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Previous zero-temperature model studies of friction in a crystal undergoing plastic shear are extended

to nonzero temperatures. For the case of a commensurate interface and most incommensurate interfaces

without defects, thermal effects on the force of friction are found to be small. For the nearly commensu-

rate case, however, it is argued that the force of friction should increase with increase in temperature.

For the case of a commensurate interface with sliding taking place by the motion of dislocations, it is

found that at temperature T small compared to the Debye temperature, thermal effects will be small, but

as T becomes comparable to the Debye temperature, thermal effects dominate the force of friction.

I. INTRODUCTION

In previous work by the present author, ' a simple mod-
el for kinetic friction was studied. It consists of a crystal
lattice being dragged at constant speed in a periodic po-
tential. The model is illustrated in Fig. 1. This can be
used as a model for either this crystal sliding on the sur-
face of a second crystal, in which case the potential
represents the potential due to the surface of the second
crystal, or as a model for the plastic shear of a crystal, in
which case the potential represents the potential due to
the atoms in the crystal below the shear plane. The prob-
lem was studied in lowest-order perturbation theory in
the strength of the potential for both the case of a poten-
tial which is commensurate and the case in which it is in-
commensurate with the crystal surface. It was also stud-
ied for the case in which the sliding motion occurs by the
motion of edge dislocations in the crystal with a slip
plane coinciding with the interface between the crystal
and the potential. The approximation used in this calcu-
lation corresponds to the high speed limit of Al shitz, In-
denbom, and Shtol'berg in which the dislocation has
enough kinetic energy to climb over the Peierls barrier.
The calculations of Ref. 1 were all done at zero tempera-
ture. It is generally accepted, however, that the interac-
tion of a dislocation with thermally excited phonons is an
important mechanism for the damping of dislocation
motion, and hence, it is important to consider thermal
e6'ects, at least for the dislocation model of friction con-
sidered in Ref. 1. Therefore, the models of Ref. 1 will be
studied at nonzero temperature in the present article.
The treatment is in the spirit of the treatment of disloca-
tion damping at nonzero temperature of Flytzanis and
Celli.

II. PERTURBATION- THEORETIC TREATMENT
OF FRICTION AT TWO

In order to extend the perturbation-theory treatment
of kinetic friction of Ref. 1 to nonzero temperature, it is
only necessary to add to the displacement of the atoms
from equilibrium due to the sliding motion a displace-
ment due to the vibrational modes, which are excited at a
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FIG. 1. The model for the sliding friction which was studied
in this article is illustrated in this figure. Solid dots are atoms
and the lines connecting them represent springs. The vertical
and horizontal force constants P and a are labeled. The atoms
at the top layer are fixed in place, and the periodic potential at
the bottom moves to the left with velocity U, as indicated.
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nonzero temperature. Then, the position of an atom,
which would be at the point (j,a, j2a, j3c) in the undis-
torted lattice (where a and c are the lattice constants per-
pendicular to and parallel to the crystal axis perpendicu-
lar to the sliding direction and the j's are integers) is
given by =x" +x' +u
where x is the equilibrium position of an atom at theJ1J2J3
position (j&a,jza, j3c) in the corresponding perfect lattice

I

[i.e., x~ J ~
includes the possible displacement of this

atom from the above position when the lattice is distorted
because of the presence of dislocations; in the absence of
distortions, it is equal to (j,a, j2a, j3c)], x is theJ1J2J3
atomic displacement due to thermal lattice vibrations,
u is the displacement generated by the moving po-
tential, X is the value of j3 for the surface of the crystal
in contact with the potential and ( . . ) represents a
thermal average. The equations of motion are then

(lb)

~ ~

(lc)
Equation (lc) can be formally solved to yield

. t . I

x, +u, +y(x, , +u, , )
—h(u, , +x )= —5, Rosin[(2ir/a)(x +x, J i +u . vt)], ( a)

)

where

bujij a(4u~ii uj+„i uj „, uj~+J u~j lj )+p(2u, ii . uj~~+, ujij, ),
a and P are the force constants normal to and along the c axis respectively, and the term y(x" . +u ) is a phe-J1J2J3 J1J2J3
nomenological damping term which is added for convenience, as was done in Ref. l. (The limit as y approaches zero
will be taken in the end. ) The right-hand side of Eq. (la) is the force due to the potential which acts on the lowest layer
of atoms (see Fig. 1). Since x . represents the atomic displacement due to thermal motion alone (i.e., in the absenceJ1J2J3
of sliding motion), it satisfies the following equation of motion:

xJ~J ~ +yxj ) i ~xj J, = —5, Rosin(2~/a)(x, -, , +x' ) .J1J2J3 J3,X J1J2J3 J1J2J3

At temperatures low compared to the melting temperature, it is reasonable to assume that it is a good approximation to
solve Eq. (lb) in the harmonic approximation, and it will be assumed that this has been done in the discussion to follow.
Subtracting Eq. (lb) from (la), we find that u . satisfiesJ1J2J3

—bu~ J ~
= —

5~ Ao[sin[(2ir/a)(x, , +x +u +vt)]] —sin[(2irja)(x, , ~. +xj i, )] .

(3)

known that ( e ) =e, independent of time, where W is the Deb
ship, Eq. (4) becomes

e [ (a lo/2rr)B/Bt cos[(2m/a)(x +vt) —kov sin(2n ja)(x +vt) ] =0
as expected. In the next two sections, the terms of first order in u will be studied.

III. COMMENSURATE AND INCOMMENSURATE INTERFACES WITHOUT DEFECTS

Expanding the right-hand side of Eq. (3) to first order in u or u, we obtain

&C(sin[(2ir/a)(x, . , +x z(t')+u z(t')+vt')] —sin[(2ir ja)[x~ J &+x~ i ~(t )]] ) . ( )

Here, 6 . . . (t —t') is the Green's function for the homogeneous equation obtained by setting the left-hand side of
J1J2J3'J 1J2J3

Eq. (lc) equal to zero. It is identical to the Green s function used in Ref. 1 and an expression for it is given there. Then,
following Ref. 1, the force of kinetic friction is calculated by setting the average rate of doing work by this force equal
to the work done on the crystal by the periodic potential. The top atomic layer is held fixed and the sinusoidal poten-
tial, which is in contact with the bottom layer, is slid along at a constant speed v. Then, the time-averaged force of fric-
tion F,„ is given by

t1 /2

F,„v =t, ' J dt g ((xj. , ~+u, , ~)Rosin[(2~/a)(x, J ~+x, , ~+uj J ~+vt)]),
1 J1J2

where t, is a suitable time interval over which we average the rate of doing work. For the commensurate case where

the motion is periodic, it is the "washboard frequency. " For other cases, for which the motion is not periodic, it is a

long time. Lowest-order perturbation theory (i.e. , expansion up to second order in Ao) can be generated by expanding

Eq. (3) up to first order and (2) to zeroth order in u and u and substituting for u and u in Eq. (3) using Eq. (2). The
zeroth-order term (in u) in the integrand of Eq. (3) can be written as

djr)t ((al0/2')cos[(2—ir/a)(x. &+x»(t)+vt)] ) —vko( sin[(2irja)(x. z+x z(t)+ vt)] ) . (4)

Since we are assuming that Eq. (lb) was solved in the harmonic approximation, x (t), which represents the thermal
J1J2J3

motion in the absence of sliding, can be written as an expansion in the normal modes of the crystal. Then, it is well
+i (2m/a)x. . . (t)

ye-Wailer factor. Using this relation-
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t, ' dt g Ao(u(t) zsinY+x (t) ~(2'/a)u(t') ~cosY), (6)
»J2

where Y=(2'/a)[(x. +x(t}J,. +vt] and it is understood that we will substitute for u using Eq. (2) with u
J1JPJ3 J&JZJ3

neglected in the argument of the right-hand side of Eq. (2). For temperatures small compared to the melting tempera-
ture of the crystal, since it is expected that the magnitude of x will be small compared to a, we may expand Eq. (6) to
second order in x . We obtain for this second order in x term

t, ' dt dt'(A 0/m)( 2~ /a) g (x zcosZG. . . , , (t —t')x, ,0 J1J2J3,J 1J~N
J1J2J 1J2

+x. &G. . . . , , (t . t')—x, , ) [cosZ' —cosX'], (7)
1 J2 J1J2J3&J 1J~N J 1J2N

where X=(2~/a)(x ), Z =(2m/a)(x. +vt), and X' and Z' are the same quantities but with primes on the j's.
J1JPJ3 ' J1J2J3

Expressing the x 's as an expansion in the normal mode coordinates (e.g. , as in Ref. 4), we obtain
&2 (1c' /Ic T

0.5(AO/m)(2'/a) (LMN )
' g g [A/mego(k')](e —I)i2 2)2+ +2 i2

where co=co„(2m./a, k, ) and cv'=coo(k'}+(2m/a +k' )V. Converting the sums over wave vector to integrals in the stan-

dard manner and taking the limit as y approaches zero, this expression becomes

0.5(A0/m)(2~/a) (ac/4' ) f d k'dk, ro'5(tv' —rv )[iri/mcoo(k')](e ' —I) (8)

which when divided by v gives the second order in x
contribution to I'„. In the case of a commensurate inter-
face, 2~/a is also a reciprocal-lattice vector for the crys-
tal, and hence, co defined above Eq. (8) runs over a range
of frequencies whose lower limit is zero as the integral
over k, is performed. Thus, no matter how small v is, the

5 function will still be satisfied and hence there will al-

ways be a second order in the x contribution to the force
of friction. The main way in which this result differs
from the zeroth-order term in x is that the vibrational
frequency coo(k') is added to the washboard frequency
v (2m. /a) and the vibrational wave vector k' is added to
2m/a in this expression. For low temperatures (com-
pared to the melting temperature), k' will be small com-
pared to 2m. /a. Although aio(k') can be larger than the
washboard frequency, if the temperature is small com-
pared to the Debye temperature, coo(k') will be small

compared to the maximum acoustic mode vibrational fre-
quency and since the washboard frequency is also small
compared to the maximum frequency and [((x ) ) ]

' is

small compared to all lengths in the system, a large
change in the force of friction found in Ref. 1 is not ex-
pected. For the incommensurate case, tvp(k„=2'/I,
k» =O, k, ) will remain nonzero for all values of k, . If the
interface is far from being nearly commensurate,
too(k„=2m /a, k =0,k, =0) will always be larger than the
sum of the washboard frequency and coo(k') (i.e., e»'), and
therefore, the 5 function in Eq. (8) will not be satisfied.
This means that there will be no friction when the damp-

ing constant is set equal to zero, and for the nonzero
damping constant, the force of friction will still be very
small, as was found at zero temperature in Ref. 1. Thus,
we conclude that the force of friction is not affected
significantly by temperature. For the nearly commensu-
rate case, however, it is possible for coo( k„=2m. /
a, k =O, k, =0) to be sufIiciently small compared to typi-
cal values of coo(k'), which implies that the force of fric-
tion will increase as the temperature increases. Since the

nearly commensurate case is not expected to be impor-
tant for most applications, it will not be studied in detail
now. One qualitative result that we expect to be true,
however, is that the force of friction should increase as
the interface passes through a commensurate-
incommensurate transition.

IV. THE COMMENSURATE CASK
WITH SLIDING DUE TO DISLOCATIONS

The sliding motion of a commensurate interface result-
ing from dislocation motion is expected to be the usual
way for commensurate interfaces to slide, as discussed in
Ref. 1. The presence of thermally excited lattice vibra-
tions has long been believed to be an important source of
damping of dislocation motion. Therefore, we expect
temperature effects to be important for this case. In or-
der to treat moving dislocations at the interface, we use
the treatment given in Ref. 1 for the "slow speed case, " in
that we replace the force due to the sinusoidal potential
by a potential due to the presence of a dislocation of the
form g(j, a —

xdj +vdt), where ud is the dislocation ve-

locity and xd. is the location of the dislocation core at
J2

the y coordinate j2a for the ath dislocation [g (x) is a
function whose magnitude falls off with increasing values
of ~x~]. If the dislocations are on the average far apart,
the total contribution to the force due to the dislocations
can be written as a sum of such terms. When thermal vi-
brations are included, this becomes

gg(j)a xd. x . ~+vdt) (9)

where the notation follows that of Ref. 1 except that the
vibrational displacement x. .

N has been included in theJ1J2
argument. It represents the vibrational displacement of
the atoms near the center of a dislocation. This method
of treatment is similar to that used by Flytzanis and Cel-
li in their treatment of dislocation damping. Substitut-
ing Eq. (9} for the sinusoidal potential in Eqs. (2) and (3),
using Eq. (2) to substitute for u in Eq. (3), and replacing
the function g by its Fourier transform, we obtain
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ti /2
F,„u=t, ' f dt f dt'(Ao/m) g g g g(k„)g(k,')"

1

J1J2J IJ 2 kx kx

tk [j a —x . —x. . (t)+z t]
—ik'[jla —x —x (t')+17 t']x I dj2 1 2N d d&' &'&'~ d

XG ~ iv(t —t ),
where the average sliding velocity v is given in terms of the dislocation velocity vd by v =vdXd /L, where L is the length
of the crystal along the direction of sliding in units of the lattice constant and 1Vd is the number of edge dislocations at
the interface. Following Ref. 1, we first average over dislocation configurations (i.e., over the xdi s) to give to a goodJ2
approximation

t) l2 , a —x. . (t)+v t]
—ik [J &a

—x, (t')+vdt']

F,„u =t, 'N„ f dt f dt'(Ao/m) g g g(k„)g(k')*( e ' ' e

J)J2J 1
k k

XG. . ., . (t t') . —
J&J2N, J ~J2N

(10)

Again following Ref. 1, we have assumed that this average is small unless a =a' and j2 =j2 to obtain Eq. (10). Since at
temperatures low compared to the melting temperature it is reasonable to assume that x is small compared to all other
lengths in the problem, we will now expand each exponential to lowest order in x . The thermal average of x iv(t) isJ)J2
zero and (x. iv(t)x, . , (t')) is given by

(x. . iv(t)x, ., (t')) =(LMN) 'g [A/mcoo(k)](e ' —1) 'e'" cos[coo(k)(t —t')],
k

where R=[j,—jz)a, (jz —j2)a,0]. The zeroth-order term in the expansion of Eq. (10) in powers of x gives the result
of the second of Refs. 1, which is that F,„u is proportional to ud(2sr/a) . The second-order term is approximately equal
to this same result except that ud(2sr/a) in the expression for F,„ud is replaced by the following expression having the
same units:

(LMN) ' g [R(2m. /a) /(mcvo(k')][[coo(k')+ud(2~/a)]
k'

(13)

k' k+ [ciao(k') —vd(2m/a) ] 8[eve(k') —ud(2sr/a) ] ] (e —1) ', (12)
where 8(x)=0 if x &0 and 1 if x )0. Replacing the sum over k' by an integral and doing the integral in the Debye
model, Eq. (12) becomes, in the limit as uz approaches zero,

[(k&T) f).]/(Rv ) (k~T/A')(A/m)(2/a) f x dx[(e"—1) '+0.5],

for vd in the high dislocation speed limit of Ref. 2, where
0 is the unit-cell volume, u is the phonon velocity (for
simplicity we neglect the anisotropy of u~ ), and
xD=OD/T, where BD is the Debye temperature. For
T « BD this expression is of the order of (10
rad /sec )(T/BD ) for the values of the parameters used
in Ref. 1, as compared to a value of 10 rad /sec for
vd(2~/a) . Thus, we conclude that, whereas for T &&BD
the zero-temperature result for F,„ is valid, when T be-
comes comparable to BD, the second-order terms in x
calculated above, which represent the contribution to the
damping force due to thermal phonons, will dominate.
Furthermore, in the case of T comparable to OD, F,„v
will no longer be proportional to v, as it is at T=O,
which implies a force of friction inversely proportional to
v at nonzero temperature.

V. CONCLUSIONS

For the case of a commensurate interface and most in-
commensurate interfaces without defects, thermal effects
on the force of frictio~ were found to be small. For the
nearly commensurate case, however, it was argued that
the friction should increase with an increase in tempera-
ture. For the case of a commensurate interface with slid-
ing taking place by the motion of dislocations, it was
found that at T small compared to the Debye tempera-
ture, thermal effects will be small, but as T becomes com-
parable to the Debye temperature, thermal effects dom-
inate the force of friction.
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