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The irreducible particle-particle interaction I I of the two-dimensional Hubbard model is calculated
by quantum Monte Carlo simulations. The Bethe-Salpeter equation for the pair-wave function is then
solved using the Monte Carlo data for I I and the single-particle Careen s function. The dominant pair-
ing correlations in the intermediate-coupling regime and at small dopings are discussed.

The nature and extent of the pairing correlations in a
two-dimensional Hubbard model doped near half filling
remains an open question. Diagrammatic calculations
based upon the exchange of spin fluctuations suggested
the possibility of d 2 2-wave pairing. ' Spin bag mod-

x —y
els, Gutzwiller variational calculations, and

1/%expans-

ionss find d 2 2 pairing or in some cases extended s-
X

wave or (d +is)-wave pairing. Monte Carlo simulations
of various pair-field susceptibilities ' have so far only
found evidence for short-range d 2 & and extended s-

X

wave correlations. However, the pair-field operators
which have been studied by simulation were constructed
using equal-time bare fermion operators which may have
only a limited overlap with the dressed pair field. Or
worse yet, these pair fields might not have the correct
symmetry, particularly if this involves the relative time
dependence of the pair-field operators. In order to obtain
more detailed information about the space and
imaginary-time structure of the pairing correlations, we
have carried out Monte Carlo calculations of the irreduc-
ible particle-particle interaction I I. Using this interac-
tion along with Monte Carlo results for the one-electron
Careen's function, we then solve the particle-particle
Bethe-Salpeter equation and determine the strength of
the eigenvalues and the (p, ito„) structure of the leading
pair-field eigenfunctions. We find at high temperatures,
or order J-4t /U, that the dominant pairing correla-
tions occur in an odd-frequency, s-wave triplet channel.
However, as the temperature is lowered, the strength in
the even-frequency d, , and the odd-frequency p„(or
p~) singlet channels grows the most rapidly.

Using quantum Monte Carlo simulations we have cal-
culated the two-particle Green's function

A(x4yx3. x J yx2 ) ( T~c (t4x)c (ix )3c (ipx) c(tx)) )

Here c (x, ) with x, = (x, , 7; ) creates an electron of spin o
at site x; and imaginary time ~;. T is the usual ~-
ordering operator. Fourier transforming on both the
space and imaginary time variables allows us to deter-
mine

A(p', k'Ip, k)= 5.5k k.Gt—(p)Gi(k)

+ 5k p+ k ~ G—t (p')G t (k')

X I (p', O'Ip, k)G, (p)G, (k), (2)

from which one can obtain the reducible particle-particle
vertex I (p', k'Ip, k). Here p=(p, ito„) and G (p) is the
single-particle Green's function. We will calculate the
particle-particle interaction in the zero center-of-mass
momentum and energy channel, hence we set k = —p and
k'= —p'. In order to obtain the irreducible particle-
particle vertex I I, we use the Monte Carlo results for I
and G to solve the t-matrix equation for I I,

I (p'Ip ) =1,(p'Ip )

——g I (p'Ik)G((k)Gt( —k)I'(klp) . (3)
T

Here I (p'Ip) is used as a short notation for
I (p', —p'Ip, —p ). In this calculation, Matsubara fre-
quencies co„up to the bandwidth St were kept. Runs
with the cutoff at 12t gave similar results. This procedure
is essentially the opposite one from the usual diagram-
matic approach in which an irreducible vertex such as I I

47 6157 1993 The American Physical Society



6158 N. BULUT, D. J. SCALAPINO, AND S. R. WHITE

P.O,

15

(., o)
' I i ! i I

(o,~) (—~,o) (o, -~) (~,o)
P

FIG. 1. Monte Carlo results for the irreducible particle-
particle interaction, I 1(p', ice„~(p,ice„), for U =4t, (n ) -0.87,
and co„=co„=~Ton an 8X 8 lattice at T=0.50t {solid circles)
and T=0.25t (open circles). Here p' is taken along the path
shown in Fig. 2, and p is kept fixed at (m.,0). The error bars are
of order twice the size of the circles.

is selected and then I' is calculated from Eq. (3).
We first present Monte Carlo results obtained for I I

on an 8 X 8 lattice' with U =4t and an average density
( n ) -0.87. In Fig. I, the irreducible interaction
I 1(p'~p ) is plotted as a function of p' for co„=co„.=n T at
T=0.50t (solid circles) and 0.25t (open circles). In this
plot p' follows the contour shown in Fig. 2, while p is
kept fixed at (m, 0). We observe that I I peaks at large
momentum transfers and the strength of this peak in-
creases as the temperature is lowered. We also find that
at (vr, ~) momentum transfer and T=0.25t, I 1(p'~p ) for
co„=nT and co„= vrT is—about 50% larger than that for
6)n —con ~

—7T T.
To gain further insight into the structure of the irre-

ducible interaction, we have calculated 11(p'~p ) through
third order, keeping the contributions shown in Fig. 2.
The results are shown in Fig. 3 with the solid circles for
T=0.50t and the open circles for T=0.25t. Here the
dominant contributions come from graphs (a), (b), and (e)
along with (h). Graphs (b) and (e) represent the leading
transverse and graph (h) the leading longitudinal spin-
Auctuation contributions to the Berk-Schrieffer" interac-
tion. Graphs (c) and (d) are negative and can be thought
of as reducing the strength of the effective Coulomb in-
teraction which enters (b). The leading vertex corrections
(f) and (g) enhance the interaction at small momentum
transfer. The structure of the interaction reAects the un-
derlying antiferromagnetic correlations.

In order to determine the structure of the pairing
correlations which are produced by the particle-particle
interaction I I shown in Fig. 1, we have solved' the
Bethe-Salpeter equation

(4)

I +
I

(o) (b)

i gY

J

for its eigenfunctions (t (p) and the corresponding eigen-
values A, using Monte Carlo data for I I and 6 (p). As is
well known, when the largest A, reaches 1, a supercon-
ducting instability to a state having the pair-wave func-
tion P (p) occurs. In general, the Bethe-Salpeter equa-
tion can have both singlet and triplet solutions corre-
sponding to a pair-wave function that has overall even or
odd parity when p =(p, ice„) goes to ( —p, ice„). We—
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FIG. 2. The upper part of this figure shows the path p' fol-
lows in Figs. 1 and 3. The lower portion shows the Feynrnan
graphs for I I through third order.

FIG. 3. Third-order perturbation theory results for
I z( p', ice„~p, ice„ l for the same parameters as in Fig. l.
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will characterize P (p, ico„) by its symmetry in momen-
tum and spin space. The usual singlet s and d 2 2-wave

states are even in frequency and even in momentum,
P(p, i—co„)=P(p,ico„) and P( —p, ico„)=P(p,ico„), while
the usual triplet p„(or p ) state is even in frequency and
odd when p goes to —p . As discussed by Berezinskii'
and recently by Balatsky and Abrahams, ' there can also
be odd-frequency pair-wave functions. In this case one
could have an odd-frequency s-wave triplet for which
P(p, ico„—)= —P(p, ico„) and P( p, ic—o„)=P(p,ico„), or
an odd-frequency p„(or p )-wave singlet with
P(p, i c—o„)= P( p—, i co„) and II)( —p, i co„)= P( p,—i co„).
In the regime of the Hubbard model that we are study-
ing, we find that the s-wave triplet, and the p and d 2x —y
wave singlet solutions are dominant.

The four largest eigenvalues for U=4t and U=8t on
an 8 X 8 lattice are given in Table I. The momentum and
the frequency dependences of the corresponding pair-
wave functions' are shown in Figs. 4 and 5. For U=4t
and T=0.50t, an s-wave triplet state has the largest ei-
genvalue k, =0.23. As seen in Figs. 4(a) and 5(a) (solid
circles), the pair-wave function P, (p, ico„) of the s-wave
triplet state is even in p and odd in co„. The open circles
in Figs. 4(a) and 5(a) represents the pair-wave function
P, ,(p, ico„) which has the second largest eigenvalue
A, =0.09. The d 2 2-wave singlet state shown as the

TABLE I. Monte Carlo results on the largest eigenvalues A,

of the Bethe-Salpeter equation at different temperatures on an
SX8 lattice for (n ) -0.87, and (a) U=4t and (b) U=8t. We
estimate that the A. values are accurate to +10%.

(a)

(b)

0.50
0.25

1.0
0.50

0.23
0.26

0.50
0.47

0.09
0.13

0.36
0.24

0.08
0.17

0.05
0.15

0.07
0.12

0.08
0.20

solid circles in Figs. 4(b) and 5(b) has the third largest ei-"
genvalues A,d =0.08. The fourth largest eigenvalue
A, =0.07 corresponds to a state that is odd in both cu„
and p, having p (or p ) symmetry [open circles in Figs.
4(b) and 5(b)], hence it is also a singlet.

As T is lowered from 0.50t to 0.25t, the largest eigen-
value k, grows by about 10%, while A, d more than dou-
bles and A, increases substantially. This can be under-
stood in terms of the temperature dependence of
I t(p'~p). At high temperatures, the irreducible interac-
tion I t(p'~p ) that enters the Bethe-Salpeter equation is a
smooth function of momentum. The pair-wave functions
that are smooth in p but odd in m„can make optimum
use of the (co„,co„.) frequency structure of the repulsive
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FICv. 4. Monte Carlo results for the gap function P (p, i co„)
vs p on an SX8 lattice for U=4t, (n ) —0. 87, and T =0.50t.
The triplet solutions P, (solid circles) and P, . (open circles) are
shown in (a), the singlet solutions Pd (solid circles) and P~ (open

Py

circles) are shown in (b). Here co„=m T and p is taken along the
path shown in Fig. 2.

FICv. 5. Monte Carlo results for the gap function P (p, ico„) vs
co„on an 8X8 lattice for U=4t, (n)-0. 87, and T=0.50t.
The triplet solutions P, (p, ico„) (solid circles) and P, (p, ico„)
(open circles) are shown for p=(~, 0) in (a). The singlet solu-
tions Pd(p, ico„) for p=(vr, 0) (solid circles) and P~ (p, ico„ l for

p= (~/2, m/2) (open circles) are shown in (b).
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l 1(p'~p) for pairing. However, as the temperature is
lowered and 11(p'~p) for p' —p=(m. , ~) grows, the d,
and p-wave solutions can make better use of the momen-
tum structure in I I, and their eigenvalues get enhanced.
Table I (b) shows the dominant eigenvalues for U = 8t at
T=1t and 0.5t. We see that these eigenvalues are larger
than those of the U=4t case. It has not been possible to
carry out simulations for U=8t at lower temperatures
because of the fermion sign problem.

In summary, we have calculated the irreducible
particle-particle interaction I I of the Hubbard model us-
ing Monte Carlo simulations. We found that as T is
lowered, the large momentum transfer structure in
I 1(p'~p) gets enhanced. This is reflected in the solutions
of the Bethe-Salpeter equation. Thus at the temperatures
for which we have been able to carry out these simula-
tions, the pairing correlations with the largest eigenvalues
are associated with an odd-frequency s-wave triplet.

However, as the temperature is lowered, we find that the
eigenvalues of the d 2 2 and p-wave singlet states growx —y
rapidly, suggesting that at low temperatures singlet pair-
ing correlations become dominant.
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