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Energy partitioning and particle spectra in multicomponent collision cascades
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Energy distributions of recoil atoms in collision cascades in composite media are studied analytically.
The pertinent integral transport equations are reduced to a computationally much simpler system of
differential equations. This is possible for arbitrary particle interaction potentials. The accuracy of this
transformation is demonstrated by comparison with Monte Carlo computer simulation. As a case study,
energy partitioning among the target species in a collision cascade in the (hypothetical) binary com-
pound Hf C& is investigated. We find that the number of recoils produced is understoichiometric for
both species. On the other hand, the particle Aux of the lighter species is overstoichiometric, while the
Aux of the heavy species shows only small deviations from stoichiometry. The energy is deposited pref-
erentially in low-energy recoil motion of the lighter species. Reference is made to earlier theoretical
treatments of the problem for less-general-interaction cross sections. The differences found are mainly
quantitative, and their origin is traced back partly to the differences in the physical input, and partly to
the restricted validity of the previous methods. Energy spectra of particles sputtered from a compound
are studied, concentrating on an experiment on HfC sputtering. We find, in agreement with the experi-
ment, that Hf and C species show similar slopes. We predict that energy spectra from diluted com-
pounds will show larger differences in their slopes.

I. INTRODUCTION

The theoretical description of energetic particle slow-
ing down and recoil generation is of a long standing in
theoretical physics. ' The energy distribution of recoils
generated in a collision cascade can be determined from
so-called transport equations. These are linear integral
equations, which contain the particle interaction cross
sections as their essential ingredients. The analytical
solution of these equations is known only for rather spe-
cial interaction cross sections. ' We present in this pa-
per a general method to calculate energy distributions in
collision cascades. This method may be used for arbi-
trary interaction cross sections. It consists of approxi-
mating the transport integral equations by a system of or-
dinary differential equations that are considerably easier
to solve. We check the validity of our approach by com-
parison with computer simulation results.

While asymptotic energy distributions of recoil atoms
in a monoatomic medium have been studied long ago
with sufficient care, ' the recoil particle distributions in
multicomponent media are not known in the general
case. The study by Andersen and Sigmund is based on a
restricted class of power-law interaction cross sections.
An analysis with more general, but still power-law cross
sections has been carried out in Ref. 5, where two of us
rigorously derived the asymptotic energy distributions
and also presented comparisons to Monte Carlo simula-
tions. The general case of energy sharing in a multicom-
ponent cascade was classified into three limiting regimes:
(i) a situation of detailed balance, where each species re-
ceives as much energy from the others as it returns to
them; (ii) a regime called dominance, where one species
will determine the behavior, and the other species adopts
the characteristics of the first species particle spectra; (iii)

a case of ignorance, where each species behaves as if the
other were not present. The results of Ref. 4 fall into the
class of detailed balance.

The above classification strictly applies only to the
asymptotic stage of the cascade. Realistic collision cas-
cades, in contrast, do not show such a clearcut behavior,
partly because the asymptotics is reached only at very
small energies, which fall outside the range of validity of
the model, and partly because the interaction cross sec-
tion is not well described by a single power.

Generalization of the above calculations to arbitrary
cross sections is not feasible with those methods. In this
paper, we present a new analytical method to evaluate
the energy distributions of recoils in compound targets
for general cross sections. In particular, the results of
Ref. 4 are recovered as a special case. The differences in
the results brought about by the use of a more realistic
interaction law are shown to be signi6cant.

The problem of energy partitioning in a collision cas-
cade is of interest for the question of damage production
and recoil generation in compound media. ' From a
materials science point of view, an answer to this ques-
tion requires the knowledge of a number of parameters
such as the displacement threshold and bulk binding en-
ergies of atoms of each species in the compound. These
quantities are not always well known. Moreover, they
may vary with the concentrations in the compound. In
the present study, we will consider the displacement
thresholds as known and disregard all binding energies.
Hence our main topic is the deviation from stoichiometry
of damage production and recoil generation.

A further example where the present analysis may at-
tract attention is the study of preferentiality in compound
sputtering. Of course, the absolute magnitude of the
sputter yield of each species depends strongly on the
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respective surface binding energy. Again, as these quan-
tities are poorly known, we will not discuss the absolute
magnitude of sputter preferentiality. However, the issue
was raised that the energy spectrum may be different for
the individual particle species sputtered from a com-
pound experimental tests have not verified this predic-
tion. "' A recent theoretical study based on power-law
interaction potentials clarified this discrepancy and point-
ed out that in the cases investigated experimentally, a sit-
uation of detailed balance between the species will be es-
tablished in which the energy spectra of the species show
a similar slope. We will take up this issue again in this
work, and generalize the previous statement to arbitrary
collision cross sections.

II. DERIVATION OF APPROXIMATE
TRANSPORT EQUATIONS

%, (E)=f dt v;f;(E, t),
0

(4)

where U, is the velocity of the i atom with energy
E,u; =+2E/M, . Furthermore, 5(x) denotes Dirac's
delta function, and 5;, equals 1 if i =1, and 0 otherwise.
Thus, Eq. (3) allows to compute the fiuxes 4, (E) for each.
species i in a cascade initiated by the species i = 1 with
energy E0. We note that the case of bombardment with a
species different from the target constituents may be for-
mally included here by setting c& =0.

It is useful to introduce the balance of collisions ap-

Consider a homogeneous medium of atomic density N,
which consists of n different species of atomic fraction c,.
(i =1, . . . , n ) and mass M, . Let a fast particle of species
n = 1, which has at time t =0 energy E =E0, slow down
in this medium, thereby initiating in it a collision cas-
cade. Let furthermore f; (E, t )dE denote the number of
particles of species i with energy between E and E+dE
at time t.

The collision cross section of an i particle of energy E
to scatter at a j atom at rest and lose an energy between T
and T+dTis denoted by

d o'; = cr, (E,T )d T".
The maximum possible energy transfer is determined
from kinematical reasons to be

4M;M.I J

(M;+M. )2

The time evolution of the particle distributions f, may.
be described by using so-called transport equa-
tions ' ' these will be employed in this work in their
forward form. They read

Xg f dT[c, o,,(E+T, T)%,(E+T)
J

+c;o,(E+T,E)%&(E+T)

co, (E, T )qr; (E—) ] +. 5, ,5(E —Eo ) =0 . (3)

Here we have introduced the time integrated particle
Auxes 4, ,

pearing in Eq. (3)

b,;(E)=Xg f dT(c, o;, (.E+T, T)qr;(E+ T)

+c;cr;(E+T,E)%' (E+T)
co—, (E,T)V;(E)] .

We shall refer to the first term as the scatter term, the
second as the recoil term, and the third as the loss term.
With the balance of collisions 5;, the transport equations
(3) simply read

b;(E)+5;,5(E —Eo)=0 .

We wish to solve Eq. (3) approximately for E «Eo.
This is done by a Taylor expansion of the integrand in the
balance of collisions A. We give the details of this expan-
sion in Appendix A. It may be noted that the analysis is
in the spirit of the so-called age theory introduced in neu-
tron and electron-transport theory. ' ' As a result, the
set of integral equations (3) is transformed to a system of
differential equations

N g t c,Su (—E)%;(E)+c,S~;(E)% (E.)]
J

+ N g [c cr', (E)E 4;(E")+c;o";(E)E4 (E)].
dE

+E5;i5(E Eo)=0,—

with the obvious initial condition %,(E )Eo)=0. In Eq.
(7), the stopping cross sections S;~ and the (partial) energy
slowing down cross sections o';J and o.

,
" have been intro-

duced:

Si(E)=f dT Tcr; (E,T),
0

max T To'(E ) = — . dT 1 ——ln 1 ——o (E, T), (9)lJ E E

Tmax T To"(E)=—f . dT ln cr (E—, T)—.
/J

In Appendix B we evaluate these moments for Kr-C in-
teraction.

Let us pause for a moment to contemplate the
differences brought about in our asymptotic expression
for the balance of collisions from the rigorous integral ex-
pression (3). Rigorously, we need to know the fiuxes 4,
in an interval of energies above E in order to determine
the balance of collisions 6, at energy E. In contrast, in
our asymptotic expression, only /ocal properties of the
Auxes 'PJ. at the very energy E are needed. The terms in

Eq. (7) may be interpreted in the following way: The first
term, —c S; 4;, denotes the rate at which i atoms scatter
out of the energy interval (E,dE); in this term the net
effect of scattering of i particles into the energy interval
(E,dE) due to the slowing down from higher energies is
taken into account. The second term, +c,S;4, de-
scribes the generation rate of i recoils in the energy inter-
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val (E,dE) due to j atoms colliding at higher energies
with i atoms at rest. The term containing an energy
derivative is less obvious than the other two. In Sec. III,
we will identify it as the derivative of the so-called energy
slowing down density.

In a monoatomic medium, this last term is the only one
contributing, since the other two cancel identically. Con-
versely, in a situation of detailed balance, the third term
is unimportant against the first and second. We will dis-
cuss this case further in Sec. V C.

co(E)=N f dE' %(E') f cr(E', T)T dT
E 0

+ f o(E', T)(E' —T)dT
F. ' —E

The meaning of this quantity becomes clear by taking
the derivative of to(E ). One may show that
des/dE =Eh (E ), therefore the balance Eq. (3) becomes

=E5(E Eo) —. (12)

III. ENERGY SLOWING DOWN DENSITY
AND DEPOSITED ENERGY

Before discussing the validity of the analysis performed
above and the solutions of the resulting equations, it is
useful to study its relation to the so-called energy slowing
down density. This motivates the name "energy slowing
down cross sections" given to the quantities o';., o.";, Eqs.
(9) and (10), and will shed more light on the analysis it-
self.

Let us introduce the energy slowing down density
to(E), first in a monoatomic medium. It is defined as the
average amount of energy dissipated through collisions
from particles moving with energy E') E down to ener-
gies below E. This may happen either by generating a
recoil with energy T(E, or by losing in a collision a
sufficient amount of energy T, so that the remaining ener-

gy E' —T falls below E. Thus, in a monoatomic medium,
it is

Hence one may recognize the energy slowing down densi-

ty as a current in energy space, the divergence of which is
balanced by external sources. The minus sign in the
above equation comes from the fact that we deal with a
process of energy degradation. The energy slowing down
density at zero energy, oi(E =0), is just the deposited en

ergy, a quantity that is more familiar in the context of
collision cascades.

In generalizing this concept to multicomponent media,
i.e., introducing an co; for each individual species, one
faces the diSculty that the two particles involved in a
collision may belong to difIerent species. Thus, it is not
clear at first as to which species' ~; such a collision even
should contribute. In order that co; (E=0) be the energy
deposited in the species i, we define to;(E) as the energy
gained in a collision by species i below energy E in the
spectrum, where before collision the moving particle may
belong to any species and has an energy above E:

E
co, (E)=N g f dE' %,(E')c, f o,, (E', T)TdT++, (E')c, f o,,(E', T)(E' T)dT—

E 0 E' —EJ

(13)

We note that Williams' uses a definition for the energy
slowing down density, which coincides with Eq. (11) for
the case of a monoatomic medium, but is difFerent from
Eq. (13) for the general case.

Taking the derivative of Eq. (13) with respect to E, one
obtains, in analogy to Eq. (12)

two to get the relation

co;(E)=—N g [c o'; (E)E 4;(E)+c;o",(E)E %,(E)] .
J

(15)

It is a noteworthy fact that in both the exact relation Eq.
(13) and the approximate Eq. (15), the energy slowing
down density for the species i contains the fluxes of all
species j.

The total-energy slowing down density co(E )
=g;co; (E) may be given in terms of the approximate Eq.
(15),

(14)=E5;,5(E Eo) . —

This equation is readily interpreted in terms of energy
conservation: The first term, similarly as in Eq. (12), is
the divergence in energy space of the current carried by
species i. This term is balanced by energy exchange with
the other species [the sum over j in Eq. (14)] and external
sources (right-hand side).

We note that Eq. (14) contains no approximation so
far; it is strictly equivalent to the original transport equa-
tions. It is still an integral equation, though, since the co;
are integrals over the +;. However, it is similar in struc-
ture to the approximate Eq. (7), and one may identify the

(16)co(E)=-NE g c,o;J.(E) Il, (E), .

where we have introduced the energy slowing down cross
section,

(17)s ~ r
lJ 1J +O lJ

The value of co is constant and equal to the bombarding
energy Eo, as follows immediately from Eq. (14). This
simply expresses energy conservation and holds true as

d CO1.

+N g [P;(E)c S, (E)—4 (E)c;S;(E)].
J
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long as losses to the electronic system may be disregard-
ed. On the other hand, one may include inelastic effects
quite naturally by regarding the electronic system as an
independent species. However, in all calculations
presented below we explicitly neglect electronic effects al-
together, since this is not our major focus here.

IV. PARTICLE SLOWING DOWN DENSITY
AND NUMBER OF RECOILS

A quantity of particular interest in collision cascades is
the number of atoms participating. In other words, we
are interested in the number of recoils created in a certain
energy interval ~ This quantity will be relevant to the
number of defects or damage in the target material as a
consequence of the cascade. In order to conveniently cal-
culate the number of recoils, a few auxiliary quantities
wi11 be introduced in the following.

Let F;(E)dE be the number of i atoms set in motion at
energy (E,dE) due to collisions by moving atoms of any
kind:

Eo
F, (E)=f dE'Nc; g + (E')o;(E',E) .

J
(18)

dX==F;(E)+5;15(E—Eo) .
dE (20)

The above equation is another form to write the origi-
nal transport equation. Such as Eq. (14) expresses the
conservation of energy, Eq. (20) describes the balance of
particles: The term on the left-hand side represents the
divergence in energy space of the i-particle current, while
the right-hand side contains two source terms, i.e., the
recoil density F; and external sources.

One can immediately integrate Eq. (20) to get the total
number X; of recoils generated above some displacement
threshold energy E&,

N; = f dE F; (E ) =y; (Eg ) —5;1 . (21)
d

The meaning of this equation is clear: The number of
recoils created above energy E& is equal to the number of
atoms slowing down through this energy; the projectile is
not counted among the recoils.

Equation (21) is, as it stands, not much help unless the
slowing down density y is known. It may, in principle, be

This quantity is known in the literature as the recoil den-
sity. ' In analogy to the energy slowing down density,
Eq. (13), we define the particle slowing down density as
the average number of particles slowing down via co1-
lision from an energy E' & E to an energy below E:

y, (E)=f dE'4;(E')Npc f o; (E', T)dT . (19)
J

In order to avoid possible confusion, we note that the
term slomI. ng down density is also used in Ref. 4; however,
there it denotes a different quantity, namely %,(E)IU;.
Our definition Eq. (19) is equivalent to the one in Ref. 15.

Differentiating Eq. (19) with respect to E and using the
transport equations, Eq. (3), one obtains

computed from Eq. (19), but this involves a double in-
tegration. With methods similar to those of Appendix A,
however, a useful approximation may be obtained:

(E ). =ql'—; ( E )N g cJS;,(E ) .
J

(22)

This relationship is local in energy and involves only the
stopping powers rather than the full cross sections. Thus
we may compute the total number of recoils X; directly
from the particle Aux 4; at the displacement threshold
energy.

V. SOLUTIONS

In the following, we wish to present solutions to the
approximate equations obtained above. We shall com-
pare our results with expressions available in the litera-
ture for the case of so-called power-law cross sections,
but also derive an explicit solution for general-interaction
laws. In all calculations below we neglect electronic in-
teraction.

A. Monoatomic target

In a monoatomic medium, it is

a)(E )=¹(E)E V(E ) =Eo, (23)

EOS(E)
y(E) =

E o(E)
and by differentiation, we obtain the recoil density as

(25)

F(E)=K(E)E2 (26)

The quantity K(E) appearing here is termed displace-
ment efficiency, and is given by

z d S(E) S(E)
E o (E ) Eo(E).(27)

The approximation above is strictly valid for power cross
sections, and we have checked that it is an underestima-
tion by at most 20% for the Kr-C potential.

We wish to make contact with solutions available in
the literature for the case of power cross sections. These
approximate the scattering in a potential V(r) ~ r
and read' '

do(E, T)=C E™T' dT .

For such a scattering law, the stopping cross section is
given by

S(E) C E 1 —zm

1 —m

and the energy slowing down cross section is

(29)

where we have suppressed the indices. Hence, the parti-
cle Aux becomes

Eo
ql(E ) = ¹r(E)E

From this we obtain the particle slowing down density as
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( )
1

C E 2 1 S(E)
I (1—m) I E (30) cr (%')+0 2'P2=

XE
(34)

where I =m/[g(l) —g(1 —m)], and P(x) denotes the
digamma function. '

With this, the spectrum in Eq. (24) becomes

where we introduced the total-energy slowing down cross
sections o, as

%(E)=(1—m )I
NC E2 2~ NC ES(E )

(31)

0 i
—CiO )i+C20 I2

2 C2 &22+ C I Hp)
(35)

which is the well-known rigorous asymptotic expression
of linear cascade theory. ' The recoil density results as

To discuss this system further, it is advantageous to in-
troduce

EoF(E)=I
E2

g)(&)= ~ ((E )E' Il, (E),
0

(36)

with an energy independent displacement efficiency
K = I . These are the exact results for power cross sec-
tions. ' '

Thus, our analysis reproduces the exact asymptotic re-
sult for power-law cross sections. Moreover, it yields a
simple expression for the asymptotic energy dependence
of the flux for general collision cross sections, Eq. (24).
In particular, we obtain that it is a local form of the col-
lision cross section —more precisely, only a special mo-
ment. of it, the energy slowing down cross section—
which determines the asymptotic Aux distribution.

Note that the distribution (24) results as a direct conse-
quence of our discussion of energy conservation in the
system, Sec. III. Since the energy slowing down density
co—which is constant and identically equal to Eo in the
case of a monoatomic target —is asymptotically propor-
tional to the Aux 4', the latter is proportional to Eo.
Since o(E) serves as the nontrivial factor of propor-
tionality between u and 4, we call it the energy slowing
down cross section.

Another result is that the displacement efFiciency, a nu-
merical factor that gives the number of recoils in a cas-
cade, could be identified as the ratio of two moments of
the cross section. These moments are the energy slowing
down cross section o. denoting the rate at which energy is
degraded, and the stopping cross sections, which are the
rate at which moving atoms lose energy. The displace-
ment efficiency is thus determined by the competition of
energy degradation and particle slowing down.

1(2(e)= Oz(E)E .Vz(E),
0

(37)

with e=E/Eo. For a monoatomic target, g(e) is a di-
mensionless constant equal to 1, cf. Eq. (23). With the
abbreviations

c2S&~(E ) C2%~12( E)s)(e)=, r)(e)=
Ecr )(E ) o. ,(E )

c,S2, (E) c, oz, (E)
s,(e)=, r, (e)=

Eo2(E )
. o.2(E )

(38)

the system (33) then reads

I (1—r i )ql+ r2qz I s I pi+ —s—zq~ = —S—(1 —e),
(39)

I(1 r)g —+r, g, I
——s g + —s, g, =0 .

The energy integral is, by summation

Pi+ 02=1 . (40)

(1—r, r~ )QI(e)—= [1—rz(1)]h (e)

+h(e)f, + (41)

We can express 1(z by QI and readily solve the remaining
first-order differential equation in (1—r, rz)P, . W—e ob-
tain

B. Binary targets (1—r, r2)$2(e)= —r, (1)h(—e)

The equations for recoil generation in a binary target
explicitly read +h(e)f, +

[(cia 11+c2&12)E 0 I+C l&21E %2]

Eo
C~S&2% )+c]S2I%2+ 5(E Eo)=0

(33)

where we used the homogeneous solution

I Si +$2
h(e) =exp —f 1 —rI —r2

(42)

[(cpcrpp+clop/)E e2+c~o )pE O'I]

+czS&z%', —c,Sz, %'z=O,

where it is assumed, as in Eq. (3), that a particle of
species I acts as a projectile. By summing these two
equations, we find the total-energy integral

So far, the above equations refer to self-bombardment
of a binary target, that is, when the bombarding species is
one of the two constituents. This may not be the typical
situation in experiments; one would rather like to have
the corresponding formulas for the case that the bom-
barding particle is difI'erent from the target components.
Indeed, the pertinent equations allow an integration in
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closed form, ' but the resulting terms are rather unwieldy
and will not be presented here.

C. Detailed balance

The low-energy part of a collision cascade is expected
to be in an asymptotic state, which is largely independent
of the initial stage. In particular, for cascades in a mul-
ticomponent medium one will assume that the energy
sharing among the different species has reached some
stable equilibrium situation. More specifically, one might
suspect that the energy slowing down density co;(E) for
each element levels off at some constant value, indepen-
dent of the actual energy E. Such is indeed the case [cf.
Eq. (15)] if the cross sections for each species i to scatter
at any other species j show the same energy dependence
for all j:

o;, (E) ~o;;(E) . (43)

c2S&z%'& —c &S2&%'2 (44)

It expresses the balance of energy How via collisions from
and to each species: At any given energy, each species re-
ceives as much energy from the others as it returns back
to them.

Equation (44) together with the energy conservation
condition +co;=Eo allows one to solve for the cruxes
%, (E),

The cross sections used in Refs. 4 and 20 meet the above
restriction.

Setting des;/dE=0 in Eq. (14) yields the condition of
detailed balance, which for a binary medium explicitly
reads

VI. DISCUSSIDN

A. Energy partitioning in binary media

We wish to apply our theory to the bombardment of
HfC. This specific target is expected to display interest-
ing behavior, e.g. , deviations from stoichiometry, since
the masses and atomic numbers of the constituents are
drastically different. Moreover, this system has been
studied experimentally. "

All calculations in this work have been performed us-
ing the Kr-C potential, ' for which the cross section and
its moments have been obtained numerically (see Appen-
dix B). All quantities presented below have been ob-
tained by a numerical evaluation of Eqs. (41) using these
moments of the cross section. Electronic interactions
were neglected throughout.

Figure 1 shows the fraction of energy co&(E)/Eo car-
ried by the C system, for various bombarding conditions.
For reasons of energy conservation, the energy carried by
the Hf system is given by coHf=Eo —coc. The curves
represent self-bombardment at 6 and 100 keV. If the
bombarding particle is C, then all energy is initially in the
C system, hence coc(E)/Eo is equal to 1 at the bombard-
ing energy. Conversely, co&(E)/Eo is equal to 0 at the
bombarding energy for Hf bombardment. It is seen that
all curves approach a common asymptotic equilibrium
curve at low energies, regardless of the bombarding con-
dition. Note that there is no simple equipartition of ener-
gy: The C system carries the larger portion (60%) at low
energies, although the target consists of equal parts of C
and Hf. Note also that the system is not strictly in a state
of detailed balance, since this would require that co, is
constant.

The fact that the carbon signa1 for Hf bombardment

Eo c,S2i(E)
'P)(E)=

NE c&S &(E2)cr &(E)+c2S&2(E)oz(E)
(45)

1.0

Eo c2S,2(E)
q12(E ) =

NE c&Sz&(E)o ~(E)+c2S&2(E)crz(E) 0.8-

If the power cross sections of Andersen and Sigmund are
used, Eq. (45) is identical to their Eq. (24), while Eq. (44)
is equivalent to their Eq. (25). For general power cross
sections, however, Eq. (45) does not represent the correct
asymptotic behavior, cf. Ref. 5.

As to the restriction in Eq. (43), there is little support
from realistic particle interaction laws, especially in the
case of widely different masses. Its motivation rather
stems from the mathematical simplifications that it intro-
duces (cf. also the footnote on p. 8 in Ref. 4). In general,
o;; and o; will be different functions of energy, and the
relative importance of intra and interparticle collisions
will thus depend on energy, which impedes the energy
slowing down densities to reach stationary values. Yet
the detailed balance solution, Eq. (45), may serve as a use-
ful orientation, since it avoids the necessity of solving a
system of differential equations. Its quantitative accuracy
will be discussed below.

0.6 =

04

0.2-

0.0
10 10 10 10

R (ev)
10 10

FIG. 1. Energy slowing down density of the C system in a
collision cascade in HfC. The labels on the curves denote the
bombarding species and energy.
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extends up to the initial energy of Hf, even though the
maximum energy of a C recoil is much 1ower, might ap-
pear disturbing. However, it is not in conAict with the
definition of the energy slowing down density, Eq. (13),
since co;(E) measures the amount of energy +owing
through energy E. The situation is different for the Auxes
'(II;, see below.

The energy slowing down density at zero energy is the
energy deposited in the corresponding system, shortly
called partial deposited energy. This quantity is well
defined for a monoatomic medium (for vanishing elec-
tronic losses it is simply co(E)=ED), but certainly merits
some comment for the case of a compound. First of all,
from Fig. 1 it is not clear that there is actually a well
defined limit co;(E~O). On the other hand, it would be
meaningless to extend the present calculation to energies
below 1 eV, since the binary collision assumption under-
lying the transport Eq. (3) would long be violated for
such low energies. Eventually, all energy will thermalize
and there will be equipartition among all degrees of free-
dom. The path towards this equilibrium, however, begins
with a linear, collisional stage, which is described by the
present scheme and extends down to somewhere in the
lower eV region. It is therefore reasonable to regard the
partitioning of energy at the end of this linear stage,
which we take —somewhat arbitrarily —at 10 eV. Thus
we show in Fig. 2(a) the partial deposited energy in a hy-
pothetical Hf& C compound. The incoming ion is Hf
at 100 keV. At this energy, however, the low-energy part
of the cascade is already in its asymptotic state and in-
dependent of the bombarding condition, as can be seen
from Fig. 1. The dotted lines in Fig. 2(a) correspond to a
stoichiometric partitioning, and the dashed curves corre-
spond to the detailed balance solution, Eq. (45). It is ob-
served that the C species receives more energy than ac-
cording to stoichiometry at the cost of the Hf species.
This preferentiality of the lighter species may be under-
stood qualitatively within the concept of detailed balance.
However, the magnitude of the effect is overestimated by
the detailed balance solution.

Partial deposited energies have been calculated previ-
ously for the TaO system. The authors did so by using
backward equations. In this approach one has to impose
boundary conditions at zero energy. These, however,
cannot be determined uniquely without anticipating the
result. This problem appears to be closely related with
the fact that co;(E) need not have a well defined limit for
E—+0.

Regardless of the details, the authors of Ref. 6 find that
more energy is deposited in the heavier species Ta, oppo-
site to our case. The discrepancy may be traced back to
the different input used: In Ref. 6, the Thomas-Fermi
cross section was used, which is less realistic at low ener-
gies compared to the Kr-C interaction used here. If their
cross sections are used in our formula (45), their result is
qua1itatively reproduced.

Although the energy slowing down density —or its
value at low energies —may be an intuitive concept to
quantify the partitioning of energy in a collision cascade,
it is not directly accessible to measurement. Observable
quantities of interest are, e.g. , sputtered particle cruxes
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FIG. 2. Energy partitioning in a collision cascade, initiated by
100 keV Hf, in the hypothetical medium Hf„C& as a function
of C concentration. Solid lines: Eqs. (41). Dashed lines: De-
tailed balance solution, Eq. (45). The dotted lines denote
stoichiometric behavior as a reference. (a) Energy fraction de-

posited in low-energy ( ( 10 eV) recoil motion, co; (E= 10
eV)/Eo. (b) Low-energy particle flux 4;(E=10 eV). (c) Num-
ber of recoils N;, generated above 10 eV in the cascade.
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and the damage in the irradiated material. These are
directly related to the fluxes 4; and the number of recoils
X, , which we display in Figs. 2(b) and 2(c), respectively.
Both figures show a more pronounced deviation from
stoichiometry than Fig. 2(a). In Fig. 2(b), the C (lux
shows a clear overstoichiometric behavior, whereas the
Hf flux is nearly stoichiometric. Again, the preferentiali-
ty is qualitatively well described (although exaggerated)
by the detailed balance solution (dashed lines); however,
the Hf flux is suppressed to understoichiometric values
by this approximation. We note that for detailed bal-
ance, the (lux ratio is determined by Eq. (44), which in
the case of power cross sections yields
0', /+2= c, /cz(Mz/M, ) . The factor (Mz/M, )

represents the preferentiality of the lighter species; this
constitutes the main effect observed in Fig. 2(b). Results
like those of Fig. 2(b) have been found in Ref. 4; there,
however, both the light and the heavy constituents
showed overstoichiometric behavior.

In contrast, Fig. 2(c) shows an understoichiometric be-
havior for the number of recoils of both species. This
may be explained by the large mass difference between Hf
and C: In interparticle collisions, a larger amount of en-
ergy is spent in subthreshold collisions and is thus not
available for recoil production. The effect is more pro-
nounced for the heavy species Hf than for C, which may
be attributed to the general preferentiality of the light
species. Understoichiometric behavior has also been
found for recoil densities in Ref. 4. At equal concentra-
tions, our results show similar recoil numbers for both
species. This is different from the results of Refs. 7 and 8,
where the heavy atoms are found to be displaced prefer-
entially. This discrepancy is due to the choice of 10 eV
for the displacement threshold energies used in our study,
while Refs. 7 and 8 assume a much larger value, around
60 eV. It may be seen from Fig. 1, and it is also shown in
Ref. 8, that at higher energies, the partitioning is more in
favor of the heavier species. Note, however, that the two
curves in Fig. 2(c) rely on the somewhat arbitrary as-
sumption of equal displacement threshold energies for
both species. In practice this is generally not the case,
which means that the recoil numbers in Fig. 2(c) should
only be regarded as a model study. Even more important
is the fact that the displacement threshold energies them-
selves may depend on composition, ' ' which is an addi-
tional possible source for nonstoichiometric behavior.
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10 10
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for energies close to the bombarding energy the present
analytical theory gives a surprisingly good description of
the spectra. The figures also contain spectra that refer to
a situation of detailed balance, Eq. (45). The spectra are
found to deviate quite markedly at high energies, and
converge for low energies slowly towards the simulated
spectra. The asymptotic slope fits quite we11, but the rela-
tive height of the curves deviates by around 20% from
the exact solution. We hence conclude that detailed bal-
ance is only established at very small energies. Neverthe-
less, detailed balance is an intuitive concept that may be
used to understand the qualitative features of the particle
spectra even for this case of drastically different masses.

B. Comparison to simulations and experiment

In order to check our analytical results we performed a
number of Monte Carlo computer simulations. The
Monte Carlo code was specifically designed to solve the
system of transport equations (3); details may be found in
Refs. 24, 25, and 5.

In Figs. 3(a) and 3(b) the special case of 6 keV self-
bombardment of HfC is treated. Kr-C interaction ' was
assumed, and electronic effects were ignored. The simu-
lation was performed without spatial resolution, and no
surface or bulk binding was applied. The agreement be-
tween analytical theory and the simulational solution is
excellent over almost the entire range of energies. Even

10

10

10 10 10
E (eV)

10

FIG. 3. Energy distributions of recoils in a HfC compound,
induced by a 6 keV C (a) and Hf (b) atom. Histogram: Monte
Carlo simulation. Lines: Eqs. (41). Dots: Detailed balance
solution, Eq. (45).
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Quantitatively, the preferentiality of the lighter species is
overestimated by detailed balance.

It is interesting to see how the energy spectrum de-
pends on the composition of the medium. Evidently, one
would expect the most pronounced e6ects for the case
where one component is diluted. Then, the cascade is
governed primarily by collisions among the majority
species, a situation termed dominance in Ref. 5. Figure 4
shows for the hypothetical compound Hf„C, the Aux

of C recoils due to an impact of a 6 keV Xe atom. The
histograms represent a simulation in an infinite medium,
ignoring binding forces and electronic e6'ects. In the case
where Hf is the majority constituent, x =0.99, the spec-
trum is notably Aatter than in the reverse case, x =0.01.
The reason for this behavior is found in the fact that C-C
collisions are characterized by a softer part of the Kr-C
potential [or smaller Lindhard energy EL, Eq. (B2)]. To
be more quantitative, one may assign to the Kr-C cross
section a local power exponent m, which is defined ac-
cording to Eq. (29) via

d lnS(E)
d 1.E (46)

Xe —+ Hf~Cy

For C-C collisions at 10 eV interaction energy, Eq. (46)
gives m =0.23. As a reference we included in Fig. 4 a
straight dashed line with a slope according to Eq. (31) us-

ing this m value. The slope of the C spectrum for
x =0.01 coincides very well with this reference.

Hf-Hf collisions, on the other hand, are represented by
a smaller value for m. The same holds true for Hf-C and,
to a smaller degree, for C-Hf collisions. In a Hf-rich en-
vironment where the collision cascade is dominated by

Hf-Hf collisions, C atoms are primarily set in motion by
Hf-C collisions and it must be expected that the C spec-
trum is thus steeper, i.e., characterized by a smaller
eA'ective m value. This is indeed observed in Fig. 4.
Rigorous analysis of this phenomenon based on power-
law interaction predicts that in a Hf-rich environment,
the C spectrum behaves asymptotically like

1/E " ' "' "'; for 10 eV interaction energy,
the exponents read

m&~f =0.12, mczf =0.17, mI-Ifc 0. 13,
and hence Ref. 5 predicts an e6'ective value of

m =mQ~f+mcQf m+fc 0. 16 .

(47)

The upper dashed line in Fig. 4 corresponds to this value,
and its slope indeed agrees very well with the one of the
simulated C spectrum for x =0.99.

We note that these local values for the power exponent
m also account for the slope of the Hf and C spectra
displayed in Figs. 3 for a HfC compound. As shown
above, the slope of the spectrum is well described by the
detailed balance solution. For power-law interaction, the

2 —2m HfCHf spectrum should follow a 1/E distribution,
CHf ' 5and the C spectrum a I/E "' distribution. In view

of the almost identical values for m Qfc —m cQf the
finding that the C and Hf spectra are nearly parallel (see

Figs. 3) is in good agreement with this prediction.
In Fig. 5, we plot calculated energy distribution of

sputtered particles for a HfC compound bombarded by a
6 keV Xe atom, and compare them to distributions from
an experiment by Szymonsky. " Again, Kr-C interaction
cross sections have been assumed, still without electronic
eA'ects. In this case the full spatial dependence was con-
sidered in the simulation (histogram), and a planar sur-
face binding with binding energies of 6.7 eV for Hf and
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FIG. 4. Simulated energy distributions of C recoils in a (hy-
pothetical) Hf C, compound, induced by a 6 keV Xe atom,
for the two extreme cases x =0.01 and x =0.99. The distribu-
tion for x =0.99 has been amplified by a factor of 100. The
dashed lines represent the slopes predicted by an asymptotic
theory (Ref. 5) (see text).
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FIG. 5. Energy spectra Y(E ) of particles sputtered from a
HfC target by 6 keV Xe bombardment. Smooth curves: present
theory. Symbols: experiment (Ref. 11). Histograms: Monte
Carlo simulation.
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4.8 eV for C was assumed. The particular values for the
binding energies were motivated by a fit to the experi-
mental energy distributions. " In the analytical calcula-
tion (smooth curves in Fig. 5), spatial dependence was not
considered; the corresponding spectra represent spatial
averages, which have been transformed in the common
way to account for a planar surface binding. The abso-
lute magnitude of the analytically obtained spectra has
been adjusted so that they coincide with the simulation at
10 eV. Since the experimental spectra are available only
in arbitrary unit, they have been adjusted as well to give
the same height as the simulation data.

It is observed that the analytical spectra are very close
to the simulations; slight deviations, however, occur for
the Hf spectrum, which must have their origin in the spa-
tial dependence. Also experiment and simulation agree
fairly weil, perhaps with some slight deviation in the posi-
tion of the maximum of the C spectrum. In particular,
the experiment shows a similar slope at high energies for
the two spectra, which is largely con6rmed by the
theoretical curves. This conclusion coincides with the
observation made in Figs. 3 that Hf and C spectra are
proportional to each other over a wide range of recoil en-
ergies.

There exists another measurement of sputtered particle
energy spectra in a compound. ' The authors bombarded
a NiW-alloy sample and made a careful effort to resolve
different slopes in the sputtered cruxes for the individual
species, as suggested by the theory of Andersen and Sig-
mund, but again, no such effect could be observed.

A difference in the energy distributions of sputtered
particles such as the ones displayed in Fig. 4 might be ob-
servable experimentally. We therefore propose to mea-
sure sputtered particle spectra for compounds A B&

with, respectively, x « 1 and 1 —x « 1, and widely
differing masses of the constituents A and B. These spec-
tra should show notable differences in their slopes.

There are a number of effects not considered in this
work that may be important in the real situation. First of
all, spatial dependence has been disregarded altogether.
There is reason to believe that this may be substantial for
the understanding of preferential sputtering, since
sputtering occurs mainly from the outermost layer and is
thus quite sensitive to the spatial arrangement of the cas-
cade.

Thus, the comparison of the measured spectra with our
theory should be considered with some caution. Elec-
tronic stopping might have an inAuence on the sputtered
spectra, in particular in the case of C. One should also
bear in mind that the measured data were taken at high
fluence where the concentrations in the target, especially
in regions close to the surface, might have been altered
during bombardment. It appears likely that C, being the
lighter component and having the smaller surface binding
energy, was depleted near the surface. Another source of
uncertainty may arise from the target structure, which
may affect the collision probabilities for the two species.
Thus, Robinson showed that short-range order in a
compound may have an effect on recoil densities. In the
system studied there, the "caging" of a small light species
by a big and heavy species shields the light species some-

what from collisions. Such effects are not included in our
theory, which assumes a structureless medium.

VII. CONCLUSIONS

We presented an analytical method to derive the ener-

gy distributions in a collision cascade in a multicom-
ponent medium. The method follows the spirit of the age
theory, which is well known in neutron- and electron-
transport theory. ' ' In essence, the integral transport
equations are converted to differential equations by Tay-
lor expansion in the appropriate variable. A similar
method also gives useful results for the slowing down and
reAection of a (light) projectile from a solid surface.

The results obtained contain only certain moments of
the interaction cross sections: The well-known stopping
cross sections S;J(Z) and the energy slowing down cross
sections, which are introduced here. Unlike in earlier
treatments, there are no restrictions in the present study
on the form of the interaction potential between particles;
for Kr-C interaction, the necessary moments are given in
Appendix B. For elemental and binary targets, the ener-

gy distribution of recoils in the collision cascade is ex-
pressed analytically with the help of these moments.

Electronic interaction can be formally included within
the present framework. The results presented in this
work, however, neglect electronic effects.

The present scheme is applied to the calculation of col-
lision cascades in binary media, where Hf C, „ is taken
as a case study. There are several possible ways to quan-
tify deviations from stoichiometric behavior, and it turns
out that the results depend on the quantity considered.
Thus, the energy of the initiating particle is deposited in
the course of the cascade preferentially into low-energy
motion of the C species. Likewise, the Aux of low-energy
particles is overstoichiometric for C and is nearly
stoichiometric for Hf. On the other hand, the number of
recoils generated in the cascade is understoichiometric
for both species, the effect being more pronounced for Hf.

Comparison of our analytical results with Monte Carlo
simulations shows excellent agreement in the entire re-
gime of recoil energies, with minor deviations near the
bombarding energy.

The energy distributions of recoils of the individual
species in a binary medium is different from the respec-
tive spectra of the pure media. Interspecies collisions
tend to equalize the slopes of the two spectra. This is also
found in another theoretical study based on power-law
interaction potentials, and is confirmed by experi-
ment. ""

Different slopes of the energy spectrum are found,
ho~ever, for different compositions of a binary medium.
Here, the systematics is such that the majority species
dictates the behavior. Thus, the spectrum becomes Aatter
if the light species is more abundant, and vice versa. The
differences might be observable experimentally, and it is
proposed to perform such an experiment.
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APPENDIX A

o(E, T)dT=o(E, r. )dr . (A 1)

We present the details of the Taylor expansion of the
system of integral equations (3). The analysis is per-
formed in several steps. First, the cross section o (E, T)
may be transformed to the relative energy transfer
v = T/E, writing

E =Eoe (A8)

which increases monotonically with decreasing particle
energy. We keep, for the sake for simplicity, the same
letters for the functions of the new variable, i.e., we write

Next introduce as the logarithmic energy variable the
lethargy u,

Hence the loss term simply transforms as
4(u ) =%(E(u) ) =%(Eoe "), (A9)

dTc~o J(E, T)%,(E)=drc cr; (. E,r)%, (E) . (A2)
and analogously for the cross section and the balance of
collisions. We obtain

In the scatter term, we use the relative energy variable
r= T/(E+ T), which gives

6;(E)=X+f drIc)o, (u', r)e" "+;(u')
J

o(E+T, T)dT=o(E+T., r) dr .
E+T

Hence the scatter term transforms to

(A3)
+c;o,(u",r)e" " 4'-(u")

c,c—r, (u, r)%, (u)I . (A 10)

dTc o,&(E', T)%;(E')=drc o, (E', r."),(E'),

E'= E
1 —g

(A4)

Here, it is e" "=1—~ and e" "=~. Now we perform a
Taylor expansion in the lethargy:

cjo., (u', r)e "4', (u')+c;cr,;(u",r)e " %, (u")

=c~o.;~(u, r)e "4';(u)+c;o, (u, r)e "4 (u)

In the recoil term we take r=E j(E+T) as the relative
energy variable, and get

+(u' —u) [c o; (u, r)e "+;(u)]
Bu

o(E+ T,E)dT=o(E+ T,r) . dr .E+T
(AS) +(u"—u) [c;o,(u, r)e "4 (u)] . (Al 1)

Collecting terms, we finally have
r

El r
7

(A6)

EI
b, , (E)=N Q f dr c,o,, (E', r) %,(E')

1

II

+c;oi;(E",r) J(E")

cj.o, (E,—r }4,("E )
' . (A7}

Thos the recoil term transforms as

Ell
dT c;cr; (E",E)% (E")=drc;o;(E",r) . VJ.(E"),

This point needs some justification, since it constitutes
the main approximation introduced in the present study.
The expansion with respect to u' is easily accepted. Note
that u —u is the lethargy increase for the colliding parti-
cle; hence it is typically small, since the cross section
favors small energy transfer. This is diA'erent for u".
However, as the dependent variable that is expanded is
essentially the energy slowing down density, the variation
with energy will be small (for a monoatomic, elastic col-
lision cascade it is constant altogether). For power cross
sections, one can show that this expansion yields the lead-
ing terms in an asymptotic series, i.e., for energies well
below the bombarding energy. For general cross sec-
tions, as they are the major focus here, there is support
for the above expansion from comparisons with pertinent
simulations (cf. Sec. VI B).

From Eq. (Al 1) we obtain

b, ;(u)=N g fdr c o.; (u, r)[e"' "—
1. ]+;(u)+c;crj,(u, r)e"" "4 (u)

J

+(u' —u )e"+" [c,o,, (u, r)e "+,(u)].+' a

+(u"—u )e" " [c;o~;(u,r)e "4)(u)]u+u"
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Here, the ~ integrations can be performed. Note that 10

u' —u =ln(1 —r), u" —u =Inr (A13)

are functions of ~ only. It is

fdro; (u, r)e"" "=—fdro, I(u, ~)(e" "—1)

= f drrcr, (u, ~)

dT To.; E, T =—S; E, TI 1

(A14)

10

10

10

with the stopping cross sections S, .(E), Eq. (8). We fur-
thermore introduce the following moments of the cross
section (called partial energy slowing down cross sec-
tions)

10

cr', (u )"= —f dr(1 —r)ln(1 —r)cr; (u, r),

0 ",( u ) = —fd r 'r in rcr,; ( u, 'r )
(A5) 10 10 10 10 10 10 10

which have been written down in the energy variable in
Eqs. (9) and (10). Then, finally, we obtain the approxi-
mate form of the transport equations, Eqs. (7).

Note that however innocuous the introduction of the
energy slowing down cross section (A15) looks, the neces-
sary interchange of differentiation and integration actual-
ly is only approximately possible, since the integration
limit in the gain term depends on energy.

As a result of our analysis, the integral transport equa-
tions are transformed to a system of differential equa-
tions, Eqs. (7).

APPENDIX 8

FIG. 6. Scaled cross sections (see text) for a Kr-C interaction
potential as a function of reduced energy e=E/EL.

S(E)=yrra EIS(e) . (B3)

Here, S is a universal function of e=E/Ei. Similarly,
the partial slowing down cross sections may be reduced
to universal functions,

mentary charge. The index 1 denotes the moving parti-
cle, while the index 2 stands for the particle at rest before
the collision.

For such potentials, the stopping power may be written
in reduced form as

Interatomic potentials V(r) used in collision cascade
calculations often obey Thomas-Fermi scaling. ' ' This
implies that a single length scale, the screening length

cr'( E, y ) =y rra o. '( e, y ),
cr"(E,y)=y~a o "(e,y) .

(B4)

(B5)

a =0.8853ao(QZ, +QZ2 ) (B1)

In these expressions, M and Z denote the mass and atom-
ic charge of the two interacting atoms, and e is the ele-

with Bohr s radius a o, characterizes the interaction.
Then a natural energy scale called the Lindhard energy
EI exists,

M&+M2 Z&Z2e
E

Here, the scaled functions depend on the two variables e
and y. By definition, we can decompose o. "further into

r "(e,y) =cr "(e)+ln(1/y)S(e)/e (B6)

where o. "(e)=o "(e,y= 1). The function o. '(e, y) cannot
be reduced further. Note, however, that it satisfies the in-
equality o. '(e, y ) (S(e)/e, and in the limit of very
di8'erent masses, it is limr oo (e, y)=S(e)/e. Figure 6
shows the scaled cross sections for a Kr-C interaction po-
tential.
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