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and the multicomponent Tomonaga-Luttinger model
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The one-dimensional Hubbard model in a magnetic field is equivalent under renormalization-
group transformation to a multicomponent Tomonaga-Luttinger model. The mapping between the
Coulomb repulsion U of the Hubbard model and the couplings of the Tomonaga-Luttinger model
is obtained for arbitrary magnetic field h and band filling n from a comparison of the correlation
function exponents. These quantities are calculated for the Hubbard model from the finite-size
corrections to the excitation energies, since the assumption of conformal invariance relates them
to the critical exponents. On the other hand, the correlation functions of the multicomponent
Tomonaga-Luttinger model are determined by solving the exact equation of motion derived by the
use of generalized Ward identities.

I. INTRODUCTION

The properties of strongly correlated electron systems
have been studied intensively recently, especially since
the discovery of heavy-fermion compounds and high-
temperature superconductors. Although it is not yet
clear how well the simple one-parameter Hubbard Hamil-
tonian can describe these systems, it is important to get
as much information as possible on this model.

In one spatial dimension the Hubbard model can be
solvedi exactly by Bethe's ansatz, leading to decoupled
charge (holon) and spin (spinon) excitations. Although
the spectrum has been known for many years, the calcu-
lation of the correlation functions proved to be a delicate
problem. After early attempts to determine numeri-
cally the correlation functions, an analytic approach has
become possible only recently. In the large-U' limit and
for special filling of the band it is possibles to determine
some correlation functions by analyzing the properties of
the ground-state wave function.

Another exactly solvable one-dimensional fermion
model is the Tomonaga-Luttinger4 model, where the
solvability is due to the linearity of the spectrum and
to the neglect of the backward scattering and umklapp
processes. It turns out that the Fermi-liquid theory fails
in this case. The momentum distribution function nI, is
not sharp and it has a power-law-like behavior. There
are no fermionic quasiparticles; instead the low-energy
physics is determined by the bosonic collective modes.

In the early 1980s, in a series of papers Haldanes
pointed out that the non-Fermi-liquid-like behavior of
the Tomonaga-Luttinger model is generic for a large class
of one-dimensional quantum systems. In one dimension
the statistics does not play a distinctive role; even in
fermionic systems the low-lying excitations are bosons.
The parameters in the excitation spectrum will determine
all the exponents in the correlation functions. These sys-
tems are called Luttinger liquids.

The numerical evaluations of the correlation functions~
and the analytic results indicated clearly that the

one-dimensional Hubbard model is a Luttinger liquid.
The relationship between the Hubbard model and the
Tomonaga-Luttinger model can be justified in another
way too. The renormalization-group treatment of the
so-called "g-ology" model has shown that, at least for
weak couplings, where perturbation theory works, the re-
pulsive Hubbard model is in the same umversality class as
the exactly solvable Tomonaga-Luttinger model. There
is indication from the above-mentioned works that this
is valid even in the strong-coupling case of the one-
dimensional Hubbard model.

Assuming that the one-dimensional Hubbard model is
a Luttinger liquid, it then becomes possible to calculate
the correlation functions from the knowledge of the en-

ergy spectrum. Using this procedure Schulz" studied the
correlation function exponents for different V and band
filling n Ren an. d Andersons gave a more general pre-
scription to determine the correlation function exponents
using the Luttinger-liquid picture. These calculations
also have been extended to include the effect of exter-
nal magnetic field. s io

Recently the use of conformal field theories has turned
out to be very fruitful in the description of the crit-
ical phenomena of two-dimensional classical or one-
dimensional quantum systems. A large class of exactly
solvable models can be uniquely characterized by a single-
dirnensionless number, the central charge c of the under-
lying Virasoro algebra. This central charge or conformal
anomaly determines the critical exponents of the correla-
tion functions of primary operators. It is closely related
to the finite-size corrections of the ground-state energy
and can be calculated from it. If c = 1, the critical ex-
ponents are not determined by the central charge alone;
an extra anomalous dimension appears in the correlation
functions. The anomalous dimension can be related to
the parameters of the towers formed by the energies and
momenta of the low-lying excited states.

Although the Hubbard model is critical at zero temper-
ature, it does not belong directly to the group of confor-
mal invariant models. Conformal invariance requires that
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the group velocity be the same for all elementary excita-
tions. In the Hubbard model, in general the holon and
spinon excitations have different group velocities. Never-
theless, it has been suggested by Kawakami and Yangiz
and by Frahm and Korepinis that the concept of con-
formal invariance can be applied to the Hubbard model
as well. They assumed that the spectrum of excitations,
which in this case has a similar tower structure as in con-
formal theories, can be described in terms of a semidirect
product of two Virasoro algebras. If there is an underly-
ing conformal field theory in both the holon and spinon
sectors, the correlation functions appear in product form.
The correlation function exponents will be composed of
two terms, each related to the parameters of the tow-
ers in the appropriate sector. For the Hubbard model
this tower structure of the low-lying excitations has been
calculated by a careful analysis of the Bethe ansatz
equations; hence the anomalous dimensions of the corre-
lation functions could be determined. is Since the Bethe
ansatz equations are valid even in an external magnetic
field, this analysis has been extended to this situation as

ell l5

In an indirect way the correlation function exponents
establish the relationship between the parameters of the
Hubbard model and those of the Tomonaga-Luttinger
model. The mapping between the two models is known
explicitly in the weak-coupling case only, where the low-
order renormalization-group treatment allows us to fol-
low the scaling trajectories from the bare couplings to the
fixed point. It is therefore of interest to see what hap-
pens for larger U. In this paper we study the Hubbard
model in an arbitrary external magnetic field h and for
general band filling n. Our aim is to determine explicitly
the Fermi velocities and couplings of that generalized,
multicomponent Tomonaga-Luttinger model, whose be-
havior is equivalent to that of the Hubbard model with
Coulomb coupling U.

The paper is organized as follows. In Sec. II the
Bethe ansatz solution of the Hubbard model is reviewed
and the analytic form of the correlation functions pre-
dicted by the conformal field theory is given. The weak-
coupling limit of the Hubbard model and its relationship
to the g-ology model is discussed in Sec. III. A general-
ized Tomonaga-Luttinger model that could be equivalent
to the Hubbard model in magnetic field is introduced in
Sec. IV, and the tower structure of the excitation spec-
trum is determined. The correlation functions of this
multicomponent Tomonaga-Luttinger model are calcu-
lated in Sec. V, using the equation of motion method
and exact Ward identities. The mapping that relates
the Hubbard U and the couplings g of the Tomonaga-
Luttinger model is given Sec. VI. The special cases of
zero magnetic Beld and the small- and large-U limits are
considered separately. For small U a comparison to the
results of the renormalization-group theory is given. Our
results are summarized in Sec. VII.

II. HUBBARD MODEL IN MAGNETIC FIELD

The Hubbard model is the simplest nontrivial model
of interacting spin-1/2 fermions on a lattice. It is defined

by the Hamiltonian

H = —) (et+i c + H.c.) + U) n~ tnt g

hp)-.(~~,i+ ~~, i) ——).(~~,~
—~~,i)

2

(2.1)

sin k~ —Ap
Nk~ =27rI~ . —) 2 arctan

P=l
(2.2)

A —sin k~) 2 arctan
j=l

A —Ap= 2m J~+ ) 2arctan
P=l

(2.3)

where the parameters I~ and J~ are integers or half-
integers, depending on the parity of N, and N, . The
eigenstates of the model can be characterized by giving
either the pseudomomenta kz and rapidities A~, or alter-
natively the quantum numbers Iz and J~.

The ground state is obtained by choosing the sets {I~)
and (J~j to contain consecutive integers (half-integers)
centered around zero. For simplicity we assume that N,
is even and N, is odd, i.e. , I~ takes half-integer values
with —(N, —1)/2 & I~ & (N, —1)/2 and J~ is inte-
ger with (N, —1)/2 &—J & (N, —1)/2, so that the
ground-state sets can be chosen symmetrically, otherwise
the ground state would be degenerate. The correspond-
ing pseudomomenta k~ and rapidities A~ form a Fermi sea
with maximal pseudomomentum ko for the charge vari-
ables and with maximal rapidity Ao for the spin variables,
i.e., they are restricted to the ranges —ko ( k~ ( ko and

o &Aa &&o
Contrary to the parameters I~ and J, the quantities

k~ and A~ are not distributed uniformly in the ground
state. In the thermodynamic limit, where the momen-
tum and rapidity variables are continuous, the I ieb-Wu
equations become integral equations for the ground-state
distribution functions of momenta p, (k) and of rapidities
p, (A), satisfying the integral equations

1 ' dA
p, (k) = + cos k ICi(sin k —A) p, (A), (2.4)

27t- 27t

Here c. (c ) is the creation (annihilation) operator of

electrons of spin o. at site j and n~ ~ = c. c. is the
number operator. U is the on-site repulsion, p is the
chemical potential, and h is the external magnetic field.
The hopping integral (which determines the bandwidth
of the free fermions) is taken to be unity. This sets the
energy scale for the quantities U, p, and h.

Lieb and Wui have shown that this model can be
solved by the Bethe ansatz. The wave function and the
energy of N, = Ny + Ng electrons, where Nt and Ng
denote the number of electrons with spin up and down,
respectively, on a chain with N sites can be written in
terms of N, pseudomomentum variables kj and N, = N~
rapidities A~. These quantities have to be determined
from the Lich-Wu equations:



47 ONE-DIMENSIONAL HUBBARD MODEL IN A MAGNETIC. . . 6275

"' dk
p, (A) = Ki(A —sink) p, (k)

k 2X" dA'
Kz (A —A') p, (A'),

27t

with the kernels

(2 5)

U/2 t'I

(&/4)'+ ~' ' (&/2)'+ ~'
The values of kp and Ap are fixed by the constraints

kp

—kp

Ao

dk p, (k) = n,

1
dA p, (A) = (n —m—),

(2.6)

(2.7)

where n = N, /N is the total charge density and m =
(Ny Ny)/N —is the density of magnetization. The charge
density n is related to the band filling v by n = 2v.

The quantities kp and Ap are, however, not the real
Fermi momenta. These latters are related to the number
of electrons by

kF) = vr k~g ——7t. (2 8)

Nc Na
kgb + kFg =z, kgb = 7r (2.9)

The low-lying excitations can be of several types.
Changing the number of electrons of spin up and spin
down by ANy and ANy, respectively, i.e. , changing the
charge by AN, = ANt + ANg and the magnetization by
AM = AN~ —ANg, is equivalent to adding (removing)
b,N, extra I~ and AN, = AN~ extra J values. It has to
be taken into account that an odd number of b,N~ parti-
cles will change the set of integers (J~) to half-integers,
and an odd number of ANg particles will change the set
of half-integers (Iz) to integers. This may generate an
asymmetry in the distribution of the new I~ and J~ val-
ues. This asymmetry will be characterized by the num-
bers D, and D„where 2D, denotes the difference in the
number of positive and negative I~ values, and similarly
2D, denotes the difference in the number of positive and
negative J~ values.

Adding a spin-up particle to the system (AN, = 1,
AN, = 0), the lowest-energy excited state is obtained by
choosing the new I~ value to be I~ = +(N, + 1)/2, i.e. ,
it can be on the positive or negative side of the ground-
state set, producing an asymmetry D, = kl/2. The
change in the number of spin-up particles changes the
possible values of J~ to half-integers and this leads to an
asymmetry D, = ~l/2. Since an extra I~ or J carries
a momentum

2x 2~k= I~ or k= J (2.10)

it is easily seen, using Eq. (2.9), that the total momentum
of the system will change by +k~~. Similarly, adding a
spin-down particle corresponds to AN, = 1, AN, = 1,
D, = 0, and D, = +1/2 and its momentum is +k~g.

We can thus distinguish right- and left-moving par-
ticles that have positive or negative momenta. Let us
denote by AN+, AN&, AN&+, and AN& the number of
particles addecl to the system with spin up and momen-
tum k~y, spin up and momentum —k~t, spin down and
momentum kgb, and spin down and momentum kF—y,
respectively.

It is easy to check, using the above considerations, that
the numbers AN&+, b,N, AN&+, and AN& are related
to AN„AN„D„and, by

AN&+ = —,'(AN. —2N, +2D.),
.b,N) ——

z (EN, —b,N, —2D,),
b,Ni+ =

z (AN, + 2D, + 2D,),
AN) ——iz(AN, —2D, —2D, ) .

Naturally

AN, = AN)++ AN) + 6N)++ b.N)

while the change in the magnetization is

AM = b, N)+ + AN) —6N)+ —AN)

=AN, —2EN, .

(2.1i)
(2.12)

(2.13)

(2.14)

(2.i5)

(2.16)

The asymmetries D, and D, are related to the charge
and spin currents carried by the excitations. For a given
number of extra particles or for a given change in the
magnetization there is still some arbitrariness in the
choice of the values of the sets J(I~) and (J~). The whole
sets can be shifted to the left or right, increasing the
asymmetries D, and D, .

It follows from the above considerations that these
shifted states correspond to large momentum (2k') ex-
citations. These excitations can carry charge and spin
current J, and J, defined by

J, = (AN)+ —AN) )kFy + (AN)+ —b,N) )kFg,

(2.17)

J, = 2(2D, + D,)k~,
J, = —2D, kF .

(2.2i)
(2.22)

Other types of excitations can be created by removing
some I~ values from the densely occupied shifted ground-
state set, leaving behind holes, and choosing the same
number of new I~ values. The removed and new I~ val-
ues can be considered as particle-hole pairs in the distri-
bution of these parameters. If the I~ values of the pairs
are close to the end points of the densely occupied in-

J, = (b,N)+ —AN) )kgb —(AN)+ —4N) )kgb .

(2.18)

For later purposes we give here the relationship between
these currents and the asymmetries D, and D, From.
Eqs. (2.11)—(2.14)

J, = 2D, kF y + (2D, + 2D, )keg, (2.19)

J, = 2D, ky g
—(2D, + 2D, )kJ;g . (2.20)

If originally the system is unpolarized, i.e. , kFt = k~g =
kF, then
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tervals, Nc/2 or N—c/2, the excitations will have small
momenta. The (I~) sets obtained this way correspond in
fact to small momentum particle-hole excitations. The
number of such particle-hole charge excitations around
N, /2 (—N, /2) will be denoted by n+ (n, ). Similarly n+
(n, ) denotes the number of small momentum spin ex-
citations obtained by creating particle-hole pairs in the
distribution of J near N, /2 (—N, /2). The excitations in
the charge and spin sectors are called holons and spinons,
respectively.

These small momentum excitations are superimposed
on the large momentum (2kF) excitations. For momenta
in the neighborhood of multiples of 2k~ both the holon
and spinon excitations have linear spectra with velocities
u, and u„respectively. These velocities can be expressed
in terms of the derivatives of the dressed energies

~', (kp) ~', (Ap)

2vrp, (ko)
' '

2mp, (Ac)
' (2.23)

where the denominators appear to relate the pseudo-
momentum and the rapidity to the real momentum of
the excitations. s', (k) and s, (A) satisfy the equations

P(AN, „D,„n,+8)

(b,+ —A.—+ n+ —n, )

+ (4+ —6;+ n+ —n, )

1
+2D, (kit. + kgb) + 2D, kFi + 0

I

—i, (2.27)

where the dependence of A(8 on the numbers EN„AN„
D„and D, is given by

(+Z88ANc —Zc86N8 Z D +Z DC 2 detZ CC C SC S )

(2.28)

2
8C C CC 8 Z D Z

(2.29)

s,(k) = stol(k)+
' dA

Ki(sin k —A)s, (A), (2.24)
In this expression Z is the dressed charge matrix taken

at the Fermi points

"' dk
cosk Ki(A —sink)s, (k)

Ao 7t

Z„Z„ I'(„(ko) ('„(Ac)iiZ„Z„((„(ko) („(Ao)) (2.3O)

where

Ap

Kg (A —A') s, (A'),
—Ap

(2.25)

and for general k and A the dressed charge matrix itself

(2.31)

is defined by the following integral equations:

s( l(k) = —p, ———2cosk,6
(„(k)=1+ Ki (sin k —A)(„(A),

—Ap

(2.32)

In large but Gnite systems the energies and momenta
of these excitations form towers. The position of a tower
can be characterized by the number of extra particles
ENc and extra down spins b N, and by the number of
large momentum charge and spin excitations D„D„
while the elements of the tower are characterized by the
number of small momentum excitations in the holon and
spinon sectors n+, n, , n+, and n, . According to Ref.
14, to leading order in 1/N the energy and momentum
of the excitations can be written in the form

(„(A)=

(-(k) =

"' dk
cos k Ki(A —sin k)(„(k)

—kp

' dA'
K2 (A —A') („(A'),

—Ap

o dA
Ki (sin k —A)(88 (A),

7t

(2.33)

(2.34)

(„(A)=1+
"' dk

cos k Ki(A —sin k)(8c(k)
7l

u, (A++ 4, +n++n, —
—,', ) (2.35)

+ u, (B+ + E.—+ n+ + n, —
—,', ) + 0

i

—I—
iN)

(2.26)

As given in Eqs. (2.28) and (2.29) Ac+8 are squares of
bilinear expressions of the elements of the dressed charge
matrix and of the parameters of the towers.

It is convenient to use a shorthand notation for such
quantities introducing column vectors iiUH""' ) con-
structed from the elements of the dressed charge matrix,
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det Z
(+~a)

)
cs

det Z
CC

Zsc

)=-(—&)
2

Zs s

det Z
CS

det Z
CC

Zsc

(2.36)

(aib) = ) a,*b, . (2.38)

In this notation 6+, can be written in the form

2A+ = (tp( ""*)~AN~) (2.39)

and defining the scalar product of two vectors ~a) and ~b)

as

(+~.)
2

Zsc
det Z

CC

det Z
CS

Zss

Zsc
det Z

(—~.) ~ Zcc
I~H ') =—

2 det Z
CS

Zss

N,

~bN~) = AN,

2D,

(2.37)

the vector IANH) that contains the parameters of the
towers,

A primary operator P may add (or remove) electrons
or spins to (or from) the ground state, so the parameters
AN, , are uniquely defined by the operator. It may also
change the momentum by multiples of 2k~, the asym-
metries D... can, however, take arbitrary integer (half-
integer) values. The operator P will have finite matrix
elements between the ground state and states belonging
to a series of towers in the excitation spectrum, where
the tower is characterized by the four quantum numbers
AN, , and D, , These numbers and the dressed charge
matrix define the parameters 6+, given in Eqs. (2.28)
and (2.29). According to Frahm and Korepinis the long
distance asymptotics of the zero temperature correlation
functions of the operator P will have the form

)e 2iD, k~&ze—2i(D, +D, )—k~iz
(y(, t)y(o, o)) - ) (x —u, t)z~.+(x+ u, t)2~. (z —u, t)z~+(x+ u, t)~~

Ci 8

(2.40)

Since the parameters AP, appear in the exponents, they
are sometimes called anomalous dimensions.

It is important to emphasize that the four parame-
ters AN, , and D, , do not determine uniquely the four
parameters 6+,. In fact, the finite-size corrections give
three quantities: the coeKcients of u, and us in the ex-
pression for the energy corrections in Eq. (2.26) and the
momentum of the state given by Eq. (2.27). The intro-
duction of the four anomalous dimensions and the sep-
aration of the above-mentioned three parameters in the
form given in Eqs. (2.28) and (2.29), although reasonable,
is somewhat ambiguous. Instead of choosing them in the
form given above, Eqs. (2.26) and (2.27) are equally well
satisfied by

(2.41)

where Ap can be arbitrarily chosen. As is known, without
external magnetic field the charge and spin separation
holds. It is therefore natural to assume that 6, depends
on the number of extra charges AN, and on the charge
current J„while 4, depends on the extra magnetization
AM and on the spin current J, and there cannot exist a
term Ap that appears in both the charge and spin part of
the correlation functions. This, however, is not the case
when an external magnetic field is applied. As was shown
by Frahm and Korepin~5 the charge-spin separation does
not hold in general. The choice proposed by Frahm and
Korepinis (Ap = 0) is motivated by the fact that in this
case the anomalous dimensions A+, can be written in a
simple quadratic form as shown in Eqs. (2.28) and (2.29).

III. WEAK-COUPLING LIMIT
OF THE HUBBAB.D MODEL

IN MAGNETIC FIELD
In the weak-coupling limit it is convenient to rewrite

the Hamiltonian in momentum representation. The hop-
ping term will give rise to the kinetic energy. The spec-
trum of noninteracting electrons has two branches, one
for spin-up and one for spin-down electrons. This is de-
scribed by the free part of the Hamiltonian,

Hp = ) [sy(k)c& ~c& ~
+ sl(k)c& ~ck ~], (3.1)

k

where

st(k) = —2cosk ———p )
2

sg(k) = —2cosk + ——p .
2

This energy spectrum is shown in Fig. 1(a). The
Fermi energy will cut both branches at two points and
this will define four Fermi points at momenta +k~1 and
+k~g. Since in the weak-coupling situation states near
the Fermi energy only are important, the spectrum can
be linearized around the Fermi points. This linearized
spectrum is shown in Fig. 1(b). The slope will define the
four Fermi velocities +vy and +vg. The creation opera-
tors on the four branches will be denoted by aI, &&, a&~ &t. ,

akt &&, and akt L&, respectively, where B and L stand for
right- and left-moving particles.

The interaction U will couple particles on the same
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branch as well as between different branches. Using the
language of the g-ology model the interaction between
particles on the same branch is a g4 process, while inter-
action between particles on difFerent branches can give
backward-scattering (gi), forward sc-attering (g2), or um-
klapp processes (gs). In the most general, spin-dependent
case the coupling strength will depend on whether the
incoming particles have identical or opposite spins. The
corresponding coupling are denoted by g~~

and g~, respec-
tively. However, since in the presence of a magnetic Geld
the Fermi velocities, vT and vg and the Fermi momenta
k~T and kpl are different, the couplings g~~

will be fur-
ther split, into gT and gg, depending on whether both
incoming particles have spin t or $.

Fourier transformation of the on-site Coulomb cou-
pling gives identical values for the backward- and
forward-scattering processes. This coupling exists, how-
ever, between electrons of opposite spin only. Thus the

Hubbard model, in its weak-coupling limit and in zero
magnetic field is equivalent to a g-ology model in which

glJ = g2l = g4~ = U and gi~~
—

gz~~
=

g4~~
= 0. In the

general, non-half-filled case gs = 0.
The g-ology model has been studied in detail by a

renormalization-group treatment. s Under a scaling trans-
formation of the bandwidth the bare couplings get renor-
malized. It has been found that in this way the backward
scattering processes can be eliminated since they scale to
zero if originally they were repulsive. Assuming that the
band is not half-filled, the umklapp scattering processes
can also be neglected. It is therefore expected that the
fixed-point Hamiltonian of the repulsive Hubbard model
is a model in which gz- and g4-type processes only are
present. This is the Tomonaga-Luttinger model.

In the most general case the interaction between the
fermions in the Tomonaga-Luttinger model can be writ-
ten in the form

»T i. t t g2l
k &Tak, I,Tak'+q I.T+k —q RT + ~ 7 - +k Rg k' I g k'+q I.g~k —q ag

k, k', q k, k', qx-( t t t t+ ~ ).(ak, RT~k', Ll k'gq, Ll~k q, RT + k—,Rink', LT k'+q, LT~k q,Rl)—
k, k', q

+2~ & - & k, RT k', RT k'+q, RT k q, RT + k,—LT k', LT k'+q, LT k qLT)—
k, k', q

+ 2~ X i k,Rl k', Rl k'+q, Rl k q, Rl + k,—Ll k', Ll k'+q, Ll k q,Ll)— ,

k, k', q

g4& x ( t t+ ~ ) ( k, RT k', Rl k'+q, Rl k q, RT + k, L—T k', Ll k'+q, Ll k q, LT)— '

k, k', q

(3.2)

It is easily seen that in the form given above the interaction is in fact between the densities on the different branches.
Introducing density operators

(&) = ) ak+q qak
k

&) =) .nk ~rik+q, X
k

where A stands for R t', I t', R $, or I J, , the Hamiltonian describing the interaction is

(3.3a)

(3.3b)

~int = ~ ) PRT (g) PLT ( 0) + ~ ) PRl (Q) PLl ( 0)
q q

+ ~ ) [PRT(Q)PLl( 0) + PRl(Q)PLT( 9)] + 2~ ) [PRT(Q)PRT( 0) + PLT(Q)PLT( 0)]
q q

+2~ ) [PRl(q)PRl( —g) + PLl(g)PLl( q)] + ~ ) .[PR—T(Q)PRl( 0) + PLT(g)PLl( 0)] (3.4)

In the case when no external magnetic field is applied,
the scaling theory can also predict the values of these
fixed-point couplings. The combination gqII

—
g~II

—gq~,
which in our case is equal to —U, is an exact invariant
of the g-ology model. On the other hand, the scaling
equations show that the coupling constant combination
gqII

—
g2II +gq~ and gq~ scale together to zero if originally

they are equal and positive, as is the case for the repulsive
Hubbard model. The fixed-point couplings satisfy

g,'II —g,*II + g,*~ = 0,

g~(I -g~II - g~~ =-&.

(3.5)

(3.6)

(3.7)

»II »& gz~~
—g2g

——U/2 . {3.8)

Since gqII and g~II are physically indistinguishable, we
are free to choose the backscattering as g&II

——0 and so
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IV. ENERGY SPECTRUM
OF THE MULTICOMPONENT

TOMONAGA-LUTTINGER MODEL

Ft

As we have seen in the preceding section the Hubbard
model in magnetic field is expected to be equivalent to
a Tomonaga-I uttinger-like model. The four branches of
the bare spectrum, labeled by R 1', L t', R J. , and L $
have diferent but pairwise opposite Fermi velocities and
Fermi momenta. Here we will define a generalized, mul-

ticomponent Tomonaga-I uttinger model and will show
how its spectrum and correlation functions can be deter-
mined exactly.

Instead of the spin index a "color" index A will be intro-
duced, where the number of colors can be arbitrary. For
each color A there will be right- and left-moving fermions
with opposite Fermi velocities and opposite Fermi mo-
menta,

FF vL, A = —vR, A ) kF, L,A
= kF,R, A ~ (4.1)

o+

~4
~t 4

FS

1~+

+0

Ft

~ = ) ~~+).~~~,
A AA'

(4 2)

In what follow A will stand both for the color and the
A, I index.

The Hamiltonian will be assumed in the form

FIG. 1. (a) The energy spectrum of free fermions on a
lattice in an external magnetic field. (b) The linearized spec-
trum of noninteracting fermions with velocities ivy and +vg
of the corresponding Tomonaga-Luttinger model. The Fermi
momenta +k~y and +A:p-g are also shown.

Hg = ) vP(k —kFi, )Qi gGi i, ,

k

(4 3)

where HA is the kinetic energy of free particles of color
A and Hgg describes the interaction between particles
of color A and A'. Assuming a linear dispersion relation
with Fermi velocity VA and Fermi momentum kFA, HA
can be written as

The couplings g4 do not get renormalized to lowest
order and they can be incorporated into a Fermi velocity
renormalization giving

where ak~
A

and ak A
are the creation and annihilation

1

operators, respectively of fermions of color A.

As a generalization of Eqs. (3.2) and (3.4) the interac-
tion HAA is supposed to exist between the densities of
fermions of color A and A',

1
V~ = VF+ (g4[~+g4 L),2'

1
Vs = VF'+ (g4(( g4 L) ~

27r

(3.S)

gAA& I,q~ak Aak, A, ak, + A, akt

k, k', q

(4.4)
1

2~ ) .m~ (q)p~(q) p~ ( q), —

In the present case, where g4~~
= 0 and g4~ = U, the

renormalized velocities will be

U
Vg =VF+ 2' ' vg =vF-

27r
' (3.10)

The above considerations are valid for h = 0. The
scaling theory can be generalized to the g-ology model in
magnetic field. This cannot;, however, be equivalent to
the Hubbard model in magnetic field, since in the latter
model the Fermi velocities are diferent for the two spin
orientations. In the next section we will introduce a gen-
eralized Tomonaga-I uttinger model with several kinds of
particles, each having different velocities, and will calcu-
late exactly its properties.

where X is the number of sites in the chain and the cou-
pling constants gyp are symmetric in the color indices

gAA ——gA A. The momentum transfer in the scattering
processes is limited by choosing g(k) = ge ~ "~~A, with
the momentum transfer cutofF A &( kF~, i.e. , only srnall-
momentum-transfer processes are allowed.

Following Mattis and I ieb, let us introduce the den-
sity operators defined in Eqs. (3.3a) and (3,3b). They
obey the commutation relations

[p„(—q), p„.(q )] = S~ ),.b. .. sgn vp,
qN

(4 5)

9»(—q) p~ (-q')j = h»(q) p~ (q')j = o
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Mattis and Lieb have shown that not only the inter-
action is bilinear in the densities, but the kinetic energy
part of the Hamiltonian Eq. (4.3) can also be written in
terms of the density operators

2-)-l„,l„.(q). ( q)-
p~( —q)p~(q) if » «. (4.6)

In what follows we will use the notation Hp for the ki-
netic energy when it is written in its original form Eq.
(4.3) and the notation H& when written in terms of the
densities. Both Hg and H& obey the same commutation
relation with the density operators

H» p&(+q) = Hx p&(+q) = +qv&p&(+q) (47)

and with the interaction, so they can only differ in a shift
of the ground-state energy.

Haldanes has pointed out that the expression (4.6) is
valid in the Hilbert space of a fixed number of particles.
An extra term should appear in the energy if the number
of particles is changed. If ANp particles of type A are
added to the system, the additional energy is

AE = (vr/N)Ivy I(ANg) (4.8)

In an operator form

ANq = ) [at& zaz z
—O(k~q —k sgnvp)],

k

(4.9)

H~ =
N iv~1(AN~)'+ N ).1»lp~(q) p~(-q)

q)0
(4.10)

As mentioned before, the interaction between the
fermions is in fact an interaction between the densities,
so it is straightforward to express the interacting part
of the Hamiltonian in a bilinear form of the densities as
given in Eq. (4.4). Analogous to Eq. (4.10), the q & 0,
q = 0, and q ( 0 parts will be treated separately. Regu-
larizing the q = 0 part in the interaction by subtracting
the infinite ground-state density [using ANp of Eq. (4.9)
for pg(q = 0)], the full Hamiltonian of the model is

2~ ) A~a p~(q) p~ ( q)—
A, A, q)0

where O(2:) is the Heaviside step function. Adding this
term to Eq. (4.6) and neglecting a constant term coming
from commuting the density operators, the kinetic energy
is equivalent to

Since the matrix A is symmetric and real, this equation
can be satisfied with real vectors Iiv(&)) and real veloci-
ties u~ unless the couplings gqq /2x are of the order of
or larger than Ivpl. We will not consider this strong-
coupling situation, where different kinds of instabilities
may occur, since, as we will see, even in the strong-
coupling limit of the Hubbard model the couplings of
the equivalent Tomonaga-Luttinger model are less than
the velocities.

Using the commutation relations for pg given in
Eq. (4.5), the new density operators P~ satisfy the re-
lations

[Pg( —q) P~'(q')] =
2 4,q (u")IBliv" ')

(4.17)

[P~ (—q) P~'(-q')1 = [P~ (q) P~ (q")] = o,
where the elements of the matrix B are

Bgp~ = 6ppI sgn'Ug . (4.18)

The matrices A and B do not commute; futhermore B
1, where 1 denotes the unit matrix. Since we want the
modes p~ to satisfy the usual commutation relations, we
could try to require

(iv(3) IBliv(2 )) (4.19)

can be written in a shorthand notation as

H = ) (p(q)IAlp(q)) + —{AN]A[AN) . (4.13)"q)0

The usual procedure is to diagonalize this Hamiltonian
by a canonical transformation. Instead we will use a dif-
ferent procedure. Let us suppose that the new densities

pz (+q) that diagonalize the first part of the Hamiltonian
can be obtained from the densities p~ (+q) by multiplying
the column vector Ip(q)) by the vectors Iiv(~)), i.e. ,

P (+q) = ( "'Ip(+q)) . (4.14)

We require that the first part of the Hamiltonian (4.13)
be the sum of the contribution of these decoupled modes,

H = ) ) Iu, lp, (q)p, ( q)+ ——(ANIAIAN),"
q&0 2

(4.15)

where u~ is the velocity of the jth mode. The matrix A
can then be written as

A = ).Iu~ll~"')(~"'I . (4.16)

where

galA» = Iv~l4~ + 2'

7l+—) App ANgANp
gl

(4.11)

(4.12)

It turns out that this is not possible because B is not
positive definite. Some of the diagonal elements have to
be —l. Analogous to the first equation of (4.5), we will
assign these negative signs to the respective velocities uz,
writing the orthogonality relations of the Iiv(~)) vectors
in the form

Introducing the vectors lp(q)) and IAN) with compo-
nents p&(q) and ANi, respectively, and the matrix A
defined by the matrix elements A&&. , the Hamiltonian

(~(') ]BI~("))= ~,,' sgnu, . (4.20)

This shows that the diagonalization of the Hamiltonian
with this orthogonality constraint is equivalent to the
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generalized eigenvalue problem

A~a(')) = u B~e(')),

where

(4.21)

in the usual form, and the total momentum is

.(P = ) ~
k~g+sr sgnvp

~
AN~N

~uj(2) )
—B~ui(3)) (4.22)

It follows from the commutation relations (4.17) that
the properly normalized density operators

qb~b . if uj &0

q)O,j
(4.30)

27r
NA(q) 4~ = 2x-

qNP ~( q)- (4.23)
The term Q& (AN) & sgn v~ can be written in terms of the
matrix B as (AN~B~AN). Using the spectral decompo-
sition of B in Eq. (4.28), the momentum can be written

have the properties of boson creation and annihilation
operators if uj & 0 and q & 0, while for uj & 0 these
operators have to be defined by P = k~g Ng+ sgnu~

2~-
p~( —q) and b q~

——

qN

2r
NPg(q)

(4.24)
qbt b, if u, )0

q&p,j q~2 q)2

(4.31)

~(i) ~iv(i) ) (~(i)
~

with matrix elements

(4.25)

again for q & 0. For the symmetric model [see Eq. (4.1)]
the velocities uj are also symmetric, that is, there are
pairs j and j' for which uj = —uj . The corresponding
operators bt and bt ., can then be considered as the
creation operators of a single bosonic field defined for all
values of q.

Introducing the diadic matrices

Since the momentum of the bosonic excitations is
quantized in units of 2x/N, the quantity g qb b can
take values that are integer multiples of 27r/N. Denoting
by n~ this integer number for the bosons with velocity u~,
the energy and momentum of the system take the form

E(ANp, n, ) Eo =— ).[upi(A(')+ng)+0 ~—
&N)

(j) ~(j)~(j) ~(j)~(j) sgn p~„~,i (4.26)
P(ANp, n, ) = ) (A(') + n, ) sgnu,

A=) ~u, ~n(~), (4.27)

the spectral decomposition of A in Eq. (4.16) takes the
simple form

1+) ANpkF), + 0 (4.33)

while the eigenvalue equation (4.21) gives
where

(4.28)

Using the spectral decomposition of A in Eq. (4.27),
the second term in Eq. (4.15) can also be diagonalized.
We get

. """ 6-"6-" f- 0
q&G,j

+N (4.29)

The momentum of the system can also be calculated
easily. The addition of AN~ fermions changes the Fermi
momentum k~p to k~p+2+(ANp/N) sgn vp. The change
in the momentum is obtained by multiplying the average
Fermi momentum by the number of added fermions LNp.
The momentum of the bosonic excitations can be written

(4.34)

Thus the excitation spectrum has the usual tower struc-
ture and the towers are characterized by the parameters
ANp forming the vector ~AN).

These expressions for the energy and momentum Eqs.
(4.32) and (4.33) should be compared to those expected
in conformal field theories or to those obtained for the
Hubbard model given in Eqs. (2.26) and (2.27), taking
into account that if the noninteracting system was sym-
metric (v~, p = —vt. p), then the collective mode veloci-
ties are also such that each mode has its counterpart with
opposite velocity.

Using the language of the conformal field theory, the
quantities A(~) can be associated with the anomalous di-
mensions of the primary fields P. The operator P de-
termines the parameters LNp and thereby selects the
towers that contribute to the correlation functions. The
contribution of a given tower to the correlation function
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1s

(P(x, t)P(0, 0))

exp ~
—ix) k~gAN~

)
& t)2~(i)

(4.35)

V. GENERALIZED CORRELATION
FUNCTIONS OF THE MULTICOMPONENT

TOMONAGA-LUTTINGER MODEL

The Green's function of the fermions has been calcu-
lated exactly by Dzyaloshinsky and Larkin. They have
shown that due to the linearity of the spectrum and due
to the absence of large-momentum-transfer processes, all
diagrams containing internal fermion loops with more
than two interaction legs cancel. As a consequence, the
diagrams that give nonvanishing contribution are very
simple: the incoming fermion lines pass through the di-

I

This assignment of A~~l to be the critical exponent, al-
though straightforward, is not rigorous. Since the veloc-
ity u~ appears in Eq. (4.32) in absolute value, the contri-
bution of the modes with opposite velocities appear in the
expression for the energy as a sum. Their separation into
positive and negative components could be attempted us-
ing the expression for the momentum where, due to the
factor sign u~, their difference appears. As we will see,
and was emphasized by Frahm and Korepin s for the
Hubbard model, this separation is not a priori possible,
since in general the contribution of all modes are mixed
in the expression for A&~&. The critical exponents cannot
be determined unambiguously. It is therefore of interest
to calculate these correlation functions directly, using an
independent method. It will be shown that, indeed, the
critical exponents are (AN~a&~& ~AN).

agram conserving their color. These lines are coupled in
all possible ways by efFective interactions which are ob-
tained by dressing the bare interactions with polarization
bubbles.

Another important ingredient in the calculation of the
Green's function was the proof by Dzyaloshinsky and
Larkin s of an exact Ward identity for general momenta.
For an alternative proof of the theorem using more el-
ementary arguments see Ref. 17. This Ward identity
is a consequence of a special conservation law of the
Tomonaga-I uttinger model. In the absence of backward
scattering and umklapp processes the particle number is
conserved on each branch of the spectrum for each spin.
In the case of a linear energy-momentum relation the
particle-number conservation goes together with the cur-
rent conservation for each branch. Two-particle Green's
functions or correlation functions can also be calculated
exactly using generalized Ward identities as shown by
Solyom. 6' ~8

The same arguments are also valid in the multicom-
ponent case as well, since the color current is conserved
in the scattering processes described by the interaction
Hamiltonian (4.4). Following Refs. 6, 16, and 17 it is
possible to introduce efFective interactions and to prove
the generalized Ward identities by considering the dia-
grammatic expansion of the quantities. This allows us to
write the Dyson equation for the correlation functions in
a closed form and to calculate the exact form of the most
general correlation function of fermions in the multicom-
ponent Tomonaga-Luttinger model.

Alternatively, as was shown by Everts and Schulz, is

the equation of motion method can be used, since a closed
set of equations can be obtained in two steps. The same
procedure has been applied by Di Castro and Metznerzo
in their study of the properties of Luttinger liquids.

Let us consider the most general correlation function

Gg, g, .. .g (x„x~, . . . , x' Ixi, x2, . . . , x~) = (—i) (24)„(x,)@g,(x~) Cg (x' )4„(x~) @„(xz)4q (xi)),
(5.1)

where 4'p(x) is the field operator of fermions of color A,
x is a shorthand notation for the space-time point (x, t),
and T is the time ordering operator. For simplicity we
will assume that the color indices Ai, Az, . . . , A~ are all
different, although the results can be easily generalized
by proper antisymmetrization to the case, when several
particles of the same color are present.

The equation of motion is derived by taking the deriva-
tive of G with respect to the time variable t~ of the op-
erator @&~ (x~). For this we write first the equation of
motion for @~t(x, t), 0@t„(x,t)/Bt = i[H, C'~t(x, t)]. In-
stead of using the fermionic representation both for the
kinetic energy and the interaction Eqs. (4.3) and (4.4),
respectively, it is convenient rewrite the Hamiltonian as

—@~~(x,t) =i H~, C~(x, t) +i H —H„', @'„(x,t)

= —v~ @~i (x, t) + i H —H~, @~ (x, t)Bx
(5.3)

Since the Hamiltonian is written in terms of p~ we need
the commutators

p, (+q, t'), 4~i(x, t) = 6(t —t') e+''i*ur~~'l @t„(x,t),

where for Hp we use the fermionic form [Eq. (4.3)], while
for H and H& the diagonalized forms in terms of bosonic
operators p~ is applied. Then

H=) H+~ H-) H„'

A

(5.2) which are obtained from the relation between p~ and pg
in Eq. (4.14) and from the usual canonical relations be-
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tween the ferrnion creation and annihilation operators and densities.
Using Eq. (4.15) for the full Hamiltonian, the commutator gives

[H, @qt(x, t)] = ) lu, lrvq('l[e'q*@qt(x, t)p, (—q, t)+e 'q*p, (q, t)4'tq(x, t)]
q&0,2

= ~ ).lulls "*~~"~&(~ t)p~(q t)
q22

(5 5)

where we have neglected the commutator of @t&(2:,t) and p~ (q, t) that yields a shift of the ground-state energy.
In order to calculate the commutator with H& given in Eq. (4.10), we express pq in terms of p~. Using the spectral

decomposition of B [Eqs. (4.18) and (4.&0)],

pq(+q, t) sgnvp = ) rvq(~P, (+q, t) sgnuq . (5 6)

With this form we find

[H&. , @„'(2,t)] = ) l»l4~2v&" sgn(u&»)[e"*@I(~ t)P~( —q )+ "*P~(q t)@I(»t)]
q)0

~ ) lv l4~ "* "'P, (q, t)@'(* t) g (u») (5.7)

Inserting these expressions into Eq. (5.3) we get

l

—+vg
l Cq(x, t) =i ) (u, —vg)e 'q*rvt P, (q, t)C„(x,t)sgnu, .(8 8 ) t .22I'

x
(5.8)

It is straightforward now to write the equation of motion for the correlation functions

8 + vp G&) "&~(xl) ) xm) xr) ) xm)t 8z

= i6'(x' —x )6(t' —t )Gg, ..p, (x'„.. . ., x', ; xr, . . . ,x,)

.2' —iq~ (i) (i)+2 ) Sgrlu~ (u~ —VZ )e 2U~ F~ & (Xr) ) Xmj X1) ) Xmj q) tm) )N

where F& & is defined by

F~ ), (X1, . . . , X';X1, . . . , X;q, t) = (—i) + ('T@g, (Xr) @p (X' )p~(q, t)4~ (Xm) . 4I, (Xr)). (5.10)

As a next step we calculate the equation of motion for the generated new quantity. H is now used in its bosonic
diagonal form (4.15). The singularities due to the time ordering produce the original Green s function; thus

F(ii I—F), g (Xr). . . )Xm)xr). . . )Xm)q, t)8t ) '''

. z (2) g I I
'(Xr) ) Xm) X» ) Xm,'q, t)

+2 ) [e' '6(t —tI) —e' *'6'(t —t()]rv) Gg " p (xr x ' xr xm)
L=1

(5.11)

The hierarchy of equations terminates in this step, no further quantities are generated. Fourier transformation to
frequency cu and inverse Fourier transforming back to the time variable t gives

z (i) (X1).. . ) X~) X1).. . ) X~ j Q, $) = g1 '' m,

l=1
I IX Gp). ..g (Xr ) . . ~ ) Xm j Xl ) ~ ~ ) Xm) (5.12)

Finally, inserting this into Eq. (5.9), performing the integration with respect to q and cu, introducing the kernels
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~(i)
K» (x, t) = ) (u, —v„) (5.13)

where o.zz, is defined in Eq. (4.26), we get

&a el+ vp GAIT A~( lrx2) ' ' ' rx~jxiix2) &xm)
~Bt

™Bx

I IitI(x~ —x~)Gq, . ..q, (x„.. . , x~ „xl, . . . , x~ l)

+) [% A~ (xm xi) KA A~(xm xi)] GAqAq "A (xi~ x2& ~
& x~j xi& x2) ~ ~ ~ I xm) ~

/=1
(5.14)

Before turning to the solution of this equation for
Gg, p, ...g, let us consider an auxiliary problem, the dif-
ferential equation

(&i+vg& )f» (x, t) = K» (x, t)f» (x, t) . (5.15)

where

n'= )
2

(u~~p, )(0

(5.19)

fo(x —vent) =
h

3
(u~ vp)(0

(i)
1+ (x —vent) A ""' . (5.17)

Inserting this into Eq. (5.16) and using Eqs. (4.18) and
(4.28), we find

Using Eq. (5.13) its solution is found in the form

— (j)

( t)=f( — ) ---. (x —vpt+i/Asgnu t j3 2

(5.16)

where fc(x —vent) is an as yet undetermined function
with boundary condition fo(0) = 1. The proper analytic
properties of f can. be ensured if we choose fo in the
following form:

We use this result first to calculate the one-particle
Green's function Gg(x', x). It satisfies the equation

~

—+ vg
~

Gg(x', x)
(8 0'l
j,Bt Bx)

= i6(x' —x) + [Kpg(x —x') —Kpg(x —x)]Gg(x', x) .

(5.20)

The term with K~~(x —x) gives a shift in the ground-
state energy and will be neglected. The differential equa-
tion is satisfied if the dressed Green's function has the
form

f» (x, t) = A '
l

*-v~t+ —sgnv~t! A
Gg (x', x) = G~( i (x', x)fop (x —x') . (5.21)

(2)( i
x

~
x —u~t+ —sgnu~t

~1

3

(5.18)
In the same way, using Eq. (5.15) it is straightforward

to see that the solution of the differential equation (5.14)
can be expressed as a product of functions f,

1
GA)A). ..A~ (xl) x2). . . , xm, j xi) x2). . . , Xm)

= Gp (x', x~) ', , Gg, .. .p, (x„.. . , x', jxi, . . . , x~ l) . (5.22)
f», (xm —xi)f», (x' —xi)

Xm —Xl A A, Xm —Xi

Since Eq. (5.22) is a recursion relation for the correla-
tion functions, the full solution is

I I I
GAypg ...A~ (X rxl2& ' r X& j Xl & X2& ~ r Xm)

fg, g, , (xi —xi, )fp, )... (xi —xi. )
Gq, (x&, xi)

;,--; f, „(xi —xi )f)„),„(x', —x,', )

(5.23)

The correlation functions appear in a fully factorized
form. This is a typical feature of integrable systems and
is due to the factorizability of the scattering matrix.

We will apply now this general formula to obtain the
explicit form of the time-dependent response functions
for which the conformal invariance gives the prediction
(2.40). Let us consider the response function y(x)
(2 Ot(x)O(Q)), where O(x) is a product of fermion field

operators @p(x) and 4'~&(x). The particles propagate
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from the origin 0 to x or in the opposite direction. If
two particles of color Al and Al propagate in the same
direction the product of the f functions in Eq. (5.23)
gives

(5.24)

while if they propagate in opposite directions, we get

(5.25)

As mentioned in Sec. III the Tomonaga-Luttinger
model, which could be equivalent to the Hubbard model
in a magnetic field, has to have four components with
Fermi velocities +vt. and +v~ and Fermi momenta +k~y
and +k~g, and it might have six different couplings g2T,
g2$) g2J 7 g4T~ g4$) and g4J ~

The matrices A and B defined by Eqs. (4.12) and (4.18)
will be denoted in this special Tomonaga-Luttinger model
by ATL, and BTL. Taking the color indices in the order
R t', I t', B $, and I J, they have the form

Using Eq. (5.21) for the propagator of the particles and
the explicit form (5.18) for the f functions, after some
bookkeeping and elementary considerations, we arrive at

(vt + g4y g21 g4~ g2J
g2$ Vy + g41' g2J g4J
g4~ g2~ Vg + g4J g
g2J- 942. g2l vg +g4l)

(6.1)

x —vq, t + i/A sgn vp, t
t

x —vga 8 + x6 sgn vp] 8

( & ) pp, , ll'(j)

~

x —u~t+ —sgnu~t
~

j, l

BTL, =
0 0

where g = g/2vr and

0 0 )
1 0
0 —1)

(6.2)

(5.26)

where Cll is either 1 or —1, depending on whether the
fermions of color Al and Al propagate in the same or
opposite direction. Denoting by ANg the number of
fermions of color A propagating from the origin to the
point x (particles propagating backwards appear with
negative sign), Eq. (5.26) can be written as

The eigenvalue problem Eq. (4.21) with A = ATL and
B = BTI will produce the velocities +u, and +u, of the
charge and spin collective modes, and the eigenvectors
Iu'TL') I~TL"') I~TL') and I~TL ').

Using Eq. (5.29), it is straigthforward to give the ex-
ponents of the correlation functions in terms of the eigen-
vectors ~ivTL""' ),

y(x, (ANp)) exp i x ) ANpk~—
)

u t)
—(&Nial'~(DN) (5.27)

Comparing this formula with Eq. (4.35), the critical ex-
ponents are indeed

(5.28)

where the elements of' the vector

(6.3)

ANRy
ANLy

~aNTL) =
R$

(6 4)

count the number of diferent fermions in a given corre-
lation function, the number of extra particles added to
the system.

The requirement that this system should have the same
behavior as the Hubbard model leads to the relation

as conjectured from the conformal field theory. Using the
definition (4.25) of the matrix a~~),

(5.29)

Strictly speaking this formula is valid for ANg = 0, +1.
However, since y(x) is an asymptotic correlation func-
tion, this formula could still be used if two or more
fermions of the same color are created at very small dis-
tances compared to the propagation path x.

VI. MAPPING OF THE HUBBARD MODEL
TO THE TOMONAGA-LUTTINGER MODEL

Our aim is to find the mapping that, for a given
value of the Coulomb repulsion U of the Hubbard model,
determines the couplings of the equivalent Tomonaga-
Luttinger model. This is achieved by requiring that
the critical exponents, the anomalous dimensions be the
same for the two models.

(6.5)

(~T"L) ~aNTL)' = (~„")~aNH)'. (6.6)

It is natural to identify the numbers ANR~, ANL~,
ANRg, and ANL~ with the number of right- and left-
moving particles introduced in Sec. II for the Hubbard
model. Equations (2.11)—(2.14) can then be used to re-
late the vectors ~ANTL) and ~ANH) defined in Eq. (2.37).
These relations can be written in a matrix form,

lZNTL) = V~SNH), (6 7)

where the anomalous dimensions of the Hubbard model,
AP, are defined in Eqs. (2.28) and (2.29). From the
comparison of Eqs. (6.3) and (2.39) we find
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where

(1 —1 1 0)
1 —1 —1 0
0 1 1 1

(0 1 —1 —1)
(6.8)

Making use of this relationship we are able to relate
the matrix elements of AT I, which contain the couplings
and velocities of the Tomonaga-Luttinger model, to the
known elements of the dressed charge matrix of the Hub-
bard model. According to Eq. (4.27) the spectral decom-
position of A&1 is

Using Eq. (6.7) that relates the vectors IANTI, ) and
IANH), Eq. (6.6) is satisfied if the eigenvectors luiTI, )
and liUH) are related by

&~i = u. (I~Ti )(~~i I+ I~~i )(~~i I)
(& ) (~ ) ( ~ ) ( ~ )

+u. (I~&&') (~&&'
I
+ I~~I. ') (~TL",

'
I) .

(6.10)

I~T'i) =(& ') I~0'). (6.9) Inserting Eq. (6.9) into this expression we get

8TI. = uc(& ) (I~H" )(~H" I+ I~0" )(~a I)L +us(& ) (l~~' )(~H"' I+ I~H"' )(~a"' I)& (611)

The vectors luiH""' ) are given in Eq. (2.36), while the
matrix AT I is defined in Eq. (6.1). It is straightforward
now to And the couplings g of that Tomonaga-Luttinger
model, which has the same critical behavior as the Hub-
bard model with coupling U in a magnetic field Ii,

where Z„, Z„, Z„, and Z„are defined in Eqs. (2.30)—
(2.35).

A. The zero magnetic-fieId case

2&c 2ut'+941' =
2 (d Z)2

+ (Z„—Z„)det Z 2

2Zsc 2+T (d z)'+(- , (612)

As a special case let us consider the model erst in zero
magnetic Beld where the magnetization vanishes. This
case corresponds to Ap —+ oo. The Bethe ansatz equa-
tions have been analyzed in detail by several authors.
Equations (2.4) and (2.24) for the charge degrees of free-
dom simplify toi

—(Z„—Z„)

uc (Zss —Zcs)
1+&4l

2 (d t z)2 sc

u, (Z„—Z„)~
2 (det Z)~

2

921'
2 (d Z)2 ( cc scj

Zsc
2 (det Z)~ (6.13)

(6.14)

and

1
p, (k) = + cos k

27r

s'c(k) = 2 sin k+cos k

"' dk'—
K(sin k —sin k') p, (k')

2K

(6.18)

dk
K(sin k —sin k') s', (k'),

(6.19)

u, (Z„—Z„)2

(det Z)2

u, (Z„—Z„)2

2 (det Z)s
2
SS

u, (Z„—Z„)Z„
g4~ = —

(
+ Z„(Z„—Z„)detZ 2

us (Zsc —Zcc) Zsc+
( )2 + Zss (Zcs Zss)detZ 2

(6.15)

where the kernel K(z) is given by

K(z) = e—(uU/4

cosh(~U/4)
(6.20)

The velocity of the charge modes, u, is given by
Eq. (2.23).

In the expression (2.23) for the velocity of the spin
modes, both the numerator and the denominator van-
ish in the limit, when Ap ~ oo. This velocity can be
calculated using the form

(6.16) 1
27r

k0
sink ldk e~~ """ '(sk)

u, (Z„—Z„)z„
g2~ —— —Z„(Z„—Z„)detZ 2

s ( sc cc) sc

(d t Z)2 ss cs ss

(6.17)

kp

dk e~~ """p,(k) (6.21)

Using Eqs. (2.32)—(2.35), the dressed charge matrix de-
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fined in Eq. (2.30) takes now the form

(((ko) 0

((kp) 1

where

(6.22)

1.8

1.6

1.4

1.2

0.3
0.7

((k) = 1 +
"'

dA,
"

cosk'K(sink —sink' )((k') .
27!

0.8 - "
0.6

0.4

0.1
0.2

0.1

0.9

2d,+ = —
~ ((kp)(2D, + D, ) ~

kp )
1 (~ 6N, —2bN, I

v~

(6.24)

(6.25)

In this special case the charge and spin degrees of free-
dom are independent. To show this we use (6.22) in the
expressions (2.28) and (2.29) for the anomalous dimen-
sions E+,

0
0

I

12
I

16 20

FIG. 2. The velocity with the Hartree-Fock correction
v~ + g4~~ of the Tomonaga-Luttinger model that shows the
same critical behavior as the Hubbard model with the
Coulomb repulsion U in zero magnetic field for density n =
0.1, 0.3, 0.5, 0.7, and 0.9. The arrows on the right-hand side
show the asymptotic value of the velocity in the large-U limit,
vp + g4((

—+ (5/4) sin em.

6N
4 E

'
2kF ((kp))

k v&)

(6.26)

which clearly demonstrates the charge-spin separation.
In the general, field-dependent case, however, both AN,
and AN, as well as J, and J, will contribute to all the
exponents.

Evidently in zero magnetic Geld the Fermi velocities
and momenta of spin t' and spin $ fermions are equal.
Furthermore, the couplings g4t and g4~ are also equal
and will be denoted by g4~~. Similarly g2i = gzj, = gz((.
In this case Eqs. (6.12)—(6.17) reduce to

The anomalous dimensions can be expressed in terms of
the extra charge AN„ the change in the magnetization
DM, and the spin and charge current J, and J, defined
in Eqs. (2.15), (2.16) and (2.21), (2.22). We find

1.25 05

0.3

the bottom of the band is very close to the Fermi energy
and a linear approximation of the dispersion relation is
valid in a narrow energy range only. Near half filling the
umklapp scattering gs becomes important, and this leads
to the breakdown of linearity. We will analyze the small
and large-U limits separately.

In Figs. 5—7 we present the velocity and the couplings
for several values of U as a function of the band filling or
density n. At low densities all three quantities go linearly
with n Close to .half-filling g2 decreases and goes to zero
for any U. In the same region g4~ becomes negative,

u, ( 1
vp + g4~~

=-
u ( 1

2 ((z(kp)
u, ( 1

l((z(k )

(z(kp)
)~

u,
4 ) 2

(z(kp) u,
4 2

('(kp)
4

(6.28)

(6.29)

(6.30)

0.75

0.25

0.1

0.9

Equations (6.18)—(6.21) and (6.23) can be solved nu-
merically to evaluate the velocities and ((kp). Perform-
ing this calculation for several densities n as a function
of the Coulomb coupling U, we plot our results in Fig. 2
for v~+g4~~, in Fig. 3 for g4~, and in Fig. 4 for gz~ = gz~~.
As we can see, the couplings g4~, gz~, and g2~~ are linear
in U for small U and they saturate for large U. Except
for very low densities or for densities near half-Glling, the
linear region extends to U values of the order of the hop-
ping integral, which is our energy unit. At small densities

0
0 12 20

FIG. 3. The couplings g4~ of the Tomonaga-Luttinger
model that shows the same critical behavior as the Hubbard
model with the Coulomb repulsion U in zero magnetic field
for density n = 0.1, 0.3, 0.5, 0.7, and 0.9. In the small-U
region the dashed line shows the predictions of the scaling
theory, g4& = U. The arrows on the right-hand side show
the asymptotic value of the coupling in the large-U limit,
g4~ —+ (5/4) sin em.
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(6.32)

(6.33)

gg~ =
gg~~

= —+ O(U )

g4~ = U+0(U ) .

(6.34)

(6.35)
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the scaling th
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FIG. 7. T e same as F'1g. 5 for the couplinp cng g2~1, g2~.
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cussed in Sec. III. As mentioned before, the numerical
results show that this linear approximation is valid until
U becomes of the order of unity.

8. large-U limit (U )& sin kp)

0.6--

0 5--

0.4--

n=0. 1

h c=0.01 2664

U=4

V1.+g4g

Vg+g4~

The strong Coulomb coupling splits the bands. For in-
finitely strong repulsion only the lower band will be filled
until ko ——urn = 2k~. The velocity of the charge exci-
tations will be u, = 2sin2k~, while spin waves cannot
propagate, since double occupancy of sites is forbidden.
For finite but large U the equations for the dressed charge
and the velocities can be calculated in inverse powers of
U,

0.3--

0 2--

0 1--

0
0 0.2 0.4 0.6

4 ln2
((kp) = 1 + — sin kp + O(1/U ), (6.36)

4k, ln2
u, =2sinko

I
1 cosko

I
+O(1/U ) (6 37)

2ko
(6.as)

Both the charge and spin excitations remain gapless. The
velocity of the spin excitations is of the order of 1/U, as
expected. To leading order in 1/U the couplings are

t p + g4(~
=

4 sin urn + O(l/U),
g2~ =

g2~~
=

4 sin em+ O(1/U),
g4~ =

4 sin em + O(1/U) .

(6.39)

(6.40)

(6.41)

B. The model in a magnetic fj.el'

In order to do calculations in a Rnite magnetic field we
need to establish the connection between the parameters
Ap and h. In the ground state those states of the two
Hubbard bands are occupied for which s, (k) ( 0 and
e', (A) & 0, i.e. , kp and Ap satisfy the equations

The coupling saturate to a finite value. The asymptotic
~values are shown by arrows in Figs. 2—4. Looking at those
figures we should also notice that the couplings remain
always smaller than the velocity, thus no strong-coupling
instabilities can occur in the model. The fractions 5/4
and 3/4 give the simple exponents found in this limit. '

FIG. 8. The velocity and couplings of the Tomonaga-
Luttinger model that has the same critical behavior as the
Hubbard model rvith U = 4 and density n = 0.1 plotted
against the magnetic field h/h, (h, is the magnetic field of
saturation). As h —+ 0 the couplings ger, gqi, and g2~ (solid

lines) approach the common value in a nonanalytic way.

Solving this set of linear equations for the magnetic
field we get

s, (ko) $„(Ap) —r, (Ap)(„(ko)
(-(ko)(-(Ao) —(-(ko)(-(Ao)

(6.45)

2--

As the strength of the magnetic field increases, in the
ground state the number of spin down particles decreases
and correspondingly Ap decreases. At a finite value h, of
the magnetic field all spins point upwards, and Ap van-
ishes. For larger fields the spin excitations will have a
finite gap, the system ceases to be critical and the corre-
lation functions decay exponentially. Our considerations
based on mapping to the critical Tomonaga-Luttinger
model are not valid any more for h & h, .

In Figs. S—10 we show the couplings for three densities
for fixed U = 4 as a function of the magnetic field h.
It can be seen that for h —+ 0 the couplings g~T, g~g,
and g2~ approach the common value given in Eq. (6.30)

s, (ko) = 0, s, (Ap) = 0. (6.42)

Following Woynarovich this equation can be rewritten
using the definition of the dressed charge in Eqs. (2.32)—
(2.35) as

hb
~.(ko) = k.(kD) —

(k, + —
l $„(ko) + kk..(ko) = 0,

(6.43)
h

~, (Ao) = E, (Ao) —
I p + — („(ko)+ h(„(Ao) = 0,

0 5--

hc=O 8284

V1+g41
0=4
n=0.5

VS+g4S

g4i

(6.44)
0

0 0.2 0.4 0.6

where s,(k) and E, (A) are the band energies for h = 0
and @=0. FIG. 9. The same as Fig. 8 at the density n = 0.5.
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2' 2

e U kp)0(

dk- k —.(k.)((k) ——.(k)((k.)j
kp

kp

2m sin A:

(6.47)
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' E . ,6.23) and s,(k) is ob-
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2Ã

(6.48)

which for large U is

8 f'
n—sin 27m l 0( / s)

27r )
(6.55)

f ((kp) + O(h~)

i
+ O(h))+ O(h) ~

1++ 1+

(6.49)
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get

Vt + g4y

ggy

vl + ~4l —g2l

g4& = g2&

uc,
0,
—(1 —o,)
&c 2

2
uc—(1 —n) .
2

(6.59)
(6.60)

(6.61)

(6.62)

We can choose vt = u„vl = 0 yielding

g4T =ggt =0)
g41 =g» =

2
(1 —~)

uc
g4J = g2J. = (1 ~) .

2
This is easily understood, since if A:pl = 0 and u, = 0, the
distinction between right- and left-moving particles dis-
appears for that branch. These degeneracies are clearly
seen in Figs. 8—10.

In the small-U limit

(6.65)

~ )
2K sin xA

so the leading corrections to the couplings are

U2
~4l &2l '&c

g4J = g2Z =U,
g41 = g2y =0.

(6.66)

(6.67)

(6.68)
(6.69)

The coupling between particles of opposite spin is sim-
ply the original Hubbard U, while particles of the same
spin exercice a weaker mediated repulsion on each other.

VII. SUMMARY

It was known for some time already that the one-
dimensional Hubbard model is in the universality class of
Luttinger liquids. The explicit relationship between the
parameters of the models were known, however, in the
weak-coupling limit only, where the Hubbard model can
be replaced by a g-ology model and the fixed point cou-
plings can be determined using the sealing theory. The
aim of the present paper was to Bnd the mapping be-
tween the Tomonaga-Luttinger model and the Hubbard
model in magnetic field h for arbitrary Coulomb coupling
U and for general band filling n.

Since the Fermi velocities of free fermions on a lat-
tice in an external magnetic field are different for the
two spin orientations, first we generalized the Tomonaga-
Luttinger model to the case when the fermions of differ-
ent color have different Fermi velocities and Fermi mo-
menta. Using the method of Mattis and Lieb it is pos-
sible to diagonalize the corresponding Hamiltonian ex-
actly and the excitation spectrum could be determined.

Assuming that this model can be considered as a direct
product of Virasoro algebras, the finite-size corrections
to the energy and momentum allowed us to obtain the
anomalous dimensions of the primary Belds that appear
in the exponents of the correlation functions. Since there
is some ambiguity in the choice of the anomalous dimen-
sions, an alternative approach was used to determine the
correlation functions exactly. The equation of motion
method applied to the correlation functions gave a closed
set of equations which are equivalent to generalized Ward
identities between higher-order vertices. The correlation
functions could be calculated in a closed form in real
space and time representation.

Since the same correlation functions are known for
the Hubbard model from the works of Frahm and
Korepin, it is possible to identify the equivalent mod-
els by putting equal the anomalous dimensions of the
Hubbard model and the generalized Tomonaga-Luttinger
model. We have found that in zero magnetic field in
the weak-coupling limit the couplings of the Tomonaga-
Luttinger model increase linearly with U in agreement
with renormalization-group theory. Except for low den-
sity or near half-filling the couplings of the equivalent
Tomonaga-Luttinger model are not very sensitive to the
band filling, again in agreement with the g-ology model.
For strong-coupling U the couplings of the Tomonaga-
Luttinger model saturate at finite values. This allowed
us to conclude that except for very low densities or near
half-filling, the g-ology model with bare couplings U is a
very good approximation for the Hubbard model if U is
not larger than the hopping integral.

In an external magnetic field the equivalent Tomonaga-
Luttinger model has two difFerent velocities and the cou-
plings become spin dependent. In small magnetic Beld we
have found an interesting nonanalytic (logarithmic) be-
havior of the couplings as h —+ 0 in much the same way
as is found in the susceptibility of the one-dimensional
Heisenberg chain. At a finite critical field h, the sys-
tem becomes fully polarized. The velocity of the spinon
excitations vanishes and several couplings become degen-
erate. For larger Belds the spinon excitations are massive
and the system loses its criticality, the spin part of the
correlation functions decays exponentially. The model
cannot therefore be mapped to an equivalent Tomonaga-
Luttinger model.
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