulants) to the mean level density. To satisfy
this identity the correlation function is forced to have the
correct asymptotic behavior leading to the form of K(~)
predicted by the random matrix theory. ' The generali-
zation of the expressions found from the random matrix
theory to finite level broadening, followed by the Fourier
transform, is a convenient way of deriving K(c.„sz).
Below we illustrate this procedure for the orthogonal
case.

The proposed generalization is easily achieved via the
multiplication of K(r) by exp( —2myr). Indeed, the
Fourier transform of Eq. (1) is just
K(~)=2~exp( 2~yr—) Using . now the complete expres-
sion' for K(r) for the orthogonal circumstance and
hereafter setting 6= 1, we obtain the following formula:

1(~(~'

7+7[1—ln(2r+1)], 0 r~ 1
K,„,h(~}= exp( —2nyr}

1 — 1
2~+1
2v —I

(3)

where the terms in front of the square brackets are the contributions that survive the breaking of time-reversal symme-
try and give the answer for the unitary case —the diA'uson contribution in the language of the perturbative expansion.
Taking the Fourier transform we obtain

k(g) R E [ (
.(+ )]

d 2isinh[n( ig+y—)]
dg i g+y—

where K„„;,(g) is given by Eq. (2a) and E, is the exponen-
tial integral. Again, in the language of perturbation
theory k(g) corresponds to the Cooperon contribution.
It is easy to verify that

—,'K„„(g), y»1,
k(g)=

dX

sinx si(x), y=0 .
X

(4b)

III. ORBITAI. RESPONSE IN THE
PERTURBATIVE REGIME

The generalization of Eq. (4a} to the presence of magnetic
field is accomplished by the substitution y~y+~H,
where rH'~H (see Sec. III), in the expression for k(g)
in Eq. (4a). Clearly, k (g) —+0 for a sufficiently large field,
rH')) I, leading to K (g)~K„„;,(g).

the system is given by

5F(P)= —,'b, ( [5N($)]'),
where P is the magnetic flux through the sample. ' As in
I, we shall assume the two-dimensional samples since the
generalization to three dimensions is trivial. Thus,
vo=ms/2m (fi= 1 ), and V=La for the ring and
V=L /4' for the disk. Here L is the circumference, a is
the width of the ring, and s is the spin degeneracy. The
dependence of the correlation function of the density of
states on the Aux is crucial for the derivation of the
response since

([5N(P)]') =f f ds, ds,K(s„s,;P)f (s, )f(c,,),
where f (s) is the Fermi distribution function. In I we
found that it is given by

According to the results of Ref. 15, which we also used
in I, the correction to the free energy which needs to be
evaluated to account for the fixed number of particles in

2

K(s&, e&, P)= »«[ —i(s& —s&)+y+~H ]
2m V

for the disk, while for the ring it is given by '
(7a)
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2 Qo

I{.(e„e2,{{i)= g Re[ —i (s, —E2)+y+ir E, (n +2//Po) j2~'V'„= (7b)

Here {{le=2ir/e is the flux quantum (c = 1),
rH'=2' E,(P/Po), E, =D/L, and D is the diffusion
coefFicient. Since the correlation function decreases with
the Aux, the orbital response under consideration should
have the paramagnetic sign.

In I we derived an expression for the magnetic moment
of the disk using the perturbative approximation of Eq.
(7a) in terms of an integral which is evaluated numerical-
ly (exactly for the zero-field response). We also derived
the formula for the ring based on Eq. (7b). However, in
the latter evaluation the Matsubara sum was approximat-
ed by an integral yielding a zero-field susceptibility m /6

I

smaller than the exact result (a factor of 2 was also er-
roneously omitted). A numerical Matsubara suinmation
for several values of the parameter g =(2m. T/E, )' (as in
I it assumed that 2mT)). y in a metal) results in the
dependence of the ring moment on the Aux shown in Fig.
2(a). Figure 2(b) depicts the magnetic moment of the disk
in the same Aux range. The moments are shown scaled
by the respective inverse conductances, meaning that for
the weak disorder the orbital moment of the ring should
be larger than the moment of the disk of equal circumfer-
ence. Notice that the zero-field susceptibility of the ring
is twice that of the disk. Aside from a direct calculation,

Moment (ring)

-0.2 0.

-2.
Flux

-0.1 -0.05

FICr. 2. {Negative) magnetic moment from the perturbative calculation of the (a) ring and {b) disk for /= 1 (dashed line), /=0. 5
(dash-dotted line), and /=0. 25 (normal line), respectively.
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this can be easily seen also from the following general expression which should apply to all quantum coherent contribu-
tions to the orbital magnetic moment:

M„.„s(P)= g exp in dPMd, ,k(P)exp —in
4np ~ . 4~/

(8)
lJ = oo 0 co 0

with the substitution E,~2E, in the right-hand side
[compare Eq. (7b) for n =0 with Eq. (7a)]. Equation (8) is
consistent with the factor of 2 difFerence in the zero-field
susceptibility of the disk and of the ring. It also points to
the position of the maximum being &2 closer to the ori-
gin for the ring than for the disk.

IV. QRBITAI. RESPONSE IN THE
NGNPKRTURBATIVK REGIME

%e now turn to the evaluation of the orbital response
in the nonperturbative regime In v.iew of the relation (8),

it is sufFicient to consider only the response of a disk. Us-
ing the results of Sec. II, we arrive at the following for-
mula for 5F(P) in Eq. (5):

5I'(P)=nb, T g co E,«„(i(co~+~H')),

where E,«h(g) is given by Eq. (4a). Neglecting y as be-
fore, we find the following expression —immediately suit-
able for a numerical evaluation —for the magnetic mo-
ment of the disk:

Mo

(b)

-0.

Moment (disk

-0.1 -0.05
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M
5 2

Pa

2 o
( 2~2g2 )2

E
X =&

X pm E(x)d d
dx GX

2
24o

mg +2'
(10)

In this equation we maintained the units of the moment
used in I (aside from the factor 2/s omitted there) and ex-
plicitly exposed 6=1. The numerical evaluation of the
sum in Eq. (10) leads to the magnetic moments depicted
in Fig. 3 for g = 1 and E, /b, = 10 and E, /b, = 100, respec-

tively. The perturbative result obtained in I is also plot-
ted for comparison. Clearly, at this temperature the or-
bital response is almost entirely insensitive to the inter-
level spacing. Notice that the saturation to the perturba-
tive result for the fields ~H')) T (the downturn of the
curve past the maximum, see I for details) improves with
the number of terms in the sum, in this calculation we
used 200 terms. In Fig. 4 the magnetic-field dependence
of the moment is shown for E, /b, = 10 for g= 1, 0.5, 0.25,
and 0.125, respectively. Saturation to the asymptotic
dependence clearly takes place as the temperature be-
comes comparable to the interlevel spacing h. A better
approximation to the asymptotic curve is shown in Fig. 5
for /=0. 025 using 3200 Matsubara terms.

The linear (zero-field) response can be evaluated exact-
ly, yielding

Moment (disk)

-0.5 -0.

lux

Moment (disk)

1.3

-0.1 -0.075 -0.05 -0.025 0

Flux

FIG. 3. {Negative) magnetic moment of the disk for /= 1 from the perturbative calculation (normal line), and from the truncation
of the Matsubara sum in the exact expression [see Eq. (10) in text] for E, /b, = 10 (dashed line) and E, /6 = 100 {dash-dotted line), re-
spectively.



ORBITAL MAGNETISM OF MESOSCOPIC METALS: 6405

point from the perturbative to the nonperturbative re-
gime. The latter should be compared with the sample-
specific (mesoscopic) fluctuation of the moment found in

I,

for the free energy and the magnetic moment respective-
ly. The former should be compared to the perturbative
result,

2s
2 12T" '

which sets the condition 2m Tjb, = 1.7 as the transition

M s (1—ln2)

&31n(E, /5 )
(12)

The rms Auctuation 5M was evaluated in the perturbative
approximation and can be generalized using the results of
this work. However, due to the weak logarithmic depen-
dence it is clear that the prediction of Eq. (12) that it
should be roughly an order of magnitude larger than the

Moment (disk)

-Q.4 -Q.

Flux

-2 .

FIG. 4. (Negative) magnetic moment from the truncation of the Matsubara sum in the exact expression for E, /b =10, for g'=1
(dash-dotted line), /=0. 5 (long-dashed line), /=0. 25 (short-dashed line), and /=0. 125 (normal line), respectively. The larger devia-

tion from the saturation curve for /=0. 125 (the lowest temperature) on the downturn is due to the relatively small number of Matsu-

bara terms (200) used in this calculation. In general, for lower temperature more terms are required to approach the saturation curve

for ~H' &)b.
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The diamagnetic contribution should be a smooth func-
tion. Conversely, the Van Vleck contribution should be
greatly sensitive to the level arrangement and hence
should exhibit large Auctuations. This can be appreciated
easily from the expression for the zero-field Van Vleck
susceptibility,

UX p,,' 1&kin, lo&l
Xvv ~ g E E r

I ~0

FIG. 5. Approximation of the saturation dependence ob-
tained for /=0. 025 near the origin with the use of 3200 Matsu-
bara terms.

average value will remain unscathed. This is in agree-
ment with the simulations of Ref. 20.

V. DISCUSSION

The central result of this work is the generalization of
the correlation function of density of states to finite level
broadening which provides the correct limits of the per-
turbation theory for large broadening and of the random
matrix theory for small broadening. The correct account
of level correlations at low temperatures, when the tem-
perature and inelastic level broadening are less than the
average interlevel spacing, has been made and the orbital
response has been shown at near-zero temperature to ap-
proach an asymptotic dependence as a function of mag-
netic field.

The paramagnetic sign of the average response
deserves a special notice. The prediction of the paramag-
netic response ' for all even harmonics of clean one-
dimensional rings emerges as a consequence of the dis-
tinctive structure of the free electron spectrum in a one-
dimensional periodic potential. Its presence in weakly
disordered narrow multichannel rings could be possibly
a "leftover" of one dimensionality. On the other hand,
the paramagnetic response has been predicted on the
basis of numerical simulations of the Anderson model in
wide disordered rings as well, including the universality
across several regimes with various degrees of disorder.
This extends to the regime with Wigner-Dyson spectral
rigidity. At this time we do not fully understand this re-
sult.

Moreover, the average paramagnetic response has also
been predicted for the systems with Poisson statistics
which allow level "bunching" on the basis of numerical
simulations" on a rectangle. We would like to approach
this issue in terms of the competition between the preces-
sion diamagnetic and the Van Vleck paramagnetic contri-
butions to the total response' which was exploited both
in I for disordered systems and in Ref. 11. Whereas the
precession contribution is always diamagnetic and is due
to the "shrinkage" of orbits in the magnetic field, the Van
Vleck response is always paramagnetic due to its origin
as the second-order term in the perturbation expansion.

where Eo is the ground-state energy of the system and X,
is the projection of the total moment. This can be rewrit-
ten in terms of the single-level energies and it is clear that
when the first unoccupied level is close to the Fermi level
there should be a surge of the paramagnetic response.
Notice, however, that in a disordered metal (classically
chaotic system) the repulsive energy spectrum does not
favor such a circumstance. The rectangle, on the other
hand, is an integrable system whose spectrum is described
by the Poisson statistics' wherein the levels are com-
pletely uncorrelated so that the narrow gaps at the Fermi
level are as likely as the wide gaps. Consequently, the
tendency towards paramagnetism should be significant1y
larger for integrable systems.

It should be emphasized that the averaging for the rec-
tangle was performed over the number of electrons or, al-
ternatively, the position of the Fermi level. In the disor-
dered circumstance it is the disorder averaging. Howev-
er, if the ergodic hypothesis is valid, the results obtained
here should be applicable to averaging over the position
of the Fermi level as well. Then, the interpretation of the
results of the simulations on the rectangle is unclear for
disordered systems. Vice versa is also true since the eA'ect

considered here is closely tied to the repulsive level statis-
tics, while there are no level correlations in the rectangle
up to very large' energy scales. This problem will be an-
alyzed in a future work.

Another issue relegated to future analysis is the formu-
lation of the "analytical bootstrap" in quantum chaos in
terms of the supersymmetric nonlinear o. model and the
first principle derivation of the relation between the even
cumulants of the level density and the mean level density.
It is also of interest to understand the connection between
the breakdown of the diagonal approximation and the
strong level repulsion at the smallest energy scales. Fi-
nally, the relative strength of the I.angevin and Van
Vleck contributions remains unresolved. In the case of
systems with the Wigner-Dyson spectrum it might be
possible to use an ansatz for the wave functions used in
nuclear physics. It is also intriguing to find out whether
their relative strength is actually independent of the level
statistics.

Note added. After the completion of this work, we re-
ceived a manuscript by Altland, Iida, Muller-Groeling,
and Weidenmuller who found the dependence of the per-
sistent current of a ring at zero temperature as a function
of the magnetic field. The position of the maximum in
their plot appears to be in agreement with our result.
However, the magnitude of the maximal persistent
current is roughly 4 times smaller than our estimate.
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