
PHYSICAL REVIEW B VOLUME 47, NUMBER 11 15 MARCH 1993-I

Interacting many-polaron system in degenerate semiconductors
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We present a theoretical study of the coupled electron phonon in a degenerate polar electron gas. The
ground-state energy of the many-polaron gas is determined within a dynamical screening treatment and

several approximations for the dielectric function. The effect of carrier densities on the static screening
correction of the electron-phonon interaction to the polaronic energy and effective mass is investigated
within second-order perturbation theories. Electron self-energies are also evaluated. It is shown that the
polaronic energies have lower values in the dynamical approach as compared with the static one for all

electron densities. Polaron effective masses derived from different perturbative schemes show quantita-

tive different results which are properly interpreted.

I. INTRODUCTION

The polaron is a single-particle excitation which has
been quite useful in describing the physical properties of
an electron in ionic crystals and polar semiconductors. '

In a broad sense, it constitutes a very interesting theoreti-
cal model of a fermion interacting with a scalar boson
field. Earlier work on polarons deals with the interaction
of a single charge carrier (electron or hole) and a cloud of
virtual dispersionless optical phonons, described by the
so-called Frohlich Hamiltonian. ' The original model
has been generalized to include other polarization fields
such as, for instance, the acoustical-phonon and exciton
fields. Recently, much attention has been given to the
polaron problem in low-dimensional systems such as
two-dimensional (2D) and one-dimensional (1D) semicon-
ductor heterostructures and the system of electrons de-
posited over the surface of liquid helium. " Further-
more, most of the polaron studies have essentially been
theoretically done in the one-polaron limit even in sys-
tems with finite electron densities. The one-polaron ap-
proximation is very good in ionic crystals, in which the
original concept was proposed, but doped polar semicon-
ductors must be described by a degenerate many-body
system in which one has to consider the electron-electron
interaction along with the electron-phonon interaction on
an equal footing. Consequently, the study of the many-
polaron interacting system is actually a highly nontrivial
problem. Screening effects are important because, by
weakening the coupling between electrons and phonons,
they change the polaronic self-energy with serious impli-
cations on the polaronic band-gap renormalization. '

Despite the intensive investigation of these effects in 2D
systems, the degeneracy and screening effects are almost
neglected in bulk semiconductors, except in earlier works
of Mahan. ' Recently, the subject has attracted the in-
terest of Das Sarma, Kobayashi, and Lai'" who studied
the inhuence of dynamical screening on scattering prop-

erties of semiconductors.
Our paper presents a theoretical study of the coupled

electron-LO phonon in a degenerate 3D polar electron
gas. From a theoretical point of view, the calculation is
intractable in its full generality and approximations must
be made. Even though a fully dynamical treatment is not
considered here, dynamical screening effect are incor-
porated somewhat by a variational method. It is well
known that the static approximation to the screening is
probably reasonable as long as the plasma frequency is
much larger than the phonon energies. Das Sarma,
Kobayashi, and Lai' have shown that at high values of
the electron densities the results of quasiparticle damping
rates in a dynamically screening approach are quite close
to the static screening results, whereas at low densities, as
one expects, dynamical as well as static results are close
to unscreened results.

Our main interest in this work is in studying the effect
of carrier densities on screening corrections to the pola-
ronic energy and the effective mass. The calculations are
performed by using two different approaches. One is the
straightforward perturbative method of evaluating the
leading-order self-energy diagram with an effective
electron-phonon interaction screened out by the static
dielectric function of the electron gas. The other one is a
variational approach' ' based on an extension of the
Lee-Low-Pines transformation to the many-polaron sys-
tem which leads to an expression of the polaronic energy
in terms of the static structure factor S(k) of the electron
gas. Since S(k) is obtained from the evaluation of the
density-density response function, or its counterpart the
dielectric function, for all frequencies the method can be
considered as a dynamical approach in contrast with the
previous one. However, as in the former case, the
electron-phonon coupling is taken within the lowest-
order perturbation scheme. The dielectric function and
the structure factor of the electron gas, which provide the
screening corrections on the electron-phonon interaction,
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are evaluated in the following approximations of the
many-body theory: the Hartree-Fock approximation
(HFA), the Thomas-Fermi approximation (TFA), the
random-phase approximation (RPA), the Hubbard ap-
proximation (HA), and the more sophisticated Singwi-
Tosi-Land-Sjolander approximation (STLS).' ' It is
surprising that the issue of the screened electron-phonon
interaction, which has a long history, has not been ad-
dressed in detail beyond the RPA. This approximation
has shown, in 3D and more pronounced in 2D, quantita-
tive deficiencies including negative values of the pair-
correlation function at small distances, overestimation of
the correlation energy, and a free value of the screening
length, which is essential in describing screening effects
on the electron-phonon interaction. Our work fills this
gap through a detailed comparison between the results of
the ground-state properties of the polaron gas among
several approximations. It is shown that the polaronic
energies have lower values in the dynamical approach as
compared with the static one for all electron densities.
Polaron effective masses derived from energy expansion
in the so-called "on the mass shell" Rayleigh-Schrodinger
perturbation theory (RSPT) and in the Tamm-Dancoff
approximation to the Wig ner-Brillouin perturbation
theory (TD-WBPT) show quantitative different results
which are properly interpreted. For simplicity and clari-
ty, and without loss of generality, we restrict ourselves in
this paper to the zero-temperature case and to specific pa-
rameters of ZnS. In Sec. II we review the generalized
canonical transformation method to calculate the varia-
tional ground-state energy of the polaron gas and discuss
the static structure factor in different approximations of
the many-body dielectric formalism. In Sec. III we con-
sider the perturbative calculation in the static approxima-
tion of the lowest-order electron self-energy due to the
electron-phonon interaction, the polaronic energy, and
the polaron effective masses in RSPT and TD-WBPT. In
Sec. IV we present numerical results for the self-energy,
polaronic energies in the dynamical and static screening
approaches, and effective masses as a function of electron
densities within all approximations cited above. A corn-
parison of the polaronic energies in both calculations is
made and our conclusions are presented.

II. VARIATIONAL METHOD
TO THE GROUND-STATE ENERGY

The many-polaron system is described by the Hamil-
tonian

H =X 2
ckck+ X ~&LOa qaq

A' k

k

+ —,
' g V(P')Ck+p Cp p.CpCk

& P~P

+ QMq(aq+a q)ck+qck,
k, q

where a and a~ are the creation and annihilation opera-
tors for phonons with energy %~i =A q z ~ /2m and0
wave number q, whereas ck and ck, respectively, create
and annihilate an electron with wave vector k. The bare

electron-electron potential is given by V(k) =4rre /Qk
and the prime on the summation denotes the exclusion of
the k =0 term which cancels the contribution from the
positive background in the jellium model. The electron-
phonon interaction strength is given by

1/2 1/4
4~a

Mq —
E fzcoLo

Oq

where a is the standard Frohlich coupling constant of the
electron-phonon interaction.

Lemmens, Devreese, and Brosens' provide an interest-
ing method to calculate the ground-state energy of the
polaron gas by introducing a generalized Lee-Low-Pines
canonical transformation to the many-body system. In
order to clarify the differences between this and the per-
turbation approach we review the essentials of the
method. The Hamiltonian given by Eq. (I) is subjected to
the similarity transformation given by

(2)
2m cubi o

U=expg,
where

, ) = /vac) /g, &),

where
~
vac ) represents the phonon vacuum state and

g„)is the ground-state (g.s.) wave function for the elec-
trons. With this ansatz, one can construct a reduced
Hamiltonian which operates only in the electronic
ground state,

H„,d = (vac~ U 'HU~vac)

Ak
ckck+ 2 X Ves'(Q)cp+qcp qcp cp

k 2m qpp
—g (Mqfq+Mqf* )N

q

Aq+ g A'toto+ f f"N,
2m

where N is the number operator. H„dhas the same form
as the original one, but with an effective potential be-
tween the electrons given by

V,tr= V(k) 2(Mk f~ ™q*fq—Acotofk fk ) . —

By minimizing the expectation value of the reduced
Hamiltonian over the electronic ground state with
respect to f&, the following expression for the total ener-

gy per particle of the polaron gas is obtained:

E =K+ g V(k)jS(k) —I j+E
k

The first two terms correspond to the total energy of the

Q= g fq(aq —a q)ckck+q,
k, q

and f are variational functions to be determined. The
transformed Hamiltonian contains several terms that
arise from the interactions between electrons and pho-
nons. One assumes that the ground state can be written
as
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electron gas, including exchange and correlation effects,
and E is the correction to the ground-state energy due to
the electron-phonon interaction which can be written as

E =— M~M&S(q)

2mS(q)

2a S (x)
Acoi Q dx

S(x)+x

where x =q/q„Q and

S(q)= —,
' g (4„~c~+~c~. ~c~.c~~ql„)

is the static structure factor of the electron gas. It is a
fundamental quantity in determining the screening prop-
erties of the electron system. In the linear-response
theory, S(q) is the integral over frequencies of the
dynamical structure factor S(q, co) which is related, via
the fiuctuation-dissipation theorem, to the imaginary part
of the dielectric function s(q, co) as

S(q, co)=— Aq 1
Im co 0 0

4m ne &(q, ~) (10)

GH=—
+k

(12)

where kF is the Fermi wave vector. Many forms of G (q)
have been proposed in different kinds of approximations.
In most self-consistent schemes, G(q) is expressed as a

where n is the number density. Since S(k) is different
from S(k,O) and corresponds to the evaluation of
Iml /s(q, co) for all frequencies, this approach can be con-
sidered as a dynamical one. As one will see in the next
section, the static approximation corresponds to take
s(q, O) in the calculation. The evaluation of the dielectric
function s(q, co) constitutes the central problem of the
electron gas. Among the various methods of the linear
screening theory, the dielectric function can be written in
terms of an effective polarization field which takes the
short-range exchange-correlation effects into account. In
this approximation one has

V(q)g0(q, co)
s(q, co) = 1—

1+V (q)y0(q, co )G (q)

where y0(q, co) is the density-density response function of
the free system (the Lindhard function) and G(q) is the
local-field correction which reduces the electron-electron
interaction at small distances. In the HFA, the particles
respond to external perturbations as free particles, then
G (q) is taken to be unity for all q. In the HFA, S (q) can
be analytically evaluated. In the RPA all correlations are
neglected, which corresponds in the polarization field ap-
proximation to set G(k) equal to zero in Eq. (11). The
first attempt to incorporate short-range correlation effects
in the electron gas was made by Hubbard. In the HA,
one has

functional of S(q), which in conjunction with Eqs. (10)
and (11) form a set of coupled integral equations. In the
self-consistent STLS approximation, the expression of
G(k) arises from an ansatz in decoupling the two-body
distribution function in terms of the pair-correlation
function, which is directly related to S(q) by a Fourier
transform. The local-field correction in STLS is given as

Gsrts(q)= ——J [S(q—k) —1] .1 d k q.k
(2lr)' k' (13)

The Hubbard local field GH(q) can be obtained from Eq.
(13) by substituting S(q) for its HFA value. In STLS, the
numerical calculation of S(q) by solving self-consistently
Eqs. (10), (11), and (13), must be done carefully in order
to extract the contribution of the plasmons which are ob-
tained from the zeros of the dielectric function. It is
worth it to emphasize that this method has only been ap-
plied to the HFA for bulk semiconductors. ' In this pa-
per we provide a systematic calculation to show the effect
of electron correlations, completely absent in the HFA,
and compare the final results obtained in different ap-
proximations beyond the HFA.

III. PERTURBATIVE CALCULATION

X G(p+q, ip„+ice„)
X D(q, i co„), (14)

where G(p, ip„)is the bare electronic Green's function
and D(q, ice„)is the renormalized LO-phonon propaga-
tor. The purely electronic dielectric function s(q, ice„)
contains all information about screening as discussed in
the previous section. D(q, ice„) is usually written in
terms of the polarizability of the electron gas in the RPA.
It is responsible by the coupled plasmon-phonon process
that we shall ignore in this work due to the great com-
plexity of the problem involving three different fields,
namely the electron, phonon, and plasmon, that are cou-
pled all together. These processes are not quite impor-
tant in describing the ground state of the system, which is
what we are concerned with here, but play a fundamental
role in describing the excitations of the system. ' The
effect of the renormalized phonon propagator is
significant as long as LO-phonon-plasmon coupled modes
are relevant and this coupling is weak when the plasma
frequency co~ is greater than the phonon frequency co„Q.
So, we neglect the plasmon-phonon coupling and assume
that

2')Z Q
D(q, im„)=

{l&n ) &Lo

A full dynamical screening in the perturbation calcula-
tion is intractable and we are forced to make some ap-

The leading Feynman diagram contribution to the elec-
tron self-energy due to the electron-phonon interaction is
given as

d3q
g(p, ip„)=—kllT g J (2m. ) s (q, ice„)
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proximations in e(q, in'„). First, a popular approxima-
tion considered in the literature is the "effective frequen-
cy" approximation' which consists of putting E(q, iso„)
=E(q, coLo). However, when co~ ))coLo, E(q, cuLo) is well
approximated by the static limit E(q). This approxima-
tion has shown good results at high densities. ' So, in or-
der to avoid a disproportionate numerical effort, we take
the static screening and the electron self-energy, given by
Eq. (14), which assumes the form

g2 2

E(p)= +Re[X[p,E(p)]] .
2m

(17)

x(p, ip) =
(2m. )' E (q, O)

1+N —n +
X

ip gp+ q AcoLo

+ N+n+
(16)

ip kp+ q+ &n'Lo

where Nq (n&+q) is the Bose (Fermi) occupation number
and g&+q is the bare electron energy measured from the
Fermi energy. We shall only discuss the zero-
temperature limit where we can neglect the phonon
thermal occupation factor and nz+q=e( —

g&+q). The
imaginary part of the self-energy gives the phonon emis-
sion rate which has been calculated by Das Sarma,
Kobayashi, and Lai. ' Calculations of the electron self-
energy have been performed by Mahan and Duke, but
they restricted themselves to either TFA or RPA in the
treatment of static screening. We must also point out
that we have neglected the direct electron-electron in-
teraction to the electron self-energy. The implication of
this fact in the calculation of the polaron effective mass
will be discussed in the next section. Here we are con-
cerned with the dispersion relation of the polaron given
by

2a dx 1
CO LQ 2 2

E (x, O) 1+x
and to the effective mass

(20)

8u dx x—1—
x, O 1+x

(21)

These expressions recover by taking E(q, co) = 1, the previ-
ous unscreened results of Ep = —akcoLQ and
m/m~ =(1—a)/6. Equation (20) must be compared
with the similar result, Eq. (9), in the dynamical screening
approach.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In Fig. 1 we show the results of the polaronic energy
E [Eq. (9)] in units of A'coLo ( =73.27 meV for ZnO) cal-
culated using the variational method as a function of the
electron density in STLS, HA, RPA, and HFA. Even
though our results are presented for ZnO, with u=O. 849,
a polar semiconductor which also shows piezoelectric
properties, they remain qualitatively valid for other polar
semiconductors. We also have obtained similar results
for ZnS. We note that the screening effects on the
electron-phonon interaction increase with increasing den-
sity and ~E

~
decreases as the density increases in all ap-

proximations. It is clear that the RPA (HFA) overesti-
mates (underestimates) screening effects. A gradual
reduction of the screening is observed as we include
short-range correlation effects beyond the RPA. At low
densities, the results are quantitatively different. Note
that the results in HFA, ' which was the only approxima-
tion used up to now, are shifted from all those obtained in

Since we are interested in polaronic corrections to the
band edge, we can take the limit of small p to get the fol-
lowing expressions to the polaronic binding energy:

=1+
mF A kF

t) Re [X(p ) ]
Bp p =kF

The calculation of the excitation spectra was done by tak-
ing a perturbative procedure which consists of solving
Eqs. (16) and (17) self-consistently. This procedure is
equivalent to Wigner-Brillouin perturbation theory.
Since only the one-phonon term in the self-energy is con-
sidered, we are dealing with the Tamm-Dancoff approxi-
mation. From Eq. (17), we can define the effective mass
as
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The so-called "on the mass shell" RSPT has provided
better results for the energies than TD-WBPT in the
one-polaron limit. So, we choose RSPT to calculate the
contribution of the electron-phonon interaction to the
electron energy by putting E =p /2m in ReX(p, E).
Then Eq. (17) becomes

fi p &
~qLo

X dq ~ sin 8d 8
c q, O o p +2pq coso+q

(19)
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FIG. 1. Contribution of the electron-phonon interaction to
the ground-state energy as a function of the electron density in
the dynamical screening approach [Eq. (9)] using the static
structure factor in several approximations of the electron gas.
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other approximations even in the high-density limit. At
high densities, STLS and HA curves approach the RPA
curve. The overall physical description is the same as in
low-dimensional systems previously studied and no quali-
tative differences are found. However, the actual magni-
tude of the polaronic energy, which is not an experimen-
tally relevant quantity to GaAs heterostructures, should
produce relevant shifts of band edges in more polar semi-
conductors, such as Zno. In Fig. 2, the results of the po-
laronic energy in the screening static approach [Eq. (20)j
are presented for different approximations. As one ex-

FIG. 2. Polaronic binding energy vs the electron density in
the static screening approach [Eq. (20)]. The static dielectric
function was evaluated in the TFA, RPA, HA, and STLS ap-
proximations.

046 I I I I I

0.0 0.2 0.4 0.6 0.8 I .0 I.2

FIG. 4. The electron-phonon interaction contribution to the
electron self-energy for difT'erent densities, n =2.8X10" cm
(solid curve), n =1.2X10" cm ' (dashed-dotted curve), and
n =6.0 X 10' cm ' (dashed curve) as a function of the wave
vector in the STLS approximation.

pects, the TFA gives the poorest results, since the corre-
lation effects are completely neglected in this approxima-
tion. It must be noticed that the RPA result for the
dielectric function equals the one in the TFA for k (2kF.
However, we found the largest difference in the results of
the RPA and the TFA. There is no significative
difFerence (less than 0.01A'co„o)in energy for all approxi-
mations in the static screening approach. In Fig. 3, we
compare the results of the polaronic binding energy in
the dynamical and static screening approaches within the
RPA and STLS. For almost all densities (10' —10
cm ), the static screening approach gives a smaller
binding energy ~E ~

than the dynamical screening ap-
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FIG. 3. Comparison of the polaronic binding energies as a
function of the electron density in the static and dynamical
screening approaches by using the RPA and STLS approxima-
tions.

FlG. 5. The etfective mass [Eq. (2 l)] calculated within
diA'erent approximations for the dielectric function by using

Rayleigh-Schrodinger perturbation theory as a function of the
electron density.
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FIG. 6. The effective mass calculated within different ap-
proximations for the dielectric function by using the Tamm-
Dancoff approximation to the Wigner-Brillouin perturbation
theory as a function of the electron density. As discussed in the
text, this result is not valid for large densities.

proach. At higher values of the electron density, dynami-
cal screening results are quite close to static screening re-
sults. Since no equivalent canonical transformation
method has been developed to calculate the effective
masses, our results are based on the static screening treat-
ment of the many-polaron system as discussed in Sec. III.
We show, in Fig. 4, the real part of the electron self-
energy X(p) in TD-WBPT, from which the effective mass
m„ is derived, in the STLS approximation for three
values of the electron density. At p =0, X(0) increases
with increasing density, which is consistent with the cal-
culation of the polaronic energy. However, as pointed
out by Xiaoguang, Peeters, and Devreese, ' X(0)WE~ be-
cause, as a consequence of the Fermi-Dirac statistics, in
the ground state different electrons have different k vec-
tors. At small densities, a weak dependence of the self-
energy with p is observed. However, as one increases the
density, a nonparabolic effect arises due to the electron-
phonon interaction. This effect leads to an increase of the
derivative of X(p) at p = kF which becomes more nega-
tive with increasing density and consequently contributes
to the increase of the effective mass. Qualitative behavior
is observed in the other approximations considered. In
Fig. 5, the effective mass m~ [Eq. (21)] is presented as a
function of the density. For all approximations, mz de-
creases monotonously as the density increases. For large
densities, the curves approach the same asymptotic limit.
We can observe that the TFA gives the poorest behavior
for mz and our study suggests that the TFA is not ade-
quate to treat the screening of the electron-phonon in-
teraction even in 3D. In Fig. 6, the effective mass mF*

[Eq. (17)] in TD-WBPT is shown as a function of the elec-
tron density for all approximations. At low densities the
effective mass does not depend strongly on the density in
all approximations. However, we observe a sharp in-

I.09

E
1.07

E

1.05

I.03
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FIG. 7. Polaron effective mass as a function of the density
calculated within the RPA and STLS approximations. (a)
shows mz and (b) shows m+ .

crease in the effective mass for densities near 10' cm
The behavior of mF was explained by Xiaoguang,
Peeters, and Devreese' in terms of two competing
effects: the first one arises from the effective electron-
phonon interaction which is screened out as the density
increases and leads to smaller mass renormalization: the
second one comes from the nonparabolic behavior of the
self-energy for large p as the density increases as shown in
Fig. 4. The same behavior was observed in two dimen-
sions and was exhaustively discussed by Xiaoguang
Peeters, and Devreese. ' The conclusion is that the result
for mz is not valid for large densities. The inclusion of
the direct electron-electron interaction in the self-energy
may correct this failure at high densities. Finally, we
show the differences between the two calculated effective
masses by plotting mF* and mz as a function of the densi-
ty (see Fig. 7). At low densities, the renormalization mass
effects are much more pronounced in mz as compared
with mF*. The conclusion is that for the many-polaron
interacting system, RSPT still works better than TD-
WBPT, as in the one-polaron problem.

Pioneering experimental studies by Brown ' have com-
bined mobility experiments and cyclotron resonance rnea-
surements to demonstrate polaron effects. At this time
one of the more used tools to study the strength of the
electron phonon is the cyclotron resonance experiment.
In bulk semiconductors, in the case where accurate cyclo-
tron resonance data are available, the electron densities
are relatively small (typically of the order of 10' cm in
GaAs). In this case the one-polaron theories can well de-
scribe the polaron effects. For ZnO, there is earlier ex-
perimental information about infrared reAection spectra
containing various concentrations of free electrons. Col-
lins and Kleinman showed that the reAection spectra
are quite different for electron densities below or above
10' crn . In the actual case, we have additional compli-
cations in understanding the effect of free carriers in the
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polaronic properties because we have to include other
types of phonons, mainly the acoustical phonon coming
from the piezoelectrical deformation potential which is
present in ZnO. We expect that our results may motivate
experimental work in 3D polar semiconductors, as oc-
curred in semiconductor heterostructures, in order
to establish the many-polaron effects in bulk semiconduc-
tors.

In summary, we have studied the effects of the screen-
ing in the interacting polaron gas, by using two different
approaches: a dynamical screening method based in a
generalization of the Lee-Low-Pines treatment for many-
polaron systems and the usual static screening approach
based on first-order perturbation theories. As in two di-
mensions, the dynamical treatment results in larger pola-
ron effects for densities less than 10 cm in compar-
ison with a static screening approach. The correlation

effects are properly taken into account in the dynamical
screening method and shown to be relevant at small den-
sities. We show that the TFA is not valid to treat screen-
ing effects and the RSPT gives more reasonable results
for the polaron gas as compared with TD-WBPT.
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