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Transition from laminar to vortical current Sow in electron waveguides with circular bends
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We have analyzed the spatial flow pattern in two-dimensional ballistic electron waveguides with circu-
lar bends. For a double bend the conductance may still be perfectly quantized in spite of the strong mix-

ing of modes. In narrow energy regions just below the subband thresholds there is strong interference
between localized and propagating solutions, causing an interference blockade. Within these regions the
current flow becomes vortical. Minor changes in, e.g. , energy cause drastic changes in the flow pattern.

I. INTRODUCTION

Currently there is much interest in the electron move-
ment in ultrasmall structures such as dots, rings, wires,
and other narrow constrictions. Structures of this kind
may be achieved in modulation-doped semiconductor
heterojunctions, e.g. , GaAs-Al Ga, As, in which the
electrons are initially confined at the interface in the form
of a two-dimensional (2D) electron gas. Precision lithog-
raphy is used to tailor the 2D gas into the desired pat-
tern. This makes it possible to investigate electron trans-
port in the ballistic regime where the mean free path of
the electrons exceeds the size of the device. If the Fermi
wavelength A,F is comparable to the dimensions of the
very small structure quantization effects become impor-
tant. Recent reviews of this very active and rapidly in-
creasing field are found in Refs. 1 and 2.

Here we will consider narrow conducting channels or
wires having bends. If kF is comparable to the width
transverse motion will play an important role and it is ap-
propriate to view the wire as an electron waveguide with
distinct modes or subbands. In a very narrow waveguide
only a few of these modes would be occupied. In a real
device the modal occupancy may be altered by applying
different gate and/or substrate voltages or by means of
magnetic depopulation. Another important feature due
to the wave nature of the electrons is that bends in a
waveguide, in general, give rise to bound states or evanes-
cent waves. For applications it is of interest to under-
stand various aspects of electron transport in narrow
wires. They may, for example, be integrated into
waveguide circuits and serve as fast transmission leads in
ultrasmall, close-packed devices. One must then have a
good general understanding of the influence of bends. As
we wish to show below bends also give rise to physical
phenomena which are interesting from a more fundamen-
tal point of view. We will then assume that there is no
scattering from impurities and that interaction effects are
less effective. In this sense the transport is ballistic.

In recent years there has been a number of explicit cal-
culations as well as more formal proofs showing that
a system consisting of an infinite quantum wire with a
single circular bend has a square-integrable bound state
below the lowest subband threshold. Such an elementary
structure is thus able to to trap a particle. In addition

there are anomalies associated with higher subband
thresholds. Instead of perfectly bound states one then
finds quasibound states or evanescent waves in a very nar-
row energy window just below the mode propagation
thresholds. These states interfere destructively with the
normal, propagating modes. As a result the transport in
a particular mode becomes entirely blocked in a narrow
range of energies, i.e., there is an interference blockade.
This is similar to the scattering in a quantum wire with,
e.g. , a weak attractive scatter or a local widening, '

which also gives rise to sharp dips in the conductance.
Another nontrivial theoretical result for the infinite wire
with a circular bend is that the conductance G can be
quantized to a very high precision in the regions of ener-

gy in between the quasibound states, i.e., G=2e N/h
where N is the modal occupancy. The quantization
occurs in spite of the very strong mode mixing that sets
in as the Fermi energy EF is increased above the first sub-
threshold state. ' '

The properties of an electron waveguide with circular
bends is also remarkable from the following point of
view. As we will show here the current flow is laminar in
regions of energy in which the conductance is well quan-
tized. However, at the subthreshold energies at which an
interference blockade occurs the current swiftly becomes
vortical with quite a complex texture. This would imply
that if E~ is gradually increased a current flow that is ini-
tially laminar would turn into a vortical one as soon as
EF comes into the very vicinity of a quasibound state, but
on further increase of EF the laminar flow would be re-
stored until the next quasibound state is reached and so
on. In this respect a quantum wire with bends stands out
as a unique model system. In spite of its elementary
features this system thus displays an intriguing physics of
principle interest.

At a first glance the transition from laminar to vortical
flow is reminiscent of the behavior of classical fluids and
gases. However, hydrodynamic vortices in such media
occur because of forces between particles or volume ele-
ments. Hence the formation of vortices in our one-
electron waveguide system appears to have no hydro-
dynamics analogue as the phenomenon is entirely due to
wave-mechanical interference. Classical waveguides
therefore appear to be more natural analogues, in partic-
ular, two-dimensional planar waveguide circuits. "
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Scattering parameters for various planar structures
designed for filtering' purposes indeed display strong
dips reminding of the interference blockade in the bent
electron waveguide discussed above. In general, howev-
er, it appears that little attention is given to the corre-
sponding spatial distributions of currents, etc., in classi-
cal waveguide structures. In fact, the quantum-
mechanical case has also received relatively little atten-
tion which may seem a bit surprising in view of the
tremendous interest in recent years in ballistic transport
in quantum wires, lateral superlattices, rings, etc.' Some
work has, however, started to appear in the literature.
Thus the transmission through a quantum box or resona-
tor has been shown to give rise to vortex excitations relat-
ed to resonances. ' ' Current distributions around elas-
tic scatterers and arrays of dots and antidots have also
been calculated, without' ' and with a perpendicular
magnetic field. ' ' Although a different type of system
one may also mention the curly, turbulent-looking eddy
quantum current that has been obtained in model calcu-
lations of the tunnel current in a scanning tunneling mi-
croscope. '

II. ELECTRON STATES AND TRANSPORT
IN AN IDEAL WIRE WITH CIRCULAR BENDS

To calculate the one-electron states and current Aow in
an ideal quantum wire with two circular bends with ra-
dius R we assume a simple model similar to that of Refs.
3-6. We start by letting the wire be infinitely long, i.e.,
we do not bother with the details of how electrons are in-
jected into the wire or emitted from it. This case has re-
cently been treated also in Ref. 23, but with a different
focus. Thus the electrons are confined by a hard-wall po-
tential to the wire of constant width d (see Fig. 1).
Within the wire the 20 Hamiltonian for the single elec-
tron of effective mass m * is written as
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FIG. 2. Zero-temperature conductance 6 in units of (2e /h)
(total transmitance) in a waveguide with two 90' circular bends
(O&=0 and 02=a/2). The width is d =100 nm and the inner
radius R =10 nm. The length of Sec. III is 2 nm. Eight modes
are included in the calculation of G.

(b, +k )%(x,y)=0,
where k =2m*E/A . Because of the hard walls the
wave function 4 must vanish at the boundaries. The
solutions in the straight secs. I, III, and V are elementary.
For an electron injected from the left into the nth mode
one has

%1„(xy)=e " sin (y +R)

+ g r„e sin (y+R)
m

(2)

where the coefficients r„give the probability amplitudes
for reAection. If E&E, where E is the transverse
threshold energy E =Pi (mrrld) /2m*, the momentum
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FIG. 1. Schematic of the waveguide having two circular
bends with the same bending angle (0&+02). The constant
width is d and the inner radius is R. Electrons are assumed to
be injected into the subband from the far left. Sections I-V are
used in the expansion of the wave functions.

FIG. 3. Wave-function coefficients r» and r» vs energy at
the first interference blockade just below the second subband
threshold (seen as the small edge on the high-energy side of
~r„~'l. An incident electron in the lowest mode n =1 may be
completely backscattered, i.e., ~r» ~

~1. The weight of the ex-
ponential component, ~r»~', is by far the dominant one, i.e.,
there is an "almost bound" or "quasibound" state.
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of the corresponding propagating mode is q= t2m*(E E—)I
' lfi. In the other case with E (E

the backscattered mode turns into the exponential solu-
tion exp(~q ~x), which decays in the correct way as
x~ —oo. The solution in region III is similar to Eq. (3)
but the expansion of 4'»i „must contain all modes propa-
gating forwards and backwards as well as both exponen-
tially damped and increasing states. In region V only
outgoing propagating modes are retained, i.e.,

where t „gives the transmission probability; y refers to
a symmetrically shifted coordinate system. For E (E
the outgoing wave turns into the decaying state
exp( —

~q ~x).
Now consider the circular bend defining region II. Us-

ing polar coordinates r=(r, 8) one may construct a wave
function that is qualitatively very similar to the wave
functions above, i.e.,

Wv„(x,y')= g t„e™xsin (y'+R ) (3) 'kn „=g(a„e ' +b„je ' )@ (r),
J
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FIG. 4. Spatial probability distribution of the velocity v ~ corresponding to Fig. 2. Case (a) shows the laminar flow in the first sub-
band for the energy EF=1.5 meV and a precisely quantized conduction. Larger arrows mean higher velocities. Case (b) shows the
formation of vortices at the first conduction dip just below the second subband threshold. EF is immediately to the left of the con-
ductance minimum and G =0.2(2e /h). In case (c) EF is immediately to the right of the interference minimum and G =0.8(2e /h).
The minute change in energy has induced a swift reversal of the vortices reminiscent of spin flips.
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where the exponentials correspond to the propagating
modes above and P~ (r) to the transverse mode; a„and

J
b„are expansion coe%cients to be determined. Since the
system is azimuthally asymmetric and the circular bends
are connected to external leads the p. need not be in-
tegers. In fact, p will be either real or purely imaginary
implying propagating or exponentially damped/
increasing states, respectively.

To solve for @ (r) and p we expand the solution in
J

the basis set yI(r) = sin[la /d(r —R ) ]/&r with
l =1,2, . . . . With expansion coefficients ai(pj ). We chose
this basis because it appears naturally when the problem
of a circular bend is approximately mapped onto a one-
dimensional quantum well having bound states. Insert-
ing the expansion in the Schrodinger equation, multiply-
ing by y (r) and integrating from R to (R +d ) one has

[k —(lm. /d) ](m ~r l ) —(p —
—,')—5, a, (p. )

1

v(x, y) ~ g (%„*v, 4/q„)eV8(EF E„), —(6)

where v, is the velocity operator and O(E) a step func-
tion. The summation is over all incoming occupied
modes n. The conductance G is obtained by integrating
Eq. (6) over the transverse coordinate at the far end of
the wire, i.e., there is the usual result

G=(2e /h) g [Re(q )/q„]~t „~ O(E+ E„) . (7)—
n, m

To conclude the formal outline we recall that a bound
state wave function is obtained by omitting the incoming
wave in Eq. (2). If there is a bound state, its binding ener-

gy is determined by the condition that the corresponding
homogeneous set of linear equations for the expansion
coefficients has nontrivial solutions. Such a condition is
used below.

III. NUMERICAL RESULTS

=0,
where (m ~r ~l ) = Jdr r sin[me/d(r R—)] sin[le/
d (r —R ) ]. The symmetric eigenvalue problem yields
positive and negative real values for p . A simple coordi-
nate transformation gives the solutions appropriate to the
second bend.

Expansion parameters r „, t „, etc. , are obtained by
matching wave-function amplitudes and derivatives at
the various boundaries. The matching results in an inho-
mogeneous set of linear equations which is solved numer-
ically. To determine the spatial probability distribution
of velocties v(x, y) from these solutions, we assume that
electrons are injected far from the left within a small
range of energies (EF eV, EF ), wh—ere e V is the drop in
potential energy. Then

=0.067m p which is appropriate to GaAs-Al„Ga
&

As.
We have also assumed that the temperature is zero. As
for a single bend ' the conductance is quantized to a
high degree of accuracy in spite of very strong intermode
scattering. Hence the situation is reminiscent of the re-
cent modeling of Castano and Kirzenow of the nonadia-
batic, quantized transport in a smooth ballistic constric-
tion. Adiabacity is not required for quantized conduc-
tance. Figure 2 also shows that the narrow conduction
dips due to the quasibound states occurring just below
the subband thresholds. For example, in the lowest mode

~ r» ~
and

~

r i2 ~
behave like very sharply peaked

Lorentzians centered at the conduction minimum as
shown in Fig. 3. The width of the Lorentzians and the
dip is of the same order. At the interference blockade the
backscattering becomes complete, i.e., ~r&i~ ~l. The
weight of the exponential component, ~r, z ~, is by far the
dominant one, i.e., the state is "almost bound" or "quasi-
bound. " Below the first subband threshold this kind of
state turns into very shallow, but truly bound state.
The binding energy increases with increasing bending an-
gle. In general, one expects a pairwise splitting of both
the bound and quasibound states in a double bend, but
for more shallow states, as in Fig. 2, the upper ones are
pushed into the adjacent subband continua. The effect of
finite leads is similar. In fact, both dips in G associated
with quasibound states and tunneling resonances for
bound states may fade away for shorter leads. The exten-
sion of the middle Sec. III in Fig. 1 also affects the con-
ductance. For very long intersections the splitting of the
states becomes less pronounced. In addition there will be
weak oscillations superimposed on the plateaus in 6 re-
lated to standing waves in the middle section.
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A. Conductance

Figure 2 shows the conductance in a waveguide with
two 90 bends and with a short intermediate section. In
all calculations we have set the effective mass m *

FIG. 5. Same as Fig. 3 but for EF immediately to the left of
the second conduction dip [6=1.4(2e'/h)]. Flow directions
reverse in the same drastic way as in Fig. 4 as we move slightly
to the right of the conduction minimum.
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B. Spatial distributions of velocities

Figures 4(a) —4(c) and 5 constitute the real core of this
paper. The message is quite striking and there is little
need for additional comments. In case (a) the conduction
is well quantized and the Aow is perfectly laminar. In the
very narrow energy window, where the interference
blockade sets in, the initially laminar Aow suddenly turns
into violent vortices susceptible to drastic changes on
minute changes of, e.g. , the Fermi energy EF. Cases (b)
and (c) show how a clockwise flow suddenly reverses into
anticlockwise motion and vice versa. Well into the
second subband laminar Aow is restored until the second
interference dip is reached on further increase of EF.
Then vortical Aow with an even richer pattern sets in as
shown in Fig. 5. This picture is repeated periodically as
we proceed to higher subbands.

In summary we have shown that an elementary one-
electron model for an elementary electron waveguide

having circular bends predicts regions of laminar and
vortical Aow and rapid transitions between them. Trans-
port anomalies associated with quantum interference are
certainly well known, but little attention has been given
to the complexity of the corresponding spatial fiow pat-
terns. Thus it is amazing and inspiring that a modeling
as basic as the present one can still yield intriguing phys-
ics which is even of considerable aesthetic value. Al-
though it appears that an experimental verification would
be hard to achieve the results are of principal interest
with bearings on quantum chaos and related phenomena.
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