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Interplay of Coulomb attraction and spatial confinement
in the optical susceptibility of quantum wires
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Arrays of quantum-well wires are described within the envelope-function formalism. Starting from a
generalization of the well-known Elliott formula, the optical susceptibility can be related to solutions of
an e6'ective two-particle Schrodinger equation including both Coulomb interaction and the modulation
of the band edges due to the wire array structure. For frequencies near the absorption edge the imagi-

nary part of the susceptibility is numerically calculated. The inhuence of thickness fluctuations on the
spectra is discussed, too. Numerical calculations are compared with luminescence spectra of arrays
fabricated by laser-induced thermal interdiffusion.

The spectroscopy of optical interband transitions
across the band gap is a powerful method for studying
the electronic structure, the mutual interaction of excited
electrons (e) and holes (h), and the coupling of these car-
riers with other elementary excitations in semiconductors
and semiconductor microstructures. Very interesting
systems in this respect are quantum-well wires and
quantum-well-wire (QWW) arrays. In such quasi-one-
dimensional (1D) structures made by epitaxial growth of
III-V semiconductor layers and nanostructuring tech-
niques, quantum confinement in two dimensions is real-
ized.

Some effects attributed to quantum confinement and
anisotropy of the wire systems have already been ob-
served in photoluminescence and photoluminescence ex-
citation spectra. ' Most of the QWW structures studied
by optical methods have been prepared by starting from
GaAs-Al Ga j As layered systems and employing
modern lithographic techniques; however, they are com-
monly combined with etching techniques, which produce
rough surfaces of the wire structures resulting in peaks
that are broader than those of the corresponding 2D sys-
tem. Very recently, more perfect QWW structures have
been manufactured via Al-Ga interdiffusion due to local
heating by means of a focused laser beam. The quality
of these samples is characterized by excitonic lumines-
cence lines that are smaller, as in the 2D case.

In the optical-absorption and luminescence spectra, ex-
citonic effects play an important role, particularly in the
low-dimensional QWW systems. However, in contrast to
the exact 3D or 2D case, to our knowledge no unified pic-
ture of the Coulomb effects in these spectra has been
presented. Binding energies of the excitons have been cal-
culated' '" and Sommerfeld factors of exact 1D systems
with modified Coulomb potentials have been studied. '

The optical function of a parabolic wire is calculated in
the limit of vanishing coupling of wire subbands. '

In the present paper, we develop a complete theory for
optical-absorption and luminescence spectra of a
quantum-well-wire array, including the Coulomb attrac-
tion of an electron and hole excited by a photon for fre-

quencies near the absorption edge. The two-particle
equation is solved numerically for energies and
confinements characterizing the experimental situation.
Hence, the presented theory is valid for all wire
thicknesses and wire arrangements. The theoretical re-
sults are compared with experimental data.

The optical properties of the system are characterized
by the space-dependent linear optical susceptibility. For
frequencies near the absorption edge, it can be obtained
using a density-matrix formalism such as

@ (x,x)N'(x', x')
y(x, x'; co) =—

~)M ~'g

It is directly related to electron-hole-pair wave functions
@ (x„xt, ) and energies E, with a as the complete set of
quantum numbers for the two-particle problem. eo
denotes the vacuum dielectric constant and I indicates
the damping of the electron-hole pairs. Obviously, Eq.
(1) represents a generalization of the well-known Elliott
formula. ' The nonlocal linear optical susceptibility (1) is
not directly observed in absorption and luminescence
measurements but in an effective measurement that can
be obtained from (1) by a twofold integration running
over x, x'. Physically such a procedure means an averag-
ing over the incoming and outgoing fields.

In the framework of the effective-mass approximation
and masses m, (trtt, ) of electrons (holes), the two-particle
wave functions obey a Schrodinger equation of the form

1 1V„. V„+V, (x, ) — V„V„+V„(x„)
2 "e m, "e ' 2 "I

m&

e2
(x„x„)=Z.e.(x„x„)

4m' e~x, —x

where electrons and holes interact by a Coulomb poten-
tial screened by a relative static dielectric constant e of
the underlying semiconductor material forming the wires.
The complications in the screening due to the realistic
spatial structure of the system' are avoided, assuming
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that the dielectric constants of wire and barrier materials
are not so very different as in the case of GaAs and
Al„Ga, As.

Equation (2) in general represents a six-dimensional
Schrodinger equation that holds for arbitrary
confinement in the systems within the envelope-function
approximation. We suppose that the quantization of the
underlying quantum-well (QW) structure in the z direc-
tion is much stronger than the wire quantization in the y
direction, and that the confinement potentials V;(x;)
(i =e, h) can be separated with respect to the correspond-
ing coordinates. In this limit the quantization energies
due to the underlying well are large enough so that the
corresponding peaks in the optical spectrum are well
separated. We can focus our attention on frequencies
around the first heavy-hole exciton peak. Practically
only the first well subband is taken into account. The z
dependences in the susceptibility and in the two-particle
equation can be averaged with respect to the correspond-
ing electron and hole wave functions. Equation (1) re-
duced now to an expression depending only on the
motion in the xy plane:

4&(r, r)@&(r',r')
y(r, r', pi)= —lpl X,g

ep
'

p Ep —h co+il
OO 2

N, = dzy, & zy&& z, r= xy

y„,yi„are the first QW eigenfunctions of the electron
and hole, respectively. They are calculated for a finite
square-well potential. The functions N& now obey a
four-dimensional Schrodinger equation:

f2
b,, + V, (y, ) — b,, + V h(yi, )r ye e 2 rh

—Vc..i(lr, —
ri, l) C'p(r, rh)=Ep@p(r, rh) .

center of mass and coordinates X, Y and relative coordi-
nates x,y, and separating the center-of-mass motion in
the x direction, the Bloch theorem can be applied for the
dependence of the solutions of Eq. (4) on the Y coordi-
nate. The resulting optical susceptibility is then given by

a/2
dYy„( Y,x =O,y =0)

E —e +0 n
E„—A' co+i I

where the wave functions y„have to be determined by
solving the eigenvalue problem:

g2 d2 $2

2M dY2 2m
~.+ Vy. (y. ) V,i (y~ ) V—.c.i(r)

Xy„(Y,x,y) =E„qr„(Y,x,y), (7)

with coordinates and masses Y =m, y, +m&y& /M,
r=r, —rI„M =m, +m&, and m =m, m&/M.

The remaining Schrodinger equation (7), depending on
the three coordinates Y, x, and y, has been solved numeri-
cally by application of a Rayleigh-Ritz-Galerkin
method. ' In further considerations all quantities are ex-
pressed in excitonic units of the bulk material, Rydberg
energy Ez, and Bohr radius a~, respectively. For GaAs
it holds at about Ez =4 meV, a~ =10 nm. In these units,
we choose AE, = 12E~,AE, =8E~ for the band discon-
tinuities between GaAs and Ga065A1035As. ' In a cer-
tain region, the interdiffusion is assumed to be complete,
and rapidly decreasing beyond it. In the case of
interdiffused wire systems, we assume the following form
for the confinement potentials:

Vye/h(y)= ,' g" ~,/. I:f(—y—)

c&(y)+c2(y)f(y)= I+e, (y)c2(y)
'

V~, (y, ), V~i, (yi, ) represent the wire confinement poten-
tials. The averaged 2D Coulomb potential is given by

e lv' i(z )l lv'hi(zi )l
Vc „&(r)= dz, dzi,4IrepEmco 'Qr 2+ (z z )2 Cl/2(y) =

exp

—+y
a
2

1 for —+y (k
2

for —+y ~A, ,
a
2

The well approximation in the first electron and hole sub-
bands also enters the definition of the pair energies E via
the 2D energy gaps. Equation (4) can be simplified fur-
ther by separation of the center-of-mass motion in the x
direction. The remaining partial differential equation
cannot be solved analytically, except in the case of para-
bolic wire potentials and e-h symmetry. This model can
explain some basic features of dielectric and optical prop-
erties of quantum-well wires. ' ' However, in this paper
we will treat more realistic confinement situations by the
numerical solution of Eq. (4).

The samples studied experimentally consist mostly of
arrays of QW's. Large arrays exhibit a 1D translational
symmetry with the lattice constant a; more strictly, it
holds that V; (y,. +a)= V~(y, ) (i =e, h). Introducing the

e 1 /2(y +a ) =e 1 /2 (y»
with the parameters X=7.0a&, p=0. 5az which are able
to describe the experimental conditions in Ref. 8. The
characteristic length 2A, corresponds to the width of the
interdiffusion profil along the laser scan line, i.e., the ex-
tent of the barrier between two wires, whereas (a —2A, )

nearly represents the geometrical width of the wires. The
wire distance a follows the distance between two written
laser lines. AE, &, represents the band discontinuities be-
tween the conduction (valence) band of the Ga, „Al As
material outside and the first electron (hole) subbands of
the QW.

Figure 1 shows the imaginary part of the optical sus-
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ceptibility for a well thickness d =0.25az and constant
different wire distances a. The function f (y) —1, govern-
ing the potential shape (g), is shown in the inset. A
homogeneous linewidth I =0.05a~/A is introduced for a
representation of the results. The zero

'
t ' '

be zero point is given by
t e energy gap Eg of the Cia& Al As barrier material
outside. (a —2A, ) = ac (a) corresponds to the ordinary 2D
situation. With decreasing wire widths (b) —(c), the
inAuence of the center-of-mass quantization is visible and
provokes a series of blueshifted peaks with lower oscilla-
tor strengths. Their distances are increasing with de-
creasing wire width. Since (a —2A, ) )) haz, t e internal
motion of the exciton is hardly influenced by the center-

of-mass motion, and vice versa. Therefore, for the total
wave functions y„( Y,x,y) from Eq. (7), it nearly holds
that Y xth (p„Y, ,y!= ~( Y)qr &(x,y), where m represents the
quantum number of the angular mom tomen um. ince

I x,y = (r ) for r~Q, only the excitons with l =Q,
i.e., the s excitons, contribute to the oscillato t h.r s rengt .

e situation changes if (a —2A. ) approaches aii (d). The
lowest peak in the spectrum is somewhat blueshifted due
to the stronger quantization of the center-of-mass m t'ass mo ion

e y irection. In addition, a fine structure of the
lines split by the quantization of the center-of-mass
motion appears. We are now faced with three effects. i
T e internal motion is essentially influenced by the wire
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potentials. Especially the larger excitons are shifted to-
ward higher energies, since the overlap integrals of their
wave functions with the wire potentials are larger. (ii)
The angular momentum of the internal motion is no
longer conserved, therefore an intermixing of s,p, d, . . .
excitons occurs. The break of the Coulomb degeneracy
leads to additional peaks, since the wave functions now
do not vanish for r =0. (iii) The center-of-mass motion
itself is affected by the internal motion, but this influence
is very small. This explains the fact that the principal
features of the wire confinement can at least qualitatively
be explained by neglecting the coupling between the
center-of-mass and the internal motion. ' If the wire
width is further reduced [Fig. 1(e)j, only the ls excitons
remain in the wire, whereas the larger ones with higher
quantum numbers are displaced energetically outside the
wire. They lose their 1D character. For a~2K, (not
shown here), either the limiting case of a 2D semiconduc-
tor with larger E, or the 3D case with the band gap
E' ', is reached if the interdiffusion is complete. The de-
tailed interpretation of the resulting spectra is complicat-
ed because the fine structure of the lifted Coulomb degen-
eracy in the internal exciton motion belonging to a par-
ticular peak X related to quantization of the center-of-
mass motion occurs at positions shifted to higher ener-
gies. For typical quantization energies of the center-of-
mass motion smaller than the 2D binding energy, it is ob-
served close to peaks with quantum numbers larger than

This behavior is different from that of a narrow QW.
Since in the QW case the 2D binding energy is limited by
an amount of about 4E&, it is possible to carry out a tran-
sition from the "center-of-mass" quantization, where the
total wave function @ is nearly given by

iK X+iK Y
4(x„xl, ) =e " ~ @, (Z)y„,(x), to the "size" quant-

iK„X+iK Yization where @(x„xh ) =e " ' g, (z, )pq (zQ ) Prel(r ).
The latter case is impossible in the QWW with the y
direction, because the 1D binding energy is not limited,
and even for small wire widths the different wire sub-
bands are never decoupled in the Coulomb potential.
Therefore a solution of Eq. (7) in real space is better suit-
ed than an expansion of the Coulomb potential in terms
of single-particle states of the wire potential. In order to
compare with the experimental situation of Ref. 8, one
has to take into account the fluctuation of the well thick-
ness. As discussed above, the lines occurring in the spec-
trum (Fig. 1) cannot be related simply to quantum num-
bers of the center-of-mass and internal motions. Thus the
introduction of phenomenological linewidths is not
manageable. We will treat the rather complicated prob-

lem of a quantum-mechanical system in a stochastic po-
tential by the following simple considerations: In the
QW, the fiuctuations will essentially affect the internal
motion, whereas the wave function of the center-of-mass
motion averages over the whole surface. If the well addi-
tionally is laterally structured and the wire barriers are
nearly perfect, the influence of the well fluctuations tends
to zero for vanishing wire width a. Therefore we average
diff'erent spectra with a Gaussian distribution of the well
thickness entering the 2D Coulomb potential (5) with a
variance depending on the wire width. In Fig. 2, the
influence of the well fluctuations on the optical spectra is
shown. We have chosen do=0. 25az, o.o=0. 1az, and
ao =50a~; the other parameters are the same as in Fig. 1.
As expected, the maxima of peaks for the 2s, 3s, etc. exci-
tons are now higher than in the case of an ideal QW (Fig.
1). This leads to a more pronounced fine structure when
the wire width is on the order of few Bohr radii. As in
the experiment, the inhomogeneous linewidths vary and
reveal the origin of the corresponding peaks: the most
broadened lines arise from 1s excitons with different
center-of-mass eigenstates, whereas the smaller ones can
be related to the 2s and higher excitonic states. A de-
tailed comparison of the resulting spectrum with the ex-
perimental findings is complicated. Nevertheless, the
most important features are observed in both types of
spectra. They are (i) the appearance of nearly equidistant
main peaks belonging to different states of the center-of-
mass motion; and (ii) a fine structure, i.e., a series of small
peaks at higher energies, due to the lifting of the
Coulomb degeneracy in the wire potential. In the mea-
sured luminescence spectra, additional peaks and a cer-
tain background, both related to the real structure of the
wire system, occur.

In the present paper, we have shown that the solution
of the two-particle Schrodinger equation in real space is
an efficient method for calculating the optical spectra of
quantum wires with arbitrary wire potentials. The case
of an array allows one to carry out the transition to the
2D case within the limit of infinitely large wire widths.
Contrary to the quasi-2D case, 1D pure "size" quantiza-
tion is impossible. For very small wire widths the exci-
tons do not adopt quasi-1D character but leave the wire.
The inhomogeneous broadening due to the we11 rough-
ness leads to a stronger emphasis on the higher excitonic
states compared to the ground state.
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