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We discuss the application of the direct configurational averaging method to the calculation of the
thermodynamic properties of alloy surfaces. We analyze critically a number of approaches previously
proposed to determine the parameters in different Ising models. We investigate the physical meaning of
various interaction energies occurring in those models and compare our technique to phenomenological
approaches. The formalism is applied in electronically self-consistent mean-field calculations of the
segregation profile at the surface of Ni-Cu and Rh-Ti alloys at temperatures above the bulk disordering

temperature.

I. INTRODUCTION

In recent years major progress has been made towards
a longstanding goal in theoretical materials science: the
calculation from first principles of alloy phase diagrams
and the associated thermodynamic quantities.!”® This
has necessitated important breakthroughs in ab initio
electronic structure calculations, as well as an increased
understanding of the applicable tools of statistical phys-
ics. Even so, the task is computationally very demanding
and has only become feasible through improved comput-
er hardware. Although many exciting questions remain,
several groups using a range of approaches have now
presented first-principles phase diagrams for a variety of
systems including metals,*® semiconductors,”!® and su-
perconducting oxides.!! In contrast, the determination of
thermodynamic properties near surfaces or other extend-
ed defects has not yet attained the same level of sophisti-
cation. It is the purpose of the present paper to unify and
review existing formalisms and to present results ob-
tained without any adjustable parameters using the direct
configurational averaging technique with the tight-
binding approximation.

Alloy-phase-diagram calculations involve two compu-
tationally demanding tasks: an electronic structure cal-
culation to determine quantum-mechanical interaction
energies and a statistical physics calculation involving the
minimization of a free-energy functional constructed us-
ing those energies. Both steps must be performed with
very high numerical precision. The band-structure deter-
mination must be very accurate because interaction ener-
gies are formally obtained as very small differences of
large cohesive energies. The statistical mechanics prob-
lem must be handled at an appropriate level of approxi-
mation, by including a sufficient number of correlation
functions in a cluster variation framework!? or by careful
considerations of equilibration times and finite-size effects
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in a Monte Carlo simulation.'> The same rigorous

demands hold in the case of order-disorder phenomena
near surfaces and interfaces, where they are exacerbated
because of charge redistributions and the interplay be-
tween ordering and electronic structure.

In the last century it was recognized by Gibbs on
theoretical grounds and it has been confirmed by many
experiments since then, that in thermodynamic equilibri-
um an alloy surface (or interface) will tend to become en-
riched by one of the components. This is the
phenomenon of surface (or interface) segregation which
has been the subject of intense study over the years.!* '8
A large number of technologically important phenomena
occur at or near the solid surface, or near internal inter-
faces such as grain boundaries.!® Examples include ca-
talysis, corrosion, adsorption, embrittlement, friction,
deposition and growth, etc. Thus, a detailed understand-
ing of the segregation behavior eventually leading
perhaps to its control by doping or heat treatment could
have many important applications. On the other hand,
from a purely theoretical point of view phase transitions
in reduced dimensionalities continue to be of great in-
terest and the nature of the different types of segregation
behavior has proven to be extremely rich,”® with the pos-
sibility of segregation-induced ordering and wetting, sur-
face sandwich formation, reconstruction, etc. Because of
the great success in the description of bulk alloys, Ising
models have been used extensively to model surface alloy-
ing effects as well, although care must be taken in cases
where the size difference of the constituent atoms is large
and elastic effects become important. Phenomenological
models?! 72* were able to describe qualitatively the ob-
served segregation in various systems in terms of a trun-
cated Ising model with the segregating component being
determined by the bond-breaking energy (or difference in
surface tensions) and the approach to the bulk limit
(monotonic or oscillating) by the sign of the ordering pair
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interaction. While such models may have some pedagog-
ical value it will be shown in the present paper that great
care must be taken in their use and that, in fact, the point
interactions (normally not considered in Ising model cal-
culations) dominate the segregation behavior. Moreover,
the phenomenological theories suffer from the fact that
the interaction energies were introduced in an ad hoc
fashion?! or in terms of experimentally measured macro-
scopic quantities?? 24 and no attempt was made to relate
them to the underlying electronic structure of the alloy.
A great deal of work has been devoted to studying segre-
gation in terms of the electronic structure,” 2% but in
most of those papers grave difficulties were encountered
in the incorporation of temperature into a proper statisti-
cal mechanical treatment. What is needed is a method to
calculate pair (and point) energies from the electronic
structure and subsequently to use these energies in an ap-
propriate statistical model. The theoretical tools to ac-
complish this task have only become available in the last
few years.

The remainder of this paper is organized as follows. In
Sec. 11, the formalism is outlined with particular atten-
tion to the choice of reference medium, as this permits us
to compare and contrast the present approach to others.
To be specific the discussion is cast in terms appropriate
for binary alloys, although the generalization to ternary
alloys is straightforward. Section III presents details of
the calculations for two systems: Ni, Cu,;_, which shows
a miscibility gap in the bulk and Rh,Ti,;_,, which is an
ordering alloy. This permits us to contrast two extreme
types of behavior and also facilitates comparison with
bulk calculations as both systems have been studied re-
cently. Concentration profiles are presented and com-
pared with experimental results insofar as the latter are
available. Section IV contains a more in-depth discussion
of the interaction parameters and their dependence on
the concentration profile. The present formalism is com-
pared with phenomenological theories by studying the
point and pair energies and relating them to macroscopic
parameters. The paper closes in Sec. V with a summary
of our findings and a critical discussion of the current
state-of-the-art in alloy surface calculations of order-
disorder phenomena.

II. FORMALISM

While much of the first-principles work on alloys and
compounds in the 1980s was done with very sophisticated
and time-consuming band-structure techniques based on
the local-density approximation (LDA), such as the
Korringa-Kohn-Rostoker (KKR) or the linear
augmented-plane-wave (LAPW) methods, the last few
years have seen renewed interest in the simple tight-
binding model. Accurate tight-binding parameters can
now be extracted from first-principles band-structure cal-
culations, by fitting to the results of LAPW calculations®®
or by transforming the linear muffin-tin orbitals (LMTO)
formalism.3® These parameters can then be used in situa-
tions where the LDA-based techniques become unwieldy,
leading to calculations that may not be strictly first prin-
ciples, yet have much of the flavor of an ab initio method.

In this spirit, in the present work the semi-infinite alloy is
described within the tight-binding model in which the
one-electron Hamiltonian for a given configuration o
takes the form

H(o)=3 In,A)ek(n,Al
nA

+ 3 InMBE(mul, (1)

n¥ m,A,pu

where n and m run over lattice sites, A and u label the or-
bitals (A,u=1,...,9, if 5, p, and d orbitals are con-
sidered). Furthermore, €} denotes the on-site energy as-
sociated with orbital A on site n, while B} is the hopping
term (overlap integral) between sites #n and m and orbitals
A and p. Except for very small clusters, it is, strictly
speaking, not feasible to compute the electronic structure
corresponding to the Hamiltonian (1) because the on-site
energies are functions of the chemical and geometrical
environment and therefore must be calculated in a self-
consistent way. For bulk calculations these effects are
usually neglected. In a layer geometry the computations
may be simplified by assuming that on a given plane
parallel to the surface the on-site energies depend only on
the chemical type of the atom considered, but this ap-
proach remains to be justified a posteriori.

The coherent potential approximation (CPA) provides
an efficient way to study the electronic structure of com-
pletely disordered alloys.3! 3% Developed in this context
in the late 1960s,3 although similar ideas date back at
least to Lord Rayleigh, this approach has been extended
to the semi-infinite alloy under the assumption of a
different coherent potential for each plane.’® However,
this conceptually simple idea is not easy to realize and we
shall discuss later how to circumvent the difficulties that
this method entails. In the CPA the physical
configuration is replaced by a fictitious effective medium
which restores translational symmetry. This medium is
determined in a self-consistent way such that an atom
embedded in it produces no scattering on the average. It
has been shown that of all effective medium theories the
CPA provides the best single-site approximation, while
attempts to go beyond the single-site approximation have
been beset with great difficulties. Originally formulated
within a tight-binding context (TB-CPA), the method has
found its greatest successes within the framework of
multiple-scattering theory’’ (KKR-CPA) and electronic
structure calculations based on it have shown unsur-
passed agreement with experiment for a large variety of
systems. Thus, optimism grew that the CPA might also
be an excellent starting point of a proper statistical
mechanics theory of order-disorder phase transforma-
tions in alloys. Because of the experience gained with
three-dimensional Ising model descriptions of actual sys-
tems in which parameters were fit to experiment, the
need naturally arose to determine these interaction pa-
rameters from first-principles electronic structure calcu-
lations. A formalism to accomplish this was developed in
the pioneering work of Ducastelle and Gautier,*® in
which it was shown that the total energy of an alloy may
be obtained by a generalized perturbation method (GPM)
relative to a reference medium (for example, the disor-
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dered state, treated within the CPA, although other
choices could be made). The resulting expression is not a
perturbation series in the usual sense since the energy is
expanded in powers of (p, —c, ), where p, is the occupa-
tion variable of site n and c, the average occupation of
that site, which are not necessarily small numbers.
Nonetheless, convergence is generally rapid because the
coefficients multiplying those terms are rapidly decreas-
ing. Thus, this CPA-GPM is well suited for the study of
ordering energies and has led to excellent agreement with
experiment for a number of bulk systems. In the case of a
semi-infinite binary alloy, Ncp, different coherent poten-
tials, o,, must be introduced for each inequivalent plane
n=1,...,Ncpa- In the tight-binding framework these
quantities are obtained by the self-consistency equation

cAtA+cBtB=o0, )

where ¢t} (i = A,B) is the scattering ¢ matrix given by

E, —O
ti= "ol (3)
1— (g, —o0,)F,
with
1
F,,=;2F,f‘, @)
A

where F is the diagonal matrix element G2*(E) of the
CPA Green’s function operator G defined through

G(2)=(z—Hcpy) ', (5)

where Hcp, is the CPA Hamiltonian, similar to (1) but
with the on-site energy replaced by the coherent potential
o, (taken here to be orbital independent):

Hepp=3 In,A)o,(n,Al|
n,A

+ 3 InA)BE (mul . 6)

n# =m,A,pu
Thus, the actual Hamiltonian may be broken up into a
CPA contribution and a configuration-dependent pertur-
bation term:

H(o)=Hcpp+H , (7)
where
H=3 |n,A)(eh—0,){n,Al (8)
n,A

is the perturbation term which gives the method its
name.

Introducing the occupation numbers p!, equal to 1 if
site n is occupied by an atom of type i and equal to O oth-
erwise, the total energy of the binary alloy with N sites
for a configuration {p}} can be written as*®

E i :E +_ i ’+—— Lyl 1y + ey,
({pn}) 0 N %pn Vn 2N n;&%i,jp"pm Vnm
9)

where V! is the point energy,

vi=—Lim [ 7dE 3 n[1—(ch—0,)F}] (10)
n 977_ < n n n >

and V¥, is a pair energy,
.. 1 Ep .
V,’,fm=—glmf dE %@ﬁ;m% ) an

Higher-order contributions may be derived in a similar
manner and temperature may be included by multiplying
the integrand by a Fermi function. It is important to
note that these expressions are exact for a given
configuration {p/}. As Egs. (10) and (11) show, the quan-
tities ¥ and ¥/, must be obtained through an electronic
structure calculation, clearly illustrating that ordering
phenomena in alloys are driven by variations in the elec-
tron states. Note that in the above derivation it has been
assumed, as is customary, that only the one-electron
band-structure term contributes to the energetics.’’
While the derivation in terms of the GPM is the most
transparent, a number of alternative techniques have
been proposed to calculate the ordering interactions.
These methods include the embedded cluster method
(ECM) of Gonis and collaborators*® which has been
shown to be equivalent to the GPM,*! the method of con-
centration waves proposed by Gyorffy and Stocks,*? the
Connolly-Williams method,*® and the closely related e-G
approach of Zunger and collaborators.® There are minor
differences between these various procedures, depending
mainly on the level of truncation of the series (9), but all
have been successfully used to describe bulk alloys in a
first-principles setting.

In order to better understand the physical meaning of
the point and pair energies (10) and (11) and to make the
connection with the Ising model calculations it is instruc-
tive to look at their interpretation in a statistical physics
context. To this end we can use an elegant expression for
the internal energy first given by Sanchez, Ducastelle,
and Gratias.** Introducing pseudospin variables o, (not
to be confused with the CPA potentials; these variables
are equal to +1 if site i is occupied by an 4 atom, and to
—1 otherwise, i.e., o,=2p —1), these authors have
shown that the internal energy can be written as a sum
over all clusters a in the given system

E=Vo+3 Vola» (12)

where &, is the correlation function for cluster a defined
by

£,=(010, 0, ), (13)

if there are n, sites in the cluster considered. Here and
in the remainder of this paper the angular brackets
denote an ensemble average. Within this formalism the
V, are called effective cluster interactions (ECI). For a
pair of atoms, one at site n, the other at site m, the ECI
reduces to an effective pair interaction (EPI) which reads

V=S W 14 WER— W= WED) 18

where W is the total energy of the system consisting of
an atom of type i at site n and an atom of type j at site m
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in the fully disordered medium.** After transformation

of the correlation functions to occupation numbers, a for-
mal identification can be realized between the two expres-
sions (9) and (12) leading to the conclusion that ¥V}, the
point energy defined in (10), is equal to the total energy of
the system containing one atom of type i at site » in the
completely disordered medium, while ¥/ , the pair ener-
gy defined in (11), is equal to W2, —(Vi+Vi).

In addition, a reference level for the energies can be
chosen, since it is always possible to add a constant term
to the free energy. Although this is an arbitrary choice it
must be a reasonable one on physical grounds and for the
bulk alloy it has been shown that the CPA medium is the
best one. For an alloy surface, however, the situation is
more complex and the following two cases can be con-
sidered. In situation A4 examined in the remainder of this
paper the temperature is higher than T, the critical
order-disorder temperature for the bulk at the concentra-
tion being studied. In that case it is very reasonable to
take as the reference medium the completely disordered
state described by the CPA. At temperatures below T,
(situation B) ordering occurs and consequently the disor-
dered state is not a good reference point and no reference
level is explicitly considered. This case has been studied
extensively by Tréglia, Legrand, and collaborators*®~>2
and we refer the reader to these papers for further details.

For a binary AB alloy and using the CPA medium as
the reference level, Eq. (9) can be rewritten as follows. If
P, equals p,/, then p2=1—p,, and using the CPA self-
consistency equation the total energy is

E({p,})= Vo‘*‘%z(p,,—c,, NV A-VE)

1
+2N'§,ﬂ(p,. )P =€ Wam+ =, (15

where ¢, is the concentration on plane n and ¥V, equals
Vin =V A4+ VEE_yAB_pBd4 (16)

This gives the connection between the EPI defined in the
statistical physics context (14) and the pair energies
defined in (11) in terms of the electronic structure. In
practice it has been found>’ that in many cases nearest-
neighbor pairs for the fcc structure and nearest- and
next-nearest-neighbor pairs for the bee structure provide
an accurate description of the corresponding phase dia-
gram. However, for certain alloys higher-order clusters
and further-neighbor interactions may be needed, such as
in the case of PAV.%%

In the same manner we can identify in (15) the effective
point interaction A, given by

A, =VA-VE, 17

This quantity gives the variation of the total energy of the
disordered alloy when at site #n a B atom is replaced by an
A atom. For equivalent sites in the bulk, A, is unique
(i.e., independent of n) but for an alloy with a surface
different values must be computed according to the plane
considered. Moreover, when all sites are equivalent (as in
the bulk of the fcc lattice) the single-site interaction does

not contribute to the ordering energy and thus there is no
need to calculate it explicitly in a thermodynamic study.
Finally, it is important to note that although the total en-
ergy of a transition metal cannot be written as a sum of
pair potentials, the ordering energy can be written as a
rapidly convergent series of point and pair interactions.?

For an alloy in which successive layers are completely
disordered the p,’s are uncorrelated so that in such a case
we can write

((Pn_cn )(pm—cm)>=<Pn—Cn><pm —‘Cm>=0 ’ (18)

and thus only the point energies V, give a nonzero con-
tribution in Eq. (15). In this case the segregation phe-
nomena, for the electronic part at least, are only driven
by the values of the point energies. However, when or-
dered structures are present (corresponding to situation B
above) the EPI’s give an explicit contribution.*¢™52
Expression (15) for the internal energy may be used in
a Monte Carlo simulation or in a mean-field calculation
based on the cluster variation method (CVM).!%3¢ In the
latter case, in addition to the internal energy one needs to
know an approximate expression for the entropy in order
to perform a phase diagram calculation. Depending on
the temperature under study one may have to include
clusters up to a certain maximum size in the formalism.
For temperatures above T, the point-approximation or
Bragg-Williams method is known to give adequate re-
sults,”’ but in other cases larger clusters may be needed.>®
In either case, the self-consistent equilibrium profile is ob-
tained by minimizing the resulting free energy relative to
the concentrations in the various planes. A complication
arises because, for a semi-infinite binary alloy, all the
quantities ¥} and ¥V are functions of the concentration
profile as can be seen from Egs. (10) and (11) while they
also determine the concentration profile. Thus, a fully
self-consistent calculation must be performed: starting
from an initial guess for the concentrations one iterates
until the interactions and concentration profile are con-
sistent. This approach corresponds to the canonical en-
semble and details of computations based on it will be
given further in this paper. We remind the reader that
the present derivation assumes that the CPA is a good
reference medium and thus it is expected to be valid for
temperatures above T, (situation A defined above). In
that case, the segregation is driven by the sign of the vari-
ation of the effective point interaction A=V {1 — V¥ be-
tween the surface and the bulk (as long as no elastic con-
tribution to the free energy is considered) and an elec-
tronically self-consistent calculation of the A’s is essen-
tial. To simplify this calculation it is tempting to specu-
late about alternative approaches. It has previously been
demonstrated that for bulk alloys a grand canonical ap-
proach can be used with success.’* In the case of a semi-
infinite alloy this would correspond to a system with the
same concentration of 4 and B atoms on all the planes.
By analogy to the bulk case the convergence of expres-
sion (9) may be expected to be slower in the grand canoni-
cal case than in the canonical case. The viability of this
formalism remains to be established and is currently un-
der study. The calculations presented here have been
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performed for the canonical case.

For alloys with a surface, translational symmetry per-
pendicular to the surface of the disordered medium is
lost, while parallel to the surface it has been restored by
the CPA condition. Thus, for a given separation between
sites n and m, not only one EPI, as in the bulk, must be
considered, but different values according to the position
of n and m. For example, if only nearest neighbors on a
fcc lattice are considered, terms such as V, , and V,, , 4,
must be retained (n labels planes parallel to the surface,
n =1 is the top layer). In order to have a systematic no-
tation, one can extend a convention introduced previous-
ly>* according to which V::l,’;z "1 s the ECI with n,

atoms that are neighbors of order n,, and in which
m,,m,, ... label the planes parallel to the surface. For
example, V12 denotes the effective pair (subscript 2) in-
teraction between nearest (subscript 1) neighbors with
one atom in the surface plane (superscript 1) and the oth-
er one in the plane immediately below the surface (super-
script 2). For point energies the index n, is equal to 1,
for pair energies n; equals 2, etc. For higher-order clus-
ters a graphical representation must be given.>*

The main problem is now to compute the point ener-
gies and in a general manner the effective cluster interac-
tions. As mentioned before, various approaches for bulk
binary alloys have been proposed,®3% 4~ but for a
semi-infinite medium a supplementary difficulty arises
due to the lack of translational symmetry in the direction
perpendicular to the surface or interface, which makes
use of the CPA cumbersome. Recently we proposed a
conceptually simple method based on taking an average
over a small number of random configurations to obtain
the effective cluster interactions.*>*® In principle, the
ECI are differences of total energies of large systems, but
since only localized perturbing potentials are considered
the effective cluster interaction can be obtained directly
as a global expression, using the generalized phase-shift
approach.”® Following Friedel, the generalized phase
shift may be defined as

detG g 4detGgp

n(z)=In
detG §pdetGg 4

(19)

where Gj7 is the Green’s function corresponding to the
Hamiltonian (1) but with atoms i and j at sites n and m.
(This quantity is not to be confused with the CPA
Green’s function.) We have shown elsewhere®® that the
]

EPI may be written as
1 Ep
Vnm=<_—4;1mf_wn(z)dz> . (20)

The recursion method, introduced in solid-state physics
by Haydock,®® permits a calculation of the Green’s func-
tions G in real space and, by using the “orbital peeling
trick” proposed by Burke®! following the ideas of Ein-
stein and Schrieffer,®? the determination of the effective
pair interaction needs the computation of only 4 X9 diag-
onal elements of the Green’s function, while the point in-
teraction needs only 2 X9 terms.

In this paper we will focus on the simple but physically
interesting case of the fully disordered alloy at tempera-
tures T above the bulk order-disorder temperature T,.. In
that case the Bragg-Williams method is known to pro-
duce quite accurate results.’” Thus, only the point corre-
lation functions need to be considered and the entropy
reduces to

S=3 c,lnc, +(1—c,)In(1—c,) . (21

The equilibrium concentration profile is obtained by
minimizing the free energy with respect to the correlation
functions (i.e., concentrations) and, denoting by cp the
bulk concentration, we find in a straightforward manner

Cn

__°» _(yA_yB
1 —c, 1 —cp exp[ ( Vn Vn )/kB T] (22)
(where kj is Boltzmann’s constant), a result remarkably
similar to that obtained in phenomenological theories?!
but with point energies, rather than EPI’s, in the ex-
ponential. If elastic contributions to the free energy are
considered, they appear in the exponential of Eq. (22).
This is essential when the atomic sizes are very different.
A priori the point energies are functions of the concentra-
tion profile and to a good approximation they turn out to
depend only on the plane considered.

In more complex situations and below T, ordering may
occur and the contribution of the EPI’s to the free energy
can no longer be neglected. In that case a set of coupled
transcendental equations for the concentrations in the
layers is obtained which must be solved numerically.
These equations are similar to those in Ref. 21, but with
concentration-dependent EPI’s and point interactions,
for example, if only nearest-neighbor EPI’s are included
for the (100) surface on the fcc lattice they read

o, =tanh{[4V,, 55 +4V, , 10 1 +4V, 110, 11— 8, 1/kpT}, n=1,2,..., 23)

where &, =2¢, — 1, is the average value of the pseudospin
variable in the nth plane and o,=0. In simple situations
the numerical solution of the system (23) may be accom-
plished by straightforward iteration to the fixed point of
the equations, but this approach has the drawback that it
cannot detect whether multiple solutions are present.
The same holds for the more rapidly convergent
Newton-Raphson scheme. To avoid this shortcoming an

-

elegant method was proposed by Tréglia et al.*~>2 fol-
lowing earlier work by Pandit and Wortis®® based on the
properties of flow under area-preserving maps. This
mathematical approach to solving coupled equations al-
lows the numerical algorithm to detect multiple solutions
and to describe discontinuous and layering transitions, al-
though the method is intrinsically unstable and numeri-
cally not very accurate. A complete study should use the
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area-preserving map approach to describe the transitions
and then utilize a more stable algorithm to compute the
precise location of the phase boundaries. In the following
we shall consider only cases where the solutions are
unique and these complications do not arise.

In this paper we study two alloys which present
different behavior in the bulk: the Ni,Cu,_, system,
which is well known to possess a large miscibility gap,®
and the Rh,Ti,_, alloy, which exhibits various ordered
phases.®® Bulk calculations for both systems have been
reported recently.’®75® The choice of these systems was
guided by the fact that magnetic effects are negligible (ex-
cept perhaps at the Ni-rich end of the Ni-Cu system), rel-
ativistic effects may be safely ignored, and atomic size
differences are small so that elasticity must not be includ-
ed in the calculations. Preliminary results using the
direct configurational averaging approach were briefly
presented elsewhere.5”'%® After the determination of the
equilibrium profile we shall concentrate on the properties
of the ECI, with particular emphasis on the point interac-
tions and the EPI.

III. RESULTS

Some of the advantages of the direct configurational
averaging (DCA) method are that it avoids the CPA ap-
proximation, that it permits a calculation in real space,
and that it allows the possibility to take into account s, p,
and d orbitals on the same footing. In addition the recur-
sion method also supports a straightforward treatment of
the off-diagonal disorder, which in the CPA framework
introduces complications.®® Three different sets of hop-
ping integrals were used: B4 and B are generally tak-
en to be the same as for the pure elements and may there-
fore be computed with a good level of accuracy,”®* a
reasonable and widely adopted assumption”™ is to take
B4% as the geometric mean of B44 and B (e,
BAB=v'BA4BBB the so-called Shiba prescription). Alter-
natively, if calculations for the ordered 4B compound
are available they might be used to determine the hop-
ping integral B4%. In the Slater-Koster scheme,”! B}# are
related to the three- and two-center integrals. Electronic
self-consistency is ensured as customary by imposing lo-
cal charge neutrality through a rigid shift of the on-site
energies. In practice, it is found that perturbing poten-
tials are only needed for the surface plane and the two
following planes. Effective cluster (point, pair, etc.) in-
teractions are obtained after a two-level self-consistency
loop. First, for a given concentration profile, the perturb-
ing potentials on the planes in the surface region are
determined. Next the concentration profile is adjusted in
order to obey Eq. (22) or (23). A careful investigation of
the variation of the point and pair interactions has shown
that in the cases studied here these quantities are sensi-
tive only to the immediate neighbors leading to a reason-
able computation time.

Formally, the method developed for alloy surfaces by
Tréglia et al.**~? is similar to our approach. As dis-
cussed before, apart from the source of the tight-binding
parameters and other technical details, the main

difference lies in the choice of the reference medium. A
semi-infinite medium with the same concentration and
the same coherent potential (corresponding to the bulk
value) on every plane was chosen by Tréglia et al. As a
consequence these authors must explicitly consider
effective pair interactions in addition to the effective
point interactions at all temperatures. As already dis-
cussed’? the choice of the reference medium is arbitrary,
but it is intuitively clear and borne out by our calcula-
tions that our approach, for temperatures above T, (situ-
ation A), gives better convergence. In other cases one
must consider renormalized effective cluster interac-
tions*®>* and the problem is again to determine those
cluster interactions that give significant contributions.
From previous studies,”® one may expect that in certain
cases triplet interactions may be of the same order of
magnitude as some pair interactions.

In this work we report results obtained for two semi-
infinite alloys: Ni,Cu,_, (all x) which presents a cluster-
ing trend in the bulk and Rh,Ti;_, (near x =0.75)
which exhibits various ordered structures. For the com-
positions considered both alloys are based on a fcc lattice
of which, unless otherwise specified, the (001) surface will
be considered. Preliminary results were briefly presented
elsewhere.®”%® All calculations were performed for tem-
peratures above the bulk critical temperature, corre-
sponding to a completely disordered system in the bulk,
but this does, of course, not exclude ordering in the sur-
face region. In this temperature regime the Bragg-
Williams approximation is known to work quite satisfac-
torily.”” Let us note that for temperatures below T, the
physical processes are more complex because the average
concentration defined on each plane may differ strongly
from the average concentration in the bulk. As a simple
example, consider an AB; alloy in the LI, structure. At
low temperatures, parallel to the (001) surface, the lattice
is a succession of planes with compositions close to 100%
B and 50% B, although at the surface and in the immedi-
ate subsurface layers the concentration may differ from
these values due to segregation effects. In any case, apart
from the problems of a proper reference medium dis-
cussed above, a simple Bragg-Williams approach, which
neglects correlations, is inconsistent and a generalization
of the cluster variation method appropriate for surfaces
must be used.>®

In the present work s, p, and d orbitals are considered.
If only d orbitals were included the factor 9 in Egs. (4),
(10), and (11) would be replaced by 5. The hopping in-
tegrals for the pure elements are taken from
Papaconstantopoulos’s book? and were obtained by this
author through a fit to very accurate first-principles
LAPW calculations for the pure elements. The recursion
method was applied using the algorithms developed by
Nex and collaborators.”> As usual, local charge neutrali-
ty was imposed on each atom through a rigid shift of the
on-site energies.*>>® Seven levels of the continued frac-
tion for the Green’s function diagonal elements have been
computed, with the Beer-Pettifor’* prescription for the
termination of the continued fraction. In order to obtain
satisfactory convergence it was found for the point ener-
gies to be necessary to average over 20 configurations
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while for the pair energies 15 configurations were needed.
Higher-order and further-neighbor cluster interactions
were found to be negligible in all cases studied here.
These findings are consistent with our earlier studies us-
ing the DCA for the bulk.

The Ni, Cu,_, system has been the subject of many ex-
perimental’”> "% and theoretical®"® "% investigations.
Even though it is a relatively simple alloy, whose bulk
phase diagram is well understood, its surface behavior
has been the source of some controversy. A large num-
ber of experiments using a diversity of surface-sensitive
probes (catalytic activity measurements,”> Auger electron
spectroscopy,’® x-ray and ultraviolet photoemission spec-
troscopy, 808188 time-of-flight atom probe, %3¢ low-
energy ion scattering, 8288587 photoemission of ad-
sorbed xenon,®’” low-energy electron diffraction, etc.) have
provided incontrovertible evidence that Cu segregates
strongly to the surface for all compositions, with the sur-
face concentration increasing monotonically as a function
of the bulk concentration, x. It came therefore as a great
surprise when Sakurai et al.® reported evidence for a re-
versal in segregating species with Ni segregating for com-
positions less than x =0.16 and Cu segregating for con-
centrations larger than this value. While there was origi-
nally some theoretical evidence that such a phenomenon
might be understood in terms of surface magnetism®® or
charge transfer,”! more careful studies®® did not support
this notion. Moreover, subsequent experiments did not
confirm Ni segregation for small x and several sugges-
tions were made to explain the experimental observa-
tions. It was pointed out,* for example, that a small con-
centration of contaminants (specifically, sulfur or oxygen)
might lead to precisely the type of effects that were ob-
served by Sakurai et al.®® This illustrates clearly how
sensitively the surface concentration may depend on the
overall composition and, in particular, the local electron-
ic structure. A second debated observation for the Ni-Cu
system concerns the composition of the subsurface layers,
with some experimentalists claiming that the approach to
the bulk limit is monotonic, while others find evidence for
Cu depletion in the layer immediately below the sur-
face.”® Theoretical analyses of this system have also
given mixed results. Because the determination of the
equilibrium subsurface concentration is a notoriously
difficult problem reasonable doubt may still be cast on ei-
ther observation.

In Fig. 1, we display the concentration profile near a
Ni, Cu,_, (001) alloy surface with the bulk Ni concentra-
tion kept at x =0.75 and 0.25, at a temperature
T=1.1T, [corresponding to approximately 225 and
425°C, respectively]. As observed experimentally, very
strong Cu segregation occurs towards the surface plane
with the composition in the subsurface layers very rapid-
ly approaching the bulk concentration. This was found
to be the case over the entire concentration range and, in
particular, no reversal in segregating species was ob-
served. It is to be noted that our calculations properly
account for charge-transfer effects and therefore do not
support an earlier suggestion that charge transfer might
be responsible for a segregation reversal. As can be seen
in Fig. 1, the concentration profile is monotonic reflecting
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FIG. 1. Self-consistent equilibrium concentration profiles at
(001) surface of Ni,Cu,_, alloy (T=1.1T,): the solid line cor-
responds to x =0.25; the dashed line to x =0.75.

the clustering tendency of the Ni-Cu system, as would
also be predicted by the phenomenological theories. In
all cases studied we found the approach to the bulk value
to be monotonic, with no evidence for Ni enrichment just
below the surface. Thus, we disagree with other experi-
mental’® and theoretical®® works in which a Cu deficiency
was observed. While it is clear from the sign of the point
interactions calculated here that such an effect is not ex-
pected on the basis of electronic interactions alone, it
may be due to contributions that were neglected here,
most likely of elastic or magnetic origin. However, it is
also possible that the experimental observations were
based on nonequilibrium phenomena, for example, due to
sputter-induced subsurface segregation.”” Thus, the issue
deserves further study.

In Fig. 2, we show the equilibrium profile at a tempera-
ture T=1.1T, (approximately 1925°C) near the (001)
face of a Rh, Ti,_, system with a fixed Rh bulk concen-
tration x =0.75. The segregation profile is oscillatory, as
expected for an ordering alloy, with a very rapid ap-
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FIG. 2. Self-consistent equilibrium concentration profile at
(001) surface of Rh,Ti;_, with a bulk Rh concentration
x =0.75 at temperature T =1.1T.
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proach of the bulk limit. Our calculations predict
moderate Rh (solvent) enrichment. Unfortunately no ex-
perimental results seem to be available for this system. It
is suggested that this would be a good system for further
study, as the Miedema theory?»?* predicts no segrega-
tion, while the current work and a model based on sur-
face enthalpies?* predict Rh segregation. It is interesting
to note that the surface enthalpies are directly propor-
tional to the point energies included in our model.

IV. DISCUSSION

Because they are key quantities in the formalism and
also because their determination is the computational
bottleneck, we now turn to a more detailed discussion of
the interaction parameters, specifically the pair and point
interactions as higher-order terms turned out to be negli-
gible in the system studied here. In order to better under-
stand the effects of electronic and atomic self-consistency
various ‘“‘artificial”’ (i.e., non-self-consistent) config-
urations will be considered. While the motivation is
mainly pedagogical, nonequilibrium profiles may be real-
ized experimentally by rapid quenching or ion bombard-
ment and thus the nature of the interactions under those
conditions may have some independent interest. Also ad-
sorbed monolayers may alter the equilibrium segregation
profile and lead to concentration gradients similar to
those introduced here.

A. Effective pair interactions

The EPI’s play a major role in the ordering processes
in bulk binary alloys. These quantities can be measured
experimentally through diffuse scattering intensities®’ and
can be computed by techniques such as the inverse Monte
Carlo method.”® They also have a simple physical inter-
pretation: V,,, >0 (<0) indicates an ordering (cluster-
ing) trend between sites n and m. Of course, the interplay
between the ordering tendencies of various sites may lead
to complicated ordered structures, even when only
short-range interactions are considered, one famous ex-
ample being the axial next-nearest-neighbor Ising
(ANNNI) model®® which supports a whole range of
modulated states. A knowledge of the EPI’s is also
necessary to perform a zero-temperature ground-state
analysis,'® the first step in a full phase diagram calcula-
tion. In the case of a semi-infinite alloy below the bulk
T., the variations of the EPI are essential to study segre-
gation and ordering phenomena and they are also key in-
gredients in phenomenological theories.?! As was dis-
cussed before, only for completely disordered systems are
the segregation phenomena driven exclusively by the
variation of the point energies.

First we investigate the variation of the EPI as a func-
tion of the concentration profile. Brown and Carlsson!®!
performed a model study of the influence of defects (lo-
calized or extended) on the EPI. The results obtained by
those authors showed an increase of the EPI with de-
creasing coordination number. However, the calcula-
tions were made under very restrictive assumptions: nei-
ther off-diagonal disorder nor electronic self-consistency

were considered and the concentration profile was taken
to be flat (uniform concentration on all the planes). Un-
der these conditions, Brown and Carlsson!®! showed that
the EPI are proportional to Z ~3/2, where Z is the coordi-
nation number. However, binary alloys are well known
to present strong segregation effects on the surface plane.
In addition, since the EPI in the bulk may vary strongly
as a function of concentration*’ a priori no general rule
for the value of the EPI on the surface plane can be ex-
pected and a complete study must be made.

In Fig. 3 we present the variation of the EPI for two
nearest neighbors located in various layers in a semi-
infinite Ni,Cu;_, host for the equilibrium profiles
(shown in Fig. 1) corresponding to bulk concentrations
x =0.75 and 0.25. It is to be kept in mind that in both
cases the concentration of Ni on the surface plane is very
small as was found throughout the entire concentration
range. Calculations for bulk Ni-Cu (Refs. 66 and 102)
show a decrease of the nearest-neighbor and next-
nearest-neighbor EPI’s with decreasing Ni concentration.
These results combined with Fig. 3 thus point to a com-
petition between the values in the bulk and those at the
surface. For a bulk concentration x =0.75 we also ob-
serve a large variation of the EPI for a point in the sur-
face plane and the other point in the plane immediately
below it. The strong changes of the EPI in this case are a
consequence of the large variations in composition near
the surface. The variations in the concentration profile
are relatively smaller for a Ni bulk concentration
x =0.25 and the variations of the EPI in that case are
consequently also much smaller.

In Rh, Ti,_, the EPI have been found to be very sensi-
tive to the concentration in the bulk.** In Fig. 4 are re-
ported the nearest-neighbor EPI's of a Rh,Ti;_, alloy
with a Rh bulk concentration x =0.75. Two electroni-
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FIG. 3. Nearest-neighbor effective pair interactions, V3" (in
eV), at the (001) surface of a Ni,Cu,_, alloy with a bulk con-
centration x =0.25 (solid line) and x =0.75 (dashed line) for the
equilibrium profile given in Fig. 1. For ease of notation V3" is
denoted as V,, where the index 1 denotes the surface plane.
These curves are obtained through a fully self-consistent calcu-
lation.
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FIG. 4. Nearest-neighbor intralayer (V,,) and interlayer
(Vo n+1) effective pair interactions (in eV) at the (001) surface of
a Rh,Ti;_, alloy with a Rh bulk concentration x =0.75 for
various concentration profiles (solid line: equilibrium profile
from Fig. 2; dashed line: ¢,;=0.52, ¢,=0.78, c¢;=0.74,
¢, =0.75, n > 3; dotted line: ¢, =0.75 for all n). The curves in
the solid and dashed lines were calculated with full electronic
self-consistency imposed. The dotted curve corresponding to
the uniform profile was obtained without any electronic self-
consistency.

cally self-consistent concentration profiles were con-
sidered: one (solid line) corresponding to the equilibrium
profile given in Fig. 2, the other one (dashed line)
artificially corresponding to a strong depletion of Rh in
the surface plane (¢, =0.52) with an oscillating profile
(c,=0.78, ¢3=0.74, c,=cp=0.75 for n>3). We ob-
serve in both cases a small decrease in surface intralayer
EPI relative to the bulk value and a mild increase for the
surface-subsurface interlayer EPI. Let us recall that the
bulk EPI of the fcc Rh, Ti,_, alloy is an increasing func-
tion of the Rh concentration.** The differences between
these two self-consistent profiles can, as in the previous
case of Ni Cu,_,, be understood as a competition near
the surface between the EPI bulk values and the local
surface concentration. Of course, this is only a qualita-
tive argument that must be backed up by a full calcula-
tion. In Fig. 4, we also report by a dotted line the EPI
corresponding to an alloy with a ¢, =0.75 for all planes
and no electronic self-consistency. We notice a sharp in-
crease of the EPI near the surface, especially the in-
tralayer interactions, in agreement with the calculations
of Tréglia et al.**~>2 and Brown and Carlsson!®! who
also did not consider electronic self-consistency.

The relative influence of the concentration profile and
coordination number can be deduced from Fig. 5, which
shows self-consistent EPI for the (001) surface of
Rh,Ti,_, (assumed to be in the fcc structure) with a Rh
bulk concentration x =0.50. A uniform segregation
profile with ¢, =0.50 on each plane is assumed and the
calculations have been driven to full electronic self-
consistency. We observe a sharp increase of the in-
tralayer surface EPI, V,;, and the surface-subsurface

EPI (eV)
0.0BO—.
0.060
0.040+

0.0204

0.000

T T T 1
Voo Vo3 Vzz  V3y
Positions

T T
Vit Va2

FIG. 5. Nearest-neighbor intralayer (¥,,) and interlayer
(V. n+1) effective pair interactions (in eV) at the (001) surface of
a Rh,Ti;_, alloy with a Rh bulk concentration of 0.50 for a
uniform concentration profile. This curve was obtained with
full electronic self-consistency imposed and the alloy assumed to
be in a hypothetical fcc structure.

EPI, V,,, a result that is to be expected according to the
arguments of Brown and Carlsson.!’! In this particular
case it turns out that the effects are amplified by the sur-
face charge redistribution, although this is by no means a
general trend.

We can conclude that similarly as in the bulk the EPI
are functions of the concentration profile. This points
out the importance of the compositional and electronic
self-consistency. Let us note that in the present work the
point energies and the effective pair interactions have
been computed directly from the electronic structure and
that the former dominate the segregation behavior (at
least for temperatures above T,). Simple models?! pre-
dict that a positive (negative) EPI in the bulk will drive a
nonmonotonic (monotonic) concentration profile. In our
case the EPI for the systems considered here have the
same sign and this simple relation appears to be satisfied.

B. Point energies

For T > T,, in the Bragg-Williams approximation, the
segregation is completely driven by the variation of the
point energies relative to the bulk values. Special care
must therefore be taken in their computation. As already
pointed out, the point energies are functions of the con-
centration and a full calculation must be performed.
However, it would be interesting to obtain general trends.
In Ref. 68 we have reported the point energies for a sur-
face atom of a Rh, Ti;_, (001) alloy with a bulk Rh con-
centration x =0.75 for varying surface concentrations.
The concentration profiles were scaled to present a simi-
lar oscillatory behavior. The main results were that for
the non-self-consistent calculations, A} exhibits a decreas-
ing, nearly linear behavior versus the surface concentra-
tion, the extremal values being around 0.55 to —0.20 eV,
indicating a very important variation with a possible
segregation-type change, while for the self-consistent cal-
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culations, a similar decreasing behavior was found but
with a much smaller slope: the extremal values were
around 0.29 and 0.18 eV (see Fig. 3 in Ref. 68).

In order to establish if this is a general type of behav-
ior, we have investigated the point energies for the
Ni, Cu,_, alloy with x =0.25, 0.50, and 0.75 in the bulk
and for various surface concentrations, for which the re-
sults are shown in Fig. 6. For x =0.75 calculations were
performed with and without electronic self-consistency,
while for x =0.25 and 0.50 only the non-self-consistent
results are reported. These calculations were performed
under the assumption of a monotonic concentration
profile and the values for the concentration on the planes
following the surface were scaled to be consistent with
the equilibrium concentration profile (Fig. 1). First, it
must be noted that in all cases the point energies versus
the surface plane concentration present a nearly uniform
monotonic behavior. As can be seen the effect of an elec-
tronically self-consistent treatment is to decrease the
point energies. For a bulk Ni concentration x =0.75 the
reduction is between about 0.10 eV for a Cu-rich surface
and 0.20 eV for a Ni-rich surface. It is to be noted that,
as in the Rh-Ti case,’® the point energies in the self-
consistent calculations vary less than if no self-
consistency is considered. This makes compositionally
self-consistent calculations feasible because an interpola-
tion scheme on the point energies may be used to ac-
celerate the iterative solution towards a self-consistent
concentration profile. Another interesting result is that,
in the non-self-consistent calculations, the point energies
for various bulk Ni concentrations have roughly the same
slope, the values increasing with an increase of the bulk
Ni concentration.

As is known from phenomenological theories,?! the
surface crystallographic orientation plays an important
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FIG. 6. Point energies at the (001) surface of a Ni,Cu,_, al-
loy, for various Ni bulk concentrations: x =0.25 (dotted line),
x =0.50 (dash-dotted line), and x =0.75 (dashed line). These
three curves were obtained without electronic self-consistency.
Also reported are the values obtained for a Ni bulk concentra-
tion x =0.75 with full electronic self-consistency (solid line).
The concentration profiles were taken by appropriate scaling of
the equilibrium profile (Fig. 1).

role in determining the segregation profile. In Fig. 7 are
reported the point energies for a Ni, Cu;_, alloy with a
bulk Ni concentration x =0.75 for the low-index surface
orientations. Scaled monotonic concentration profiles
were assumed and no electronic self-consistency was im-
posed. Again a nearly linear behavior was found with
similar trends for the three curves. The magnitudes of
the point energies decrease in going from the (110), to the
(001), and finally (111) orientation: this corresponds ex-
actly to going from the most open surface to the most
closely packed one and is in agreement with simpler mod-
els.?! It has been shown already that the Ni, Cu, _, alloy
is the prototype of an alloy where this simple phenome-
nological law applies.?’” As pointed out by Tréglia
et al.,* these point energies are of the same order of
magnitude as the difference of the surface tensions.

C. On the validity of the pair-interaction models

For transition metals it is well established that the total
energy cannot be written as a sum of pair energies.’
However, for the ordering energy in the bulk it has now
amply been demonstrated that an expansion in effective
pair interactions is feasible and rapidly convergent, al-
though this argument does not necessarily hold in the
case of inequivalent sites such as in the 415 compounds’
or near a surface. However, the pair model in view of its
simplicity is very attractive. The Ising model with only
pair interactions has been studied in great detail and its
properties are well understood. Therefore, it is very in-
teresting to see under what conditions it is possible to uti-
lize a pair energy expansion. We must insist that such an
expansion has no formal justification but we would like to
understand its success and limits of applicability. In a
pair model, in the absence of elastic contributions, the
segregation is driven by the variation of the quantity?!
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FIG. 7. Point energies at the surface of a Ni,Cu,_, alloy
with a Ni bulk concentration x =0.75 for various surface orien-
tations: (110), solid line; (001), dashed line; and (111), dotted
line. Electronic self-consistency has not been imposed. The
concentration profiles were obtained by appropriate scaling of
the equilibrium profile (Fig. 1).
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TABLE 1. Variation of the bond-breaking term A;; and the
point energy A; (both in eV) relative to the bulk values near the
(001) surface of a semi-infinite Niy ,5Cug 75 and Nig 75Cug 5 al-
loy. All quantities have been calculated for the equilibrium con-
centration profile at T=1.1T, shown in Fig. 1. The index 1 or
2 denotes, respectively, a site on the surface plane or on the
plane immediately below, while o denotes a bulk site.

Ni bulk concentration x =0.25 x =0.75
A—Aro —0.65 —1.29
Ap—Ago —0.15 —0.72
Azz_Aww —0.13 —0.14
A—A, —0.39 —0.67
A,—A, —0.04 —0.13
— BB
Anm _%( anr‘nA— Vnm ) (24)

between the surface and the bulk (the “bond-breaking”
term). In earlier works these quantities were considered
as parameters and were fit to some macroscopic property
often leading to quite good agreement with experiment.
In the present work the bond-breaking terms were com-
puted for the Ni, Cu,_, system, within the DCA method,
for two equilibrium profiles (Fig. 1) corresponding to a Ni
bulk concentration x =0.25 and 0.75 (Table I). One can
notice, especially for the x =0.75 bulk Ni concentration,
that (A;—A,,) is approximately equal to
(A;+A;—2A,). These bond-breaking terms are also
functions of the concentration profile. Therefore, using a
bond-breaking term computed from the electronic struc-
ture will lead to very similar results as using the exact ex-
pressions with the point energies. This result is not com-
pletely surprising, if we keep in mind the definition of the
point and pair energies given in Eqgs. (10) and (11). In
fact, between say, V,14 and V2, the only difference is that
for the first term one forces a given neighbor of a first 4
atom to be an A atom whereas for the second term this
site has only a probability x to be occupied by an A4 atom.
However, let us recall that it is this subtle difference
which determines the value of the EPI. In a bulk alloy
usually all the sites are equivalent and thus the phase dia-
gram is computed from these EPI and if necessary
higher-order cluster interactions. At the surface this no
longer holds, but quite frequently the approximate rela-
tion mentioned above is satisfied, and thus a pair-
interaction model with fitting parameters can provide an
accurate description. However, it must be pointed out
that an examination of other alloys shows that usually
this relation is not as closely satisfied as for Ni,Cu;_,
with a Ni bulk concentration x =0.75 and consequently
the predictions of the pair-interaction model are not as
accurate. Nevertheless, in all cases studied the sign of
the bond-breaking term was the same as that of the segre-
gation energy given by the point terms, and thus no qual-
itatively incorrect predictions would result.

V. CONCLUSIONS

We have presented a detailed analysis of the Ising-
model approach to surface ordering phenomena in terms

of the electronic structure. The proper choice of a refer-
ence medium has been discussed and the role of the in-
teraction parameters entering the formalism has been
clarified. Self-consistent concentration profiles calculated
without any adjustable parameters were obtained for the
Ni, Cu,_, and Rh, Ti,_, systems. In the former case we
find strong Cu enrichment at all surfaces and throughout
the concentration range with no evidence for subsurface
Cu depletion, which has been suggested by time-of-flight
experiments and confirmed in a number of theoretical
studies. However, there is no universal agreement on this
behavior and further work needs to be done to settle this
issue. For the Rh-Ti system we predict moderate Rh en-
richment in agreement with one previous theoretical
study, although other theories find no segregation. Clear-
ly this would be a good system for experimental scrutiny
and further first-principles work.

Our results indicate that for temperatures above T,
and in the absence of elastic effects the segregation is
driven by the variation of the point energies which is the
microscopic analogue of the difference of the surface ten-
sions. Analogous effects were found in the Ni,Cu;_,
system by Tréglia et al.*® using an approach similar to
ours in the Bragg-Williams method and in a recent
Monte Carlo study based on the same parameters.” Let
us note that previous phenomenological models?! have at-
tributed to the sign of the EPI the character of the con-
centration profile: oscillatory or monotonic. In our exact
derivation based on the underlying electronic structure,
all the information is contained in the point energies.
Clearly, the accurate determination of the point energies
to calculate the equilibrium concentration profile is of the
utmost importance. However, we find that the parame-
ters used in phenomenological theories very frequently
have the same sign and are approximately of the same
magnitude as those entering our formalism, thus leading
to predictions for the segregation behavior that are quali-
tatively remarkably accurate.

Future applications of our formalism for systems with
atomic size disparities will incorporate a microscopic
theory of the elastic contributions to the free energy. As
discussed by Tréglia et al.*6™ 52 this may be accomplished
through a second moment expansion, while it is also pos-
sible to treat these effects in Monte Carlo simulations.”* %
Other lines of inquiry include the feasibility of a grand-
canonical description discussed above, and a further
analysis of the problem of an appropriate choice of refer-
ence medium which is extremely important in the case
that ordered structures are present. The present formal-
ism may be expanded to include magnetism which would
permit us to study the interplay of magnetic and compo-
sitional ordering near surfaces and interfaces. Our com-
puter programs may also be easily modified to handle
segregation at internal interfaces for which exciting ex-
perimental results have been reported recently.!

One of the main motivations of the present study was
to relate surface segregation to the electronic band struc-
ture without introducing any adjustable parameters. This
was accomplished by using the recursion method with
tight-binding parameters obtained through a fit to first-
principles LAPW calculations.” While it would be
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preposterous to call this a true first-principles calculation,
it is an important step towards such a scheme. In this re-
gard it is of interest to mention some other recent
methods that are based on a similar philosophy. The
tight-binding LMTO method proposed by Andersen, Jep-
sen, and Sob*° was recently extended to treat semi-infinite
ordered'™ and disordered'® systems. For alloys the
method uses layer Green’s functions techniques and im-
poses the CPA condition. No segregation profiles were
calculated, but the relative magnitudes of the EPI’s were
studied. In agreement with our work it was found that
the EPI depend strongly on the position and that in cer-
tain cases further-neighbor EPI’s may dominate over the
first-neighbor interactions. Applications so far have used
self-consistent bulk potential parameters, but extension to
appropriate surface potentials determined from slab or
supercell calculations are envisioned. At present the
method is restricted to the use of the atomic sphere ap-
proximation. Another approach based on density func-
tional theory uses a generalization of the embedded atom
method!® (EAM) to the case of alloy surfaces.”** As
originally implemented®* the method uses Monte Carlo
simulations including atomic displacements in the
grand-canonical ensemble keeping volume, total number
of atoms, and chemical potential difference fixed. Be-
cause this is a very time consuming procedure, a recent
implementation®® has employed a free-energy minimiza-
tion technique in the point approximation (similar to the
present Bragg-Williams method) but with atomic vibra-
tions included in the local harmonic model. Both im-
plementations have been quite successful, but as they are
based on the EAM potentials which are not unique and
include fitting parameters they are somewhat less first
principles then the present method and that based on the
TB-LMTO scheme. %

In keeping with a similar trend for bulk phase stability
calculations it may be questioned to what extent an
LDA-based first-principles calculation of surface point
and pair interactions may be accomplished without trans-

forming to a tight-binding Hamiltonian. While the for-
malism to perform KKR-CPA calculations in a layer
geometry has been around for a while, %7 it is only recent-
ly that the implementation of charge-self-consistent cal-
culations has been accomplished.!® Because such calcu-
lations are very time consuming, it seems impossible at
present to perform the compositional self-consistency
loop discussed in the present paper, to ensure that the in-
teraction energies are calculated for the equilibrium con-
centration profile. This would be true irrespective of
whether the GPM or the ECM are used to compute the
energies. The only way out of this impasse would be to
determine concentration-independent interactions in the
grand-canonical approach alluded to before, but the via-
bility of this scheme remains to be established and is
currently under study. Because slab and supercell calcu-
lations have now reached the same level of accuracy as
bulk calculations, one might alternatively want to start
from first-principles calculations for the ordered com-
pounds and extract ordering energies from those by ap-
plication of the Connolly-Williams method. Although
the number of interactions to be determined may be rath-
er large, and some doubts will remain as to which interac-
tions to include and which not, this might be a practical
alternative. In particular, a judicious choice of the struc-
tures in the basis set might be possible, perhaps by a gen-
eralization to surface structures of the special quasiran-
dom structures proposed by Zunger et al.'% for bulk sys-
tems.
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