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and coupled plasmon —longitudinal-optic-phonon modes in GaAs
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The interaction of hot electrons (200—300 meV) with neutral electron-hole plasmas in bulk GaAs is
theoretically investigated over a range of plasma temperatures and densities. Results obtained using a
self-consistent, three-band (electron, heavy-, and light-hole) random-phase approximation for the
system s dielectric function, including the lattice susceptibility, are compared with simpler approxima-
tions for treating the screened interaction between the hot electrons and the coupled
plasma —longitudinal-optic-phonon system. Emphasis is placed on estimating the relative importance of
hot-electron plasma versus hot-electron —LO-phonon scattering rates, to the extent that these can be dis-
tinguished. The relevance of single-parameter descriptions of the hot-electron "scattering-rate, " such as
the total scattering rate out of a well-defined momentum state versus the average energy-loss rate of the
hot electron, is discussed; there, specific reference is made to a more complete simulation of experimen-
tally determined hot-electron-plasma scattering rates based only on the di+erential scattering rate. The
importance of including the inter-heavy-light-hole polarizability in the system s dielectric-response func-
tion is explicitly demonstrated, and scaling parameters are derived that allow simple estimates of the ra-
tio of the hot electron's energy that is coupled to the system via the electron, versus the hole components
of the plasma.

I. INTRODUCTION

It is known' that free electrons with kinetic energies
larger than a longitudinal-optic (LO) -phonon energy
( —36 meV) in the I valley of GaAs scatter to unoccu-
pied, lower-energy states via the emission of LO phonons
at a rate of -5 ps '. This is the dominant relaxation
process provided that (i) the kinetic energy of these hot
electrons is less than the threshold energy for intervalley
scattering to the L (-300 meV) or X (-500 meV) satel-
lite valleys and (ii) the density of free carriers in the semi-
conductor is low. After considerable work on the subject
and a period of controversy, there now also appears to be
general agreement on the absolute rates of intervalley
(1 Land I -X) sc-attering, which dominate over intra-I-
valley LO-phonon scattering when allowed.

However, less is known about the role of carrier-carrier
scattering, due at least partly to the many-body nature of
the problem. This paper reports the results of a quantita-
tive investigation into the role that a background popula-
tion of free electrons and holes plays in modifying the
scattering and energy-loss rates of hot electrons below the
intervalley scattering threshold in GaAs. In particular,
the interaction rate of a hot electron with the coupled
LO-phonon —neutral-plasma system is calculated self-
consistently using both static and full dynamic [exact
within the random-phase approximation (RPA)] treat-
ments of the many-body screening processes. Other cal-
culations of hot-electron —plasma scattering rates in bulk
GaAs that include dynamic screening have been report-
ed, but to the best of our knowledge, there have been
no such treatments that simultaneously include electrons
and both heavy- and light-hole valence bands (including
the inter-valence-band polarizability). A calculation of

the spectral density function for the two-band, heavy-
and light-hole system has been reported, and the present
work incorporates this together with the electron system
in a calculation of the differential scattering rate of hot
electrons. Preliminary results of part of this work have
been reported previously; here we present a complete
analysis, emphasizing the underlying physics and apply-
ing this knowledge to draw quite general quantitative
conclusions whereby practitioners may estimate the
effects of background plasmas without the need for de-
tailed calculations.

II. THE MODEL

1
Im

e(co, q)

The model used for the purposes of calculation consists
of a single hot test electron in momentum state k of the I
conduction band that is assumed to be distinguishable
from a background plasma of density N, electrons, N&

heavy holes, and Nt light holes, where Nz+NI =N, . The
temperature T of all three plasma components and the
lattice are taken to be the same. Under these conditions,
the differential scattering rate of the test electron under-
going a change in energy Ace and momentum Aq is
c) I (k)/BcoBq. One can conceptually think of the test
electron as part of a monochromatic beam, and the
differential scattering rate as a measure of the spectrum
of electrons scattered from the beam via interactions with
the coupled plasma-lattice system. Within the Born ap-
proximation, the differential scattering rate can be ex-
pressed in terms of the imaginary part of the inverse lon-
gitudinal dielectric-response function of the plasma-
lattice system, Im[1/e(co, q)], as' ''

Q~l (k) 2e m
(l)
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where m, is the electron effective mass in the conduction
band and P= 1 /kz T, where ks is Boltzmann's constant.

The function e(co, q) can be expressed in terms of the
polarizability of the free-carrier system, P(co, q); the
optical-phonon contribution

the extreme range of this energy scale and since it offers a
relatively low density of final states, only the heavy-light-
hole interband term was retained in the present calcula-
tions. With these simplifications the dielectric-response
function becomes

eL(co)=(Eo—e„)/(1 —co /cur),

where co&- is the transverse optic-phonon frequency; and
the bare Coulomb interaction V(q) =4~e /q as

e(co, q) =e +eL —V(q ) I P„(co,q)+Pzq(co, q)

+P&I(co, q)+Pz&(co, q)

+P&i, (co, q) ], (4)

M; (k, q)[f (k) —f, (k+q)]
P(co, q) =

k
. . Aco+E (k) E;(k+—q) i6— (3)

Here, f,.(k) represents the Fermi-Dirac occupation factor
for electrons and E;(k) the energy of an electron state k
in the ith band. The M; represent the squared matrix
element of exp(iq. r) between the Bloch states k in the jth
band and k+q in the ith band. The largest characteristic
energy scale for the hot-electron scattering process is ei-
ther the LO-phonon or the plasmon energy. For the car-
rier densities used here, the plasmon energy is always
much less than the kinetic energy of the hot electron,
E(k) ~300 meV. The energy denominator in the elec-
tronic polarizability term therefore discriminates against
all interband processes except those separated by -300
meV. In principle, for GaAs, inter-heavy-light-hole and
inter-heavy- or light-split-off hole terms could be includ-
ed. However, since the split-off band's energy offset is at

e(co, q) =e„+eL —V(q)P (co, q),
where eo (e„) is the low- (high-) frequency limit of the
background dielectric-response function.

P(co, q) must be approximated due to its many-body
nature. Different levels of approximation exist, but the
most complicated expression used here is that obtained
wlthrn the random-phase approximation

where e, h, and l refer to the electron, heavy-hole, and
light-hole bands, respectively, and where all of the free-
carrier terms can be cast in the form

M2 (k, q)If (k) —f;(k+q)]
P; (co, q)= g A'co+E (k) —E;(k+q) —i o

(5)

M, (k, q)= .

1, i =j=e
1+3 cos 0

4
i=j=h or/

3slnO iAj, i,j =h or I,

where 0 is the angle between k and k+q.
At nonzero temperatures, the 1m[1/e(co, q)] in Eq. (1)

can be explicitly expressed in terms of the imaginary
parts of the free-carrier polarizabilities, Im [P(co,q)], and
the squared magnitude of the total dielectric function as

with the f;(k) now referring to the electrons in the con-
duction band and the heavy or light holes in the respec-
tive valence bands. The E;(k) in Eq. (5) are always kinet-
ic energies taken positive with respect to the respective
band edges. Within a four-band (including spin) k p per-
turbation theory, the lowest-order nontrivial matrix ele-
ments are'

Im
1

e(co, q)

Im[P„(cu, q) ]+1m[PI a (co, q) ]+Im[Pg (co, q) ]+1m[PI &(co, q )]+Im [Pg, (co, q) ]= V(q)
I e(~, q) I' (7)

Explicit expressions for the imaginary parts of Eq. (5)
are given in the Appendix. They are general except that
for the holes, the f;(k) are assumed to be of Maxwell-
Boltzmann form. This restricts the maximum density of
the plasma that can be studied, but not drastically (to
N=1 X 10' cm at 300 K). The corresponding real
parts of Eq. (5) were obtained using a numerical
Kramers-Kronig algorithm.

The usual criterion for the applicability of the RPA is
that the plasma must be weakly coupled, i.e., the average
potential energy should be much less than the average ki-
netic energy. For plasma parameters such that the distri-
bution functions are Maxwell-Boltzmann-like, this cri-

terlon reduces to

2N1/3
&1.

eok~ T

As an example, at 100 K, the criterion is satisfied for den-
sities below 2 X 10' cm . The numerical results
presented below are all done for plasma parameters that
satisfy this criterion.

The static-screening approximation (SSA) consists of
taking the zero-frequency limit of ~e(co, q) ~

in Eq. (7). A
discussion of the physical interpretation of various terms
in Eq. (7) is deferred to Sec. IV.
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III. RESULTS

A. The dift'erentia1 scattering rate

Figure 1 illustrates the differential scattering rate (re-
stricted to energy-loss processes only) obtained from Eq.
(1) for a 300-meV test electron interacting with a plasma
of density %=8X 10' cm at a temperature T =300 K.
Figure l(a) was obtained using the SSA, while Fig. 1(b)
was obtained using the RPA. The SSA produces a rather
featureless spectrum, rejecting that part of the plasma's
single-particle excitation spectrum which overlaps the
phase space available to the relaxing hot electron. All of
the spectral weight in Fig. 1(a) corresponds to direct hot-
electron —free-carrier scattering events, i.e., hot-
electron —plasma scattering.

The RPA result in Fig. 1(b) is clearly much different

than the SSA result. At low frequencies, a remnant of
the SSA single-particle spectrum can be seen, but it is res-
onantly enhanced where it overlaps the collective
plasmon excitation of the multicomponent plasma. In
addition, a sharp feature is observed over a range of wave
vectors very near the LO-phonon energy. In the limit of
zero plasma density, this part of the spectrum is precisely
the difFerential scattering rate via the bare Frohlich in-
teraction with LO phonons. ' Under the conditions of
Fig. 1, where the plasmon energy is much less than the
LO-phonon energy, there is little coupling between the
two, and the low-energy part of the spectrum can be in-
terpreted essentially as dynamically screened hot-
electron —plasma scattering, and the portion near the
LO-phonon energy as bare LO-phonon scattering. Fig-
ure 2 shows the corresponding RPA result for a density

&o—

CQ

C7

(b)

FIG. 1. The total integrand of Eq. {10)for a
300-meV hot electron, a plasma density of
8 X 10' cm ', and a temperature of 300 K, cal-
culated (a) using the static-screening approxi-
mation and (b) using fu11 dynamic screening,
including the lattice susceptibility. Full scale

6 —1in wave vector corresponds to 7.26X 10 crn
and full scale in frequency corresponds to
1.25 X 10' rad/s. The integrand has been ar-
bitrarily scaled for presentation.

0.2
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CQ
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FIG. 2. The total integrand of Eq. (10) for
the case of dynamic screening, including the
lattice susceptibility for the same parameters
as in Fig. 1 but for a plasma density of 1 X 10"
cm '. Full scale in wave vector corresponds
to 7.26X 10 cm ', and full scale in frequency
corresponds to 1.25X10' rad/s. The vertical
scale is the same as in Fig. 1.

=~alk r ~ ~ =-—j=
0.8

ofN=10 cm . n eU d r these conditions the plasmon
energy as increase,h

'
reased and the plasma effectively screens

outt e -p onh LO- honon interaction at small wave vectors, a-
h h there remains some spectral weight a et oug ere

lasmonphonon energyh for large wave vectors where t e p
is oorly defined due to strong Landau damping. Under
th latter conditions, it is clear from

'
pins ection that theese

s the LO-hot-electron-plasma scattering dominates
phonon scattering events.

As pointed out in Sec. I, it is of practical interest to es-
timate under w a con

' '
h t ditions the hot electron interacts

more strong y wit e p1
'

h th lasma than with the LO phonons
To answer thisthat dominate at low carrier densities. To answer t is

b ut what isquestion, it is necessary to be more specific abo
meant y in erac

inemati-f E . (1) can be integrated directly over kinemrate o q. can
call allowed phase space to yield the total scatte

'
grin rateca ya owe p

(TSR), equivalent to the inverse quantum intum lifetime of the
state . cank It also be integrated over the same phase
space, but with a multiplicative factor of %co, to yie e
average (in an ensemble sense) energy-loss rate (AELR) of

measures of the importance of plasma interactio
1 t 1 on comparison with experiments.

Different experiments can in principle measure i erent

to the question posed. In the following, therefore, nu-

presented separately, in Secs. III B and III C, respective-
ly, for a range o p ay, f f lasma and hot-electron parameters.
The relevance of these results to potential experiments is
discussed. ectionS

' III D describes how the differentia
scattering rates can be combined with a simple onte
Carlo algorithm to simulate accurately an optical pump-
probe experiment a,th t as will be shown, measures an

a mixture ofeffective hot-electron scattering rate that is a mixture o
the TSR and the AELR.

B. The average energy-loss rate

The AELR of the hot electron (in an ensemble sense ts
given explicitly by

dE(k)
y

yI&q~& II2& —qI
d ~ c)c)l k)

dg' CO CO

0 —(Rq/2m )(2k +q) cong

X [1—f(k —q) ], (9)

where the limits of integration reAect the kinematic re-
h fi 1 state to which the hot electron

t e fullscatters in the conduction band. %"hen t e u
dielectric-response function, q. , is use in
Eq. (9), the resulting AELR self-consistently includes the
total interaction with the coupled (and in general indis-

'
h bl ) LO- honon —plasma system. This, of

e of the primary motivations for usingcourse, is one o e
self-consistent formalism; however, for t e sa e o in u'-

nts it is convenient to attempt a separation oftive argumen s, i i
t e energy-osh r -loss rates via the plasma compare o a
LO honons. At low densities, «10 cm, w e
LO-phonon —plasmon coupling is we 'g.

p n
eak, see Fi . 1(b)],

suc a separa ih ation can be attempted with impunity. Nu-
11 it is easiest to separate the o-merica y, i is

'n E . (4) withelectron —plasma contribution by evaluating q.
the lattice contribution, eL (co) omitted from e(co, q . Fig-
ure 3 shows the results of such calculations done for a
number of different plasma temperatures and initial ho-

ression forThe results obtained using the full RPA expression or
the electronic contnbutions to e(co, q

~ ~ ~

are close to linearly
depen ent on ed the plasma density and quite insensitive to
b h th lasma temperature and the initia energy oot ep

ults forhot e ectron. i1 . This is very different from the resu
the total scattering rate (see Refs. 3, 4, an an
III B below) which exhibit a strong dependence on plas-
ma temperature and a noticeable dependence on the ini-
tial energy of the hot electron.

The AELR results obtained using the SSA exhibit a
strong sub inear ensi y1 d 't dependence, and the absolute
values are su stan ia yb t' ll lower than those obtained from
the RPA results. The discrepancy between the dynamic
and static resu s canits can be qualitatively understood by argu-
ing that the difference is due to plasmon emission pro-



6320 JEFF F. YOUNG AND PAUL J. KELLY 47

0.25
CO
CL

0.20

0.15

0.10

0.05

— I
0.00 I I I I I

cesses that are not included in the SSA. Rota and Lugli'
have recently developed a Monte Carlo procedure for
treating hot-electron —plasma scattering by separately in-
cluding single-particle-like scattering events, using the
SSA, and plasmon scattering events. This approach has
the merit of computational simplicity, since the SSA re-
sults typically take an order of magnitude less time than
the RPA calculations. In this context the self-consistent
results shown in Fig. 3 can serve as a test for the accura-
cy of such non-self-consistent, but much simpler, ap-
proaches.

The other noteworthy feature of the results in Fig. 3 is
the fact that the AELR due to plasma scattering is equal
to the bare LO-phonon interaction rate, —180 meV/ps,
at -8 X 10' cm . This result is relatively insensitive to
the plasma temperature and the initial hot-electron ener-
gy. It therefore is one measure of the relative importance
of plasma versus LO-phonon scattering, the conclusion
being that plasma scattering starts to dominate above
—8X 10' cm . This dominance is compounded due to
the fact that the small wave-vector LO-phonon interac-
tions are effectively screened at higher densities, as was
shown in Fig. 2.

C. The total scattering rate

Integration of Eq. (9) without the multiplicative A'co

term results in the total scattering rate I of the hot elec-
tron out of its initial state:

0 6 12

DENSITY (10"cm' )
FIG. 3. Plots of the net energy-loss rate as a function of the

plasma density. Dynamic-screening calculations are shown for
a 300-meV hot electron, T =100 (square), 200 (circle), and 300
K (triangle); a 250-meV hot electron, 300 K (inverted triangle);
a 200-meV hot electron, 100 K (diamond). Static-screening re-
sults are shown for a 300-IneV hot electron and T = 100 K (dot).

Ale
co~ [2%s(cop )+ 1]ln

A km

26k

where X~ is the Bose-Einstein population factor. In the
low-density limit, this population factor goes as 1/PA'co,
which cancels the density dependence in the residue of
1m[1/e(co)]. At higher densities the population factor
goes as unity, and there remains a power-law dependence
to I .

Physically, the density independence of I implies that
within the RPA, the reduction in scattering strength at
lower densities exactly cancels the reduced probability of
encountering an electron in the plasma. Further insight
can be gained by studying the differential scattering rate
BI /Bco obtained by carrying out only the q integration in
Eq. (10). Representative spectra are shown in Fig. 4 for
three different carrier densities. As the density decreases,

TABLE I. Total scattering rates (ps ') at plasma tempera-
tures of 100, 200, and 300 K and initial hot-electron energies of
200, 250, and 300 meV. Values in the table were obtained using
the static-screening approximation (( )), the RPA approximation
neglecting the lattice polarizability ([]), and the full RPA, in-

cluding the lattice polarizability (j ] ), where the bare phonon
rate was subtracted.

100 200 300

nary part of the hot-electron self-energy, within the
RPA.

Table I summaries the TSR calculated from Eq. (10)
using the SSA, the RPA with the lattice polarizability
omitted, and the full RPA. Selected values are given at
three different plasma temperatures and three initial hot-
electron energies. There is a relatively strong dependence
of the TSR on plasma temperature, and a weaker depen-
dence on the initial hot-electron energy. This is con-
sistent with what others have reported for the TSR due to
electron-only plasmas. ' Only a single value is given for
each of these parameters because the TSR turns out to be
essentially independent of the plasma density, within—10%%uo, over a range of densities from 4X10' to 10'
cm

This somewhat surprising result can be analytically
traced using a simplified plasmon-pole approximation for
an e(co) corresponding to a single-component plasma. In
this case,

2

e e '(co)-1+
CO CO

where co is the plasmon frequency, ~X' . The result
for I follows immediately from Eq. (1):

(10)
In the limit that the kinetic energy of the hot electron is
much larger than the temperature or Fermi level of the
plasma (i.e., no significant scattering occurs from the
plasma into this state), this TSR is identical to the imagi-

200

250

300

(2.4)
[12]
(2.3)

(2.1)
[11]

(5.2)
[20]
(4.7)

(4.2)
[lgl
[ 15]

(7.9)
[26]
(6.9)
[25]
(6.2)
[23]
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3

in fact be directly measured, in which case the relevance
of our result is that it is one of the terms that must be cal-
culated in modeling dephasing measurements, and any
future calculations of the vertex corrections must cancel
our result at low density.

In light of these properties of the TSR, revealed by
studying their dependence on carrier density, care should
perhaps be exercised in interpreting the relevance of de-
tailed plasma temperature and hot-electron energy depen-
dences of calculated TSR's. ' '

I

-150 -75 0 75 '150

FREQUENCY (cm )
FIG. 4. The differential scattering rate for a 300-meV hot

electron, BI /Bco, obtained using the RPA without the lattice
contribution eL, at T =100 K, and neutral plasma densities of
8X10' {dot), 2.5X10' {dash), and 4X10' cm ' {solid). The
vertical scale has arbitrary units.

the area under the curves remains essentially constant,
while the characteristic energy exchanged in either
Stokes or anti-Stokes scattering processes decreases.
There is also a relative increase in the importance of
single-particle-like (nonresonant) scattering processes
over plasmon (resonant) processes at lower densities. As
the density decreases, the hot electron feels the effect of
other carriers at larger separations and responds almost
adiabatically by changing its energy and momentum only
slightly, but still frequently.

All of these results beg the question of whether or not
this TSR can be mt„asured, in particular at low densities.
(Note that the absolute value of the TSR due to the plas-
ma is larger than that due to the bare LO-phonon in-
teraction, even at extremely low densities. ) An equally
valid question is whether, despite the fact that the usual
weakly coupled plasma criterion for the validity of the
RPA is satisfied for this range of plasma parameters, the
RPA is a valid approximation for calculating the self-
energy of the hot electron under these low-density condi-
tions. With respect to the former question, some type of
coherence or dephasing experiment would be required
that is sensitive to the quantum state lifetime of a hot
electron in a state k. A coherent interband optical mea-
surement that couples the valence and conduction bands
at k is in principle sensitive to this state lifetime, in addi-
tion to the corresponding lifetime of the valence-band
state. Bohne et al. ' have recently reported a theoretical
model for such an experiment. Their expression for the
measured dephasing rate (their Eq. 6.9) is the sum of two
terms; the first is essentially equal to our I, and the
second corresponds to vertex corrections. Bohne et al. '

comment on (without explicit derivation) the apparent
unphysical density (in)dependence of the term if calculat-
ed within the RPA. They argue that the second term as-
sociated with vertex corrections will cancel I at low den-
sities, in keeping with the intuitive result. If this is in fact
the correct interpretation, then it is likely that I cannot

D. Comparison with experiment

Kash' has reported a pump-and-probe hot lumines-
cence experiment designed to determine the density
dependence of hot-electron —plasma scattering in GaAs at
densities below —10' cm . The plasma was injected by
a picosecond pump pulse and allowed to thermalize for
-30 ps, at which time the temperature of the electrons
and holes was —100 K. The plasma density could be
easily varied by varying the power in the pump pulse. A
second, much weaker probe pulse then injected a very
low density of -300-meV electrons into the conduction
band. The relaxation behavior of these as-injected hot
electrons was then inferred by monitoring the lumines-
cence emitted as a small fraction of the hot electrons
recombined with neutral acceptors before scattering out
of conduction-band states within the luminescence
linewidth, —20 me V full width at half maximum
(FWHM). The integrated area under this as-excited
luminescence feature is proportional to the average (in an
ensemble sense) time that the as-excited electron remains
in states that are within the measured linewidth of the
as-excited states. With no pump pulse present, i.e., in the
absence of a plasma, this time is expected to be deter-
mined by the LO-phonon scattering rate, —5 ps '. In
the presence of the plasma, Kash observed that the in-
tegrated luminescence decreased linearly with density,
and was half as strong as with no plasma at a density of—8 X 10' cm . He thus deduced that the hot-
electron —plasma "scattering rate" was linearly propor-
tional to the plasma density and became equal to the bare
LO-phonon scattering rate at a density of —8X10'
cm

To compare the calculated electron-plasma scattering
rate with the results of this experiment, it is important to
recognize that the experiment does not directly measure
either the TSR, or the AELR. The TSR is a property of
a single as-excited state, whereas the experiment is in-
sensitive to scattering events that take the carrier out of
the as-excited state, but leave it either directly or after
multiple-scattering events, in states within the set ofstates
that give rise to the relatively broad luminescence feature
being measured. Thus the experimentally determined
"scattering rate" will always be less than or equal to the
TSR as calculated above.

The experiment also does not in general provide a mea-
sure of the AELR. In the hypothetical case that all of
the scattering with the plasma occurred via well-defin'ed
plasmon modes (i.e., at a well-defined energy similar to
LO-phonon scattering) and if the plasmon energy was
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greater than the luminescence linewidth and larger than
the thermal energy (i.e., no appreciable anti-Stokes
scattering), then the experiment would measure the TSR.
In this case the energy of the plasmon, so long as it is
enough to take the carrier out of the luminescence
linewidth, is irrelevant, and so therefore would be the
AELR.

Thus, in general, the experimentally deduced "scatter-
ing rate" cannot be simply related to either the TSR or
the AELR. One way to model the results is by using the
differential scattering rate Bl /Bc@ in an ensemble simula-
tion of the actual experimental conditions. Specifically,
starting with the hot electron in the as-excited state (as-
sumed to be in the center of the luminescence spectrum),
scattering events are allowed to occur at random, but on
average at a rate determined by the TSR. The final state
of each scattering event is determined from BI /Bco, and
the simulation is allowed to continue until the electron
effectively never reenters states with energy within the
luminescence linewidth of the as-excited state. The in-
verse of an ensemble average of the time over which elec-
trons remained within this range of states was then com-
pared with the experimental "scattering rate, " as shown
in Fig. 5. These simulations were carried out separately
using (i) the RPA and the full e(co, q) (in which case the
bare LO-phonon contribution was subtracted off), (ii) the
RPA omitting the lattice contribution eL (co ) from
e(co, q), and (iii) the SSA. Note that, with no adjustable
parameters, the result obtained from these simulations
agrees very well with the experimentally determined re-
sult' provided the full e(co, q) is used. Within the experi-
mental and numerical errors, the RPA result obtained by
omitting the lattice contribution is also in agreement, but

Z
CC

4LLj

LU 0 s I i I c I i I s

0 2 4 6 8 l0

DENSITY (10 cm )
FIG. 5. Plots of the "effective" scattering rate out of an ener-

gy window 20 meV wide for a 300-meV hot electron interacting
with a 100-K electron-hole plasma as a function of the plasma
density. The different curves correspond to calculations using
the static-screening approximation (diamonds), the RPA includ-
ing the lattice polarizability (squares), and the RPA excluding
the lattice polarizability (circles). The solid line represents the
result as inferred from experiment (Ref. 15).

the results from the SSA do not reproduce the experi-
mental results.

From the density independence of the TSR, the
differential scattering rates shown in Fig. 4, and the
AELR shown in Fig. 3, we can conclude that the
"scattering rate" measured by Kash is more closely relat-
ed to the AELR than it is to the TSR. In essence, at low
densities the hot carrier is undergoing many small-angle,
low-energy scattering events that contribute to the TSR
but which tend to cancel in their contribution to net ener-
gy change (due to the large anti-Stokes —Stokes ratio at
low energy). In addition, even ignoring the role of anti-
Stokes processes, numerous individual scattering events
are required to take the as-excited electron out of the
luminescence linewidth at low densities.

IV. PARTITIONING OF THE ENERGY
AMONG THE PLASMA COMPONENTS

The model used above was purposefully chosen to
represent a physically realizable, yet close-to-equilibrium,
system of interest that could be delicately probed without
significantly altering the properties of the system. The
quasiequilibrium (isothermal) assumption was required to
avoid the highly nontri vial many-body complica-
tions' ' that arise even when the various system com-
ponents can still be characterized by effective, but
different, temperatures. In the event that the hot elec-
trons did not act as weak probes (i.e., if their density be-
came comparable to that of the plasma), then it would be
necessary to incorporate generalized versions of these
scattering calculations with sets of kinetic equations in
order to model accurately the overall system's dynamics.
Under such conditions, the temperatures of the electrons,
holes, and phonons could no longer be assumed equal (in
general they will be inAuenced by the energy transferred
to them from the hot electrons), thus invalidating the
quasiequilibrium approach.

The self-consistent many-body solution to this more
general problem is well beyond the scope of the present
investigation. However, one of the key issues that will
have to be addressed in this context has to do with in-
tegrating these microscopic scattering equations with ki-
netic equations that keep account of how the energy is
partitioned among the various system subcomponents.
Towards this ultimate end, the relative coupling strength
of the hot electrons to various subcomponents is an im-
portant parameter that can be addressed (in the limit of
quasiequilibrium conditions) using the present model.

Within the SSA, the relative energy-transfer rate from
the hot electrons to the various plasma subcomponents is
unambiguously obtained by independently evaluating the
contributions that each of the intraband and interband
terms in the expansion of 1m[1/e(co, q)] [see Eq. (7)]
makes to dE/dt in Eq. (9). Each term then directly
represents the various ways in which energy is
transferred through direct, single-particle-like transitions
within or between bands. Figure 6 shows one example of
the partitioning of the overall AELR into (i) intra-
conduction band, (ii) intra-heavy and intra-light valence-
band, and (iii) inter-heavy-to-light valence-band processes
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FIG. 6. The total energy-loss rate of a 300-meV hot electron
in a neutral plasma as a function of density at T=100 K ob-
tained with the static-screening (solid line) approximation.
Separate contributions from intraband electrons (dot-dashed),
heavy holes (dashed), light holes (dotted), and with the inter-
band holes (short-dashed —long-dashed) are also shown.

for a 300-me V hot electron and a 300-K plasma.
Analysis of similar plots for different plasma tempera-
tures shows that energy transfer via conduction-band
electrons is always the most efficient process. Intra-
heavy- and intra-light-hole processes (classical Coulomb
scattering events) typically account for ( 15% of the to-
tal, due largely to the quasielastic nature of the light-
electron —heavy-hole scattering and to the relatively low
density of light holes. The inter-valence-band processes
can, however, contribute close to 25% of the total AELR
under certain conditions.

In the dynamically screened case, the contributions of
various intraband and interband terms can still be sepa-
rately evaluated in Eq. (9); however, the interpretation of
the results is less clear than in the SSA. Figure 7 illus-
trates the various contributions to the integrand of I
from different intraband and interband terms at a fixed
plasma density of 8X10' cm . It is clear that the
intra-heavy-hole contribution [to be compared to Fig.
1(a)] is essentially the same as that obtained in the SSA.
That the electron —heavy-hole scattering process need not
be dynamically screened has been previously shown by
Collet and by Sato and Hori, and it can be understood
simply with reference to a schematic diagram of the col-
lective and single-particle excitation spectra of the vari-
ous plasma subcomponents (see Fig. 8, and note that this
diagram, and the following arguments, are based on a
zero-temperature situation; however, the qualitative
features at issue apply more generally).

The energy and dispersion of the collective plasmon
mode of the multicomponent plasma is dominated by the
electrons due to their large number and small mass. The
plasmon mode is a well-defined resonance only for rela-
tively small wave vectors, below those at which it inter-
sects the system's single-particle excitation spectrum, at
which point the plasmon suffers strong Landau damping.

Given the weak dispersion of the massive heavy-hole
single-particle spectrum, there is essentially no overlap of
well-defined plasmons and heavy-hole single-particle exci-
tations; hence, there is no plasmon enhancement of the
latter. The SSA therefore provides an accurate treatment
of the hot-electron —heavy-hole scattering process.

Again with reference to Fig. 8, there does exist over-
lapping phase space for the plasm on with intra-
conduction and intra-light-hole single-particle excitations
(right where they merge, at the onset of Landau damp-
ing), and with inter-valence-band single-particle excita-
tions. This explains the resonant peaks that appear for
each of these processes in the differential scattering rates
of Fig. 7. The various contributions in Fig. 7 reffect the
relative coupling efficiency of the hot electron's energy
into the various subcomponents via scattering from cor-
responding, correlated charge-density fluctuations. This
follows directly from the fluctuation-dissipation theorem
that relates the linear-response function e(co, q) to the
density-density correlation function T(co,q) (Ref. 10),

T(co, q)= J dt(nq(0)n q(t))e' '

1 1 1
Im

1 (q) (1—e~ ) E(~,q)
(13)

There is a complication, however, when considering
how to incorporate this information into a kinetic model.
The energy transferred resonantly through the plasrnon
will be stored collectively for a time associated with the
resonant width. In general, this storage time could be
long compared to other relaxation processes, including
the characteristic plasmon emission time itself. This is
one specific example of the nontrivial many-body prob-
lems involved in going beyond the quasiequilibrium,
weak-probe approximation. Qualitatively, it may be pos-
sible to design the kinetic model to include an indepen-
dent "temperature" for plasmons, and hence account for
the resonant storage; however, this would have to be
done with care and verified with respect to a full none-
quilibrium many-body treatment.

The above complications owing to resonant storage
notwithstanding, it is of interest to determine the relative
energy-transfer efficiencies for the hot electron via the
various intraband and interband charge-density Auctua-
tions. The ratio of the total-energy transfer rates via
intra-conduction-band to all intra- and inter-valence-
band processes (i.e., relative efficiency via electrons versus
holes) is plotted in Fig. 9 for the same plasma parameters
for which the AELR was shown in Fig. 3. Note that
while there was very little dependence of the AELR on
the plasma and hot-electron parameters, there is a very
significant effect of these on the partitioning of the energy
to the electron and hole subsystems. In particular, there
are ranges of parameter space for which the energy
transfer to the holes is comparable to that to the elec-
trons, and other regions where the role of holes is negligi-
ble.

As can be inferred from Figs. 6 and 7, in circumstances
where the holes make a large contribution, it is the inter-
valence-band, rather than the intra-valence-band, pro-
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(b)

FIG. 7. Contributions to the integrand of
Eq. (10) obtained using dynamic screening, in-
cluding the lattice susceptibility due to (a)
intra-conduction-band fluctuations, (b) intra-
heavy-hole band fluctuations, and (c) inter-
heavy-to-light-hole fluctuations. Full scale in
wave vector corresponds to 5X10 cm ', and
full scale in frequency corresponds to 6X1013

rad/s. The integrand is on the same vertical
scale for (a), (b), and (c), and the absolute
values can be compared directly with the in-
tegrands of Fig. 1.
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FIG. 8. A schematic representation of the single-particle and
collective mode excitation spectra of the neutral plasma at a
density of —1 X 10' cm ' and zero temperature. The regions
where single-particle excitations are allowed correspond to the
areas enclosed by (i) solid curves (electrons), (ii) dashed curves
(heavy holes), (iii) dash-dotted curves (light holes), and (iv) dot-
ted curves (inter-heavy-to-light hole). The straight line
schematically illustrates the collective plasmon excitation spec-
trum (neglecting dispersion), with decreasing line density
representing increasing damping.

cesses that dominate. Qualitatively, this can be under-
stood with reference again to Fig. 8, since the inter-
valence-band single-particle excitation spectrum is quite
different than that of the intra-valence-band processes,
and there can be a large overlap of the plasmon and
inter-valence-band phase spaces. Quantitatively, the rela-
tive importance of electrons and holes can be understood
over quite a large range of plasma and hot-electron pa-
rameter space by deriving appropriate scaling factors for
the two axes in Fig. 9. Thus, by normalizing the ratio R
on the ordinate of Fig. 9 by

it is possible to reduce the data in Fig. 9 to a "universal"
curve, as shown in Fig. 10. The primes in Eq. (14) indi-
cate that k and p are normalized using the GaAs exciton
Bohr radius ( —100 A) and binding energy (-6.6 meV),
respectively.

With reference to Eq. (1), the derivation of the normal-
ization factor g, can be traced to evaluating the 1/q term
associated with the plasmon-enhanced intra-electron and
inter-valence-band processes. From the plots in Fig. 7,
the resonant enhancements for both intra-conduction-
band and inter-valence-band terms occur at quite well-
defined, and different, values of q. The characteristic q,
q =q, for the inter-valence-band process, is .easy to
derive; it occurs at the smallest kinematically allowed q
value for plasmon interaction, or where

A kq, m, cu

Rk
(17)

The characteristic q, q =q„ for intra-conduction-band
processes, is more difficult to obtain, but can be derived
approximately by resorting to a single-component, classi-
cal expression for e(co, q), which in the limit of
Pm, co /q ))1, is

g, =k'&P' (14)
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FIG. 9. Ratios R of the net energy-loss rate via electrons to
that via holes as a function of plasma density for the same sets
of RPA parameters (symbols) as in Fig. 3.
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FIG. 10. A scaled version of the plot in Fig. 9 illustrating the
dependence of the normalized R on the normalized plasma den-
sity. The normalization parameters are discussed in detail in
the text.
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2
COp

e(co, q)-e„ 1—
CO

3 x. 1+—
2 co2

' 1/2
7T

l
2

3/2
/xe (18)

where x =2q /Pm, . It is then possible to determine
analytically the q value at which the integrand of Eq. (9)
is a maximum. The resulting secular equation is a func-
tion only of x/co, so that the maximum contribution
near co is given approximately by

Together, the information in Figs. 3 and 10 provides
quite general, dynamically screened results that should be
useful for simply estimating both the AELR and its parti-
tioning between conduction-band and valence-band car-
riers.

x 1=C=q, =
2 C Qp

1/2
m, C

P~p ~ (19)

2m I m h cop

mh mI
(20)

The product of the initial and final density of states, and
the Boltzmann population factor for the initial heavy-
hole states, T;„, at k;„, is then proportional to

16cc) —/3Aco mI /( m~ —m ( )

mImh
mh mi

(21)

Following the same procedure for the intra-conduction-
band contribution and using the value of q, derived above
to determine the initial states k, from which the majority
of the plasmon transitions occur, then, in the limit of
small /3A'co,

Ak,
2me

1

&2C P
(22)

and the corresponding transition rate T„ is proportional
to

T QC
1 —1/+2C

&2C P
(23)

The ratio of T„and T;„, is thus proportional to the scal-
ing factor gz in Eq. (15).

where C is a constant, -0.2, in GaAs. The g, normali-
zation factor, Eq. (14), is then just proportional to q, /q, .

The scaling factor for the abscissa comes from estimat-
ing the contribution to Eq. (9) from the 1m[1/e(co, q)]
term, assuming all of the weight occurs at the plasmon
frequency, for both intra-conduction-band and inter-
valence-band processes. This can be reduced to estimat-
ing the relative plasmon-related transition rates for the
two processes, which are independently proportional to
the product of the density of initial and final states avail-
able for the transitions, multiplied by a Boltzmann popu-
lation factor for the occupation of the initial states. For
the inter-valence-band process, if the small but nonzero
wave vector derived in Eq. (17) is neglected, then vertical
transitions from the heavy-hole band to the light-hole
band occur at a wave vector k;„, of

V. CONCLUSIONS

The scattering of a hot (-200—300 meV) "test" elec-
tron with neutral electron-hole plasmas in GaAs has been
studied within the Born approximation using both static-
and dynamic- (exact within the random-phase approxi-
mation) screening calculations. Although numerical re-
sults are presented only for GaAs, the general formalism
is applicable to other zinc-blende semiconductors. Both
approximations yield a total scattering rate (out of a fixed
initial momentum state) that is nearly independent of
plasma density over a wide range of densities from 10' to
10' cm, but which is quite sensitive to the plasma tem-
perature and the energy of the test electron. This total
scattering rate is a contributing factor to the dephasing
rate that coherent interband optical experiments (in the
presence of a neutral plasma) measure, although other
processes may also contribute to specific experimentally
determined scattering rates. Total scattering rates ob-
tained using the static-screening approximation are typi-
cally a factor of 5 to 10 less than those obtained using full
dynamic screening.

In contrast to the total scattering rate, the average (in
an ensemble sense) energy-loss rate of the test electron is
found to be quite insensitive to the plasma temperature
and the initial hot-electron energy. This energy-loss rate
is almost linearly dependent on plasma density when dy-
namic screening is used, but exhibits a sublinear density
dependence within the static-screening approximation.
The partitioning of energy lost by the hot electron to the
electron and hole components of the plasma was found to
be sensitive to the plasma temperature and hot-electron
energy. Under certain conditions, almost as much energy
is transferred to the holes as to the electrons, but the elec-
trons typically absorb most of the energy. By recognizing
that significant amounts of energy get transferred to the
holes only via inter-heavy-to-light valence-band processes
resonantly enhanced by collective plasma oscillations,
scaling factors were derived that can be used to factor out
the plasma temperature and hot-electron-energy depen-
dence to the partitioning of energy to electrons versus
holes. This means that dynamically screened calculations
of both the net energy-loss rate and its partitioning be-
tween electron and hole subsystems can be easily ob-
tained over a wide range of plasma and hot-electron pa-
rameter space by simple reference to two "universal"
curves.

Finally, quantitative agreement with hot-
electron —plasma scattering experiments by Kash' was
obtained using the dynamically screened scattering rates
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together with a simple one-dimensional Monte Carlo rou-
tine. The statically screened calculations always underes-
timated the experimental results, which exhibit a linear
density dependence and become equal to the bare LO-
phonon scattering rate of -5 ps ' at a density of
—8X10' cm
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APPENDIX: THE RPA DIELECTRIC FUNCTION

1. Intraband terms

Using Eq. (6) in Eq. (5) with a change of variable in the
second population factor, the general intraband term can
be written

Im[P"(~, q)I =,f dk f'(Ic)—1+, . I5(irido —E„+E„+ ) 5(Ace—E„+—+E„)J .1; 1 3(k +qk)
(2m. ) 4 k (q +k +2q k)

(A1)

Reexpressing the 5 functions as

5(fico Ek+Ei,—+~)= 2 5 cos8—
4 kq

m; S+
5(fico+Ei, Ek+ ) =— 5 cos8—

A kq

where

(A2)

m;coS+—=+ q
2

the integration can be explicitly written as

m] 3(k +S )
ImIP"(co, q)) = f dk kf'(k) —. 1+

2iriri q —~i~ 4 k (q +k +2S )

3(k +S+ )
dk kf'(k) — 1+

~s+i, ~ 4 k (q +k +2S+)
Assuming Maxwell-Boltzmann population factors f,

(A3)

m, n „1 3(t +a;S )
ImIP"(co, q) I

= dt e '—1+
4irR'qa, ,

s' ~~' 4

where

3(t+a;S+ )
dt e '—1+

,
s' ~&' 4 t(t+b) (A4)

2m;cx;co 1a;=, and n =4(irai ) (Ni +Ni)2m, k~ T

' 3/2
m(1+

Finally, with E, (x), the exponential integral of x, then the hole intraband terms can be expressed as

ImIP"(co, q) I
= m,-n

16~% qu;

—(a,.s /q )'4[e ' —e
—(a S+/q )

3 2

+ (e —1)S+E& +(e —1)S E,
a;S

q
(A5)

Taking the matrix element equal to unity and treating the electrons with Fermi-Dirac statistics, the well-known elec-
tron intraband polarizability results from Eq. (A3):

ImIP"(coq)) = ln[(1+e ' )/(I+e ' + )],
4mB q

(A6)
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where?)=P)??, and p, is the electron chemical potential,
which is known, given T and X, .

1a=—
2

mf —1
m).

and
m cof q+

2. Interband terms

Similar to Eq. (Al), the general interband term can be
written

Im I P'f(co, q) ]

1 dk f'(k) —'1 — k +q k)
(2?r) k (q +k +2q k)

Since the limits of integration are given by the 6-function
integration as

a + Q—1+ +—k +1 and —1+ +—k ~1,
kq q kq

we split the interband term up into the two parts because
of the sign dependence of a:

X t 5(Aco E),—+Ef+q )

5(Ace+—E), E$+z—)] . (A7)

I —I+, O~Aco~ E
Im[P'"(co, q)] = 'I

& E (A9)

The 6 functions, in turn, can be written as

mf T+ Q5(A'co+E?,+E$+ ) = 5 cos8 +—k
$2pq kq q

Im{P"'(ci),q)] = '

where

I —I+, O~Aco~ E

I+, A—'co )E (A10)

where

(AS)

and

E =??1 q /2(m?, —m(),

mf Ig+ I 3 [k ( I+a)+ T ]
dk kf '(k) —1—

2vrfi q (&-' 4 k [k (1+2a)+q +2T ]

and

Q+ —— 1+ 1—
2Q

4T a
1/2

mf I~+ I

I+ —— f dk kf'(k) —1—
2&g2q I R

[k ( I+a)+ T+ ]

k [k (I+2a)+q +2T+ ]

R+ —= 1+ 1—q
2Q

1/2
4T+a

q

(A 1 1)

Again using Maxwell-Boltzmann population factors and some tedious algebra,

3mf n

16' qa;

$2(mf m( ) —(~, Q )
—(~ Q )

[e ' —e ' + j-
4mf m;

2

[S+e I E? (a; Q b) —E((a;Q+—b)]-
mfb

—T [E,(a;Q ) —E, (a;Q+ )]] ', (A12)

3mf fl

16m% qa,

(mf —m;) (~??? )
2

[e ' —e
4mf m,

+
]
— [S e "[E,(a;R +b) E)(a,R~++b)]-

mfb

—T+ IE, (a;R ) —E, (a,R+ )] j
'

. (A13)

3. Numerical procedure

Throughout, we have considered GaAs band parame-
ters. The effective masses of electrons, heavy holes, and
light holes were taken as 0.067, 0.45, and 0.82, respective-
ly. The high- and low-frequency dielectric constants e
and eo were taken as 10.92 and 12.94, respectively. For

electron densities 10' cm and 100 ~ T, ~ 300 K, the
complete analysis can be done with Maxwell-Boltzmann
statistics with the estimate of error in our work about
10% provided dE/dt «1 meV/ps or I ~1 ps '. A good
test of our integration procedure is that we obtain
dE/dt = 180 meV/ps due to the phonon peak when

E, ~10' cm
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