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Chiral phase of the Heisenberg antiferromagnet with a triangular lattice
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In the presence of next-to-nearest-neighbor exchange interaction the classical ground state of the
Heisenberg antiferromagnet with a triangular lattice in a wide domain of parameters has a four-
sublattice structure. This ground state is highly degenerate: the only restriction for the spins on
four sublattices is that their sum should be equal to zero. The accidental degeneracy is removed

by fluctuations or nonbilinear interactions of spins. Fluctuations (quantum or thermodynamical)
favor the collinear arrangement of spins, but a four-spin exchange interaction favors a nonplanar
configuration that can be characterized by positive or negative chirality. In the presence of such an
interaction, the long-range order in chiralities will survive up to some finite temperature although the
long-range order in spin variables will be destroyed by fIuctuations at an arbitrarily low temperature.

Due to recent developments in high-T, superconduc-
tivity there was a revival of interest in the quantum
Heisenberg antiferromagnet with a triangular lattice
(HAFMTL), which as early as in 1973 was conjectured to
possess a nontrivial spin-liquid ground state. In partic-
ular the idea was put forward that if the quantum fluc-
tuations destroy the long-range order in spin variables
the long-range ordering of chiralities may still persist. '

Chirality is a pseudoscalar variable defined on each ele-
mentary triangular plaquette:

y = S[S1 x SI ]

that can be associated with some kind of short-range or-
der corresponding to the nonplanar arrangement of spins.
Here i, j, and k are the sites at the corners of the pla-
quette.

In this paper we show that the classical ground state of
HAFMTL with nearest-neighbor (NN), next-to-nearest-
neighbor (NNN), and also four-particle exchange interac-
tion in a wide domain of parameters has a four-sublattice
structure with a nonplanar configuration of spins. That
makes possible the existence at finite temperatures of the
chiral phase in which there is no long-range order in spin
variables but the long-range order in chirality does exist.
Baskarans had looked for such a phase in the quantum
HAFMTL with 8 =

2 and in the framework of the mean-
field approach has obtained the result that it can be sta-
bilized just by NNN exchange interaction. Our analysis
shows that fluctuations (both quantum and thermal) do
not favor the nonplanar short-range order, so to overcome
them the four-spin interaction should be also included
into the Hamiltonian.

The ground state of the classical HAFMTL with only
NN exchange interactions is known to consist of three
sublattices [Fig. 1(a)], the spins belonging to the same
sublattice being parallel to each other. The spins on dif-
ferent sublattices should be lying in the same plane and
form angles 120' with each other. The degeneracy space

for such a state is given by the group of three-dimensional
rotations SO(3). As in the case of the nonlinear cr model,
thermal fluctuations destroy the ordering in such a sys-
tem, making the correlation radius finite for any nonzero
temperature.

Recently Jolicoeur et aL7 have studied the HAFMTL
with both NN and NNN exchange interaction, that is the
model described by the Hamiltonian

H = Jg ) S, S~ + J2 ) S, Ss
NN NNN

(2)

and have found that antiferromagnetic (Js ) 0) NNN
exchange favors a four-sublattice state [Fig. 1(b)], which
in the classical limit becomes the ground state for

Jy/8 ( J2 & Jy. (3)
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FIG. 1. Partition of the triangular lattice into three (a)

or four (b) sublattices.
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When speaking about the classical limit (or classical
model) we always have in mind the case of S —+ oo when
spin S can be treated not as an operator but as a vector
with constant length. In that case one can always make
a rescaling and consider S as a unit vector.

The authors of Ref. 7 assumed that in the ground state
all the spins should be lying in the same plane and ob-
tained that the four sublattices should be forming two

pairs so that in two sublattices belonging to the same
pair the spins would be antiparallel to each other. But
the angle between the spins belonging to different pairs
of sublattices was found to be a free variable with respect
to which the ground state is degenerate.

Actually the degeneracy is even higher. The energy of
the four-sublattice state (per site) is equal to

g4 = '(J, y J2)(S, S2+Si Ss+ Si S4+ Sz Ss+ S2 ~ S4+ S3 ' S4)

=
4 (Ji + Jg) [(Si + Sg + Ss + S4) —(Si + Sz + Ss + S4)])

and therefore the only restriction for the ground state
is that the sum of four spins should be equal to zero,
but there is no need for them to be coplanar. Thus in
addition to global rotations of all spins there are two ad-
ditional continuous degrees of freedom. Essentially dif-
ferent ground states can be parametrized, for example,
by the angle 0 between Si and Sz (which equals the
angle between Ss and S4) and the angle 4 between the
planes in which the former and the latter pairs of spins
are lying. .

This degeneracy is accidental but still survives if bi-
linear exchange interaction of further neighbors is taken
into account. It seems worthwhile to note that in the case
of the square lattice analogous accidental degeneracy of
the four-sublattice state appears only on the critical line
Jq ——2J2, whereas for the triangular lattice it is present
in a wide domain of parameters.

It is well known that accidental degeneracy in systems
with continuous degrees of freedom is usually removed by
thermal or quantum fluctuations. Jolicoeur et al.7

have calculated the energy of quantum fluctuations for
the Hamiltonian (2) (the first term in 1/S expansion)
and have discovered that among the coplanar states it is
always minimal for collinear configurations of spins when
the four-sublattice state reduces to a two-sublattice state
(Fig. 2). Our extension of the calculations of Ref. 6 to
nonplanar states has shown that for them the energy of
quantum fluctuations (or the free energy of thermal fluc-
tuations) is also larger than for the collinear configur-
atio.
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FIG. 2. Two-sublattice state. There are three equivalent
possibilities to divide a triangular lattice into two sublattices.
For each of these states the short-range correlations are fer-
romagnetic in one direction and antiferromagnetic in the per-
pendicular direction.

We considered the states in which two pair of spins are
lying in the planes that are perpendicular to each other
(sin 4 = +1). In the harmonic approximation (the lead-
ing term in the 1/S expansion) the spin-wave spectrum
for such states has the form

= S(Ki[Ki cosO+ (Kz+ Ks) sin (0/2)]
—(Kz —Ks) cos (0/2)),

where

Ki = Ji(1 —cosqi) + Jz[1 —cos(q2 —qs)]~

K2 = Ji(1 —cosqz) + Jz[1 —cos(qs —qi)],
K3 —Ji (1 —cos qs) + J2[1 —cos(qi —qz)],

and q =—q. a (n = 1, 2, 3) are the products of the
momentum q on the three smallest periods a of the
triangular lattice (qi + qz + qs

—= 0). This spectrum
incorporates four gapless modes: three with linear dis-
persion and one with quadratic. Summation over the
Brillouin zone shows that the maximum of the Buctua-
tions energy (the sum of u/2) or free energy (the sum of
T in[2 sinh(cu/2T)]) is always achieved at the tetrahedral
configuration in which all four spins are forming equal an-
gles 0 = arccos( —si) with each other and the minimum
at the collinear configuration (cosO = 1). This prop-
erty still survives if the next-to-next-to-nearest-neighbor
interaction is included into the analysis.

Thus the fluctuations reduce the degeneracy space
of the system from the five-dimensional manifold to
0(3) x Zs, where 0(3) is the group of rotations of the
three-dimensional vector and Zs corresponds to three
possibilities to form the collinear state by dividing the
triangular lattice into two sublattices (that is, to form
two pairs from four sublattices). The reduction of the
degeneracy is exactly the same as in three-dimensional
antiferromagnet with an fcc lattice. But in contrast to
the three-dimensional case the continuous symmetry re-
lated to the non-Abelian group in accordance with the
general result of Polyakov5 is restored at arbitrarily low
temperature, whereas the phase transition related to the
Z3 group takes place at a finite temperature. That means
that at low temperatures there is no long-range order in
the orientation of spins, but the direction (in the real
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space) for which the short-range correlations are ferro-
magnetic is the same for the whole system. In the high-
temperature phase this triple degeneracy is removed.

Let us now discuss what happens if the multiparticle
exchange processes are also included into consideration.
For the most popular case of S =

2 the form of the
spin interaction in the presence of multiparticle exchange
was thoroughly analyzed in Ref. 13. In that case the
term related to three-particle cyclic exchange reduces to
renormalization of two-particle interaction, but the four-
particle cyclic exchange: i —+ j ~ k —+ t ~ i leads to
four-spin interaction of the form

v4 = J,[(s, s, )(s, s, ) + (s, . s,)(s, . s, )
—(S, SI)(S, S~)], J4 &O.

An analogous four-spin interaction appears also in the
next-to-leading term of the t/V expansion if the Hamil-
tonian of HAFMTL is deduced from the Hamiltonian of
the Hubbard model. ~4

After summation over all possible rhombic exchange
paths (formed by two elementary triangles) the correc-
tion to classical energy of the four-sublattice state will
be given by

AE4 = J4[(sg Sz)(ss S4)
+(Sl ' S3)(S2 ' S4) + (Sl ' S4)(S2 Ss)].

(7)

In terms of the angles 0 and 4 that we introduced earlier
AE4 can be expressed as

DE4 = J4S [1+2cos 0 —2(l —cosO) sin C]

and for J4 ) 0 is minimal when all four spins are forming
equal angles with each other (cos 0 = —s, sin 4 = kl),
that is, for the nonplanar tetrahedral configuration of
spins which from the point of view of Quctuations is
the worst. On the other hand, the maximum of AE4
is achieved for the two-sublattice state (Fig. 2) with a
collinear arrangement of spins (cos 0 = —1, sin C' = 0, or
cos 0 = 1) for which the free energy of the fluctations is
the lowest.

For the nonplanar configuration of spins minimizing
EE4 the value of chirality y is equal either to (z~~z)

~~z or
—(27)~~2, but is the same for all elementary plaquettes of
the lattice. That means that arbitrarily small positive J4
reduces the degeneracy of the classical ground state from
the five-dimensional to the three-dimensional manifold
consisting of two disconnected parts: SO(3) x Zz. Here
SO(3) corresponds to global rotation of all spins and Zz is
related to twofold degeneracy in the sign of y. As in the
previous case arbitrarily low temperature will restore the
continuous symmetry related to the non-Abelian group
but the ferromagnetic ordering of chiralities will persist
up to some finite temperature where the Ising-type tran-
sition will take place.

There is absolutely no reason for two transitions to

J4

FIG. 3. General structure of the phase diagram of clas-
sical HAFMTL induced by the four-particle exchange inter-
action. Two-particle interactions are assumed to correspond
to the domain of stability of the four-sublattice ground state.
1—disordered phase, 2—doubly degenerate phase with long-
range order in chirality (nonplanar short-range order), 3—
triply degenerate phase with collinear short-range order.

occur simultaneously. The disordering related to con-
tinuous degeneracy takes place due to gapless spin-wave
fluctuations whereas the destruction of twofold Ising-type
symmetry calls for the proliferation of the domain walls.
As the domain wall energy per unit length ED~ is fi-
nite this can happen only at finite temperature which is
proportional to ED~. If the low-temperature corrections
to different quantities are calculated the correction to S,
or S, x S~ will be logarithmically divergent whereas the
correction to y will be finite. The gapless modes can-
not make a divergent contribution to Ay since a strictly
uniform rotation of all spins does not change the chiral-
ity and any correction from the gapless modes appears
only due to the nonuniformity of the rotation. This pro-
vides an additional small factor which makes the integral
convergent.

For J4S « Jq, Jz the doubly degenerate nonplanar
phase is stable only at low temperatures and with in-
crease in temperature a first-order transition takes place
into the triply degenerate collinear phase for which the
free energy of fluctuations is lower. The general struc-
ture of the phase diagram is depicted in Fig. 3. An
analogous phase diagram would be obtained if instead of
four-particle exchange interaction (6) we add to Hamilto-
nian (2) biquadratic terms for two-particle NN exchange:
Jg2(s, S~)2 with Jyz ) 0.

Thus we have shown that in the classical HAFMTL
a reasonable choice of the interactions leads to the sta-
bilization of the phase with nonplanar short-range or-
der in the configuration of spins and therefore with the
long-range order in chiral variable y which survives at
finite temperatures. Quantum fluctuations reduce (not
increase) the domain of stability of this nontrivial phase,
shifting it to higher J4. Nonetheless for high enough J4
it can be expected to survive even for the case of S = 2.
On the other hand, for small values of S quantum Quc-
tuations may destroy long-range order in spin variables
even at zero temperature.

The author is grateful to A. V, Chubukov for numerous
useful discussions and comments.
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