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Driving and pinning forces acting on vortices in layered superconductors
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The vortex structure and the distribution of the transport current in a layered superconductor consist-
ing of an alternate stack of strongly and weakly superconducting layers are theoretically studied within
the framework of the Cxinzburg-Landau theory. It is assumed that in the superconductor the coherence
length is comparable to the layer thickness and the penetration depth is much longer than the thickness.
The present theory predicts that the superconducting current mainly Aows in the strongly superconduct-
ing layer, while the vortex center lies in the weakly superconducting layer. As a result the driving force
acting on the vortex becomes extremely weak, since the small current density in the weakly supercon-
ducting layer is responsible for the force. Some behavior of the critical current in the cuprate supercon-
ductors YBa2Cu307 q and Bi2SrzCaCu208+q may be explained with the present theory.

I. INTRODUCTION

Experiments show that c-axis-oriented high-quality
films of yttrium and bismuth cuprate oxides carry the
large critical current density at low temperatures and the
superconducting current stands up to a strong magnetic
field parallel to the films. ' The critical current density
in bismuth cuprate oxides is independent of the relative
angle between the directions of the current and the mag-
netic field in the film plane. ' '" A characteristic of the
films is that they have stacking structures of strongly and
weakly superconducting layers. In the cuprate supercon-
ductors, the Cu02 layers are strongly superconducting
layers and the other layers are weakly superconducting
layers. The experimental results mentioned above sug-
gest that the vortices are strongly prevented from moving
perpendicular to the layers in the films. We consider that
this strong pinning effect originates from the nature of
the layer structure itself as shown in the following way.

The vortices parallel to the layers are stable in the
weakly superconducting layers. The strongly supercon-
ducting layers work as potential barriers when the vor-
tices move perpendicular to the layers. ' In addition
to this pinning effect, we have the following effect to
enhance the pinning. In the superconductors the trans-
port current mainly Aows in the strongly superconduct-
ing layers, and thus the current density in the weakly su-
perconducting layers is much smaller than that in the
strongly superconducting layers. In this paper we show
that each vortex is driven by the transport current densi-
ty just at the vortex center, even when the vortex current
spreads out over many layers. Therefore, the driving
force acting on the vortices in the weakly superconduct-

ing layers is very weak.
In this paper we derive the expressions for the driving

force and the pinning force within the framework of the
Ginzburg-Landau theory and study the nature of the vor-
tices bound near the interface between the strongly and
weakly superconducting layers. Using the theoretical re-
sults, we try to explain the experimental results of the
critical current in the films of cuprate superconductors.
This theory is also applicable to superconductor s of
artificial multilayers such as niobium/tantalum and
YBa2Cu307 s/PrBa2Cu307 s.

II. MODEL

By the action of the driving force due to transport
current in superconducting multilayers, the vortices are
pinned near the interfaces between the strongly and
weakly superconducting layers. To see how the vortices
are pinned there, we pick up one of the interfaces and in-
vestigate the force acting on one vortex near the inter-
face. The positions of other vortices around the vortex
are fixed and their current exerts the interaction to the
vortex. In other words, the other vortices are treated in a
way of mean field. We assume that in the absence of the
vortex under consideration, the superconducting order
parameter changes stepwise at the interface as shown in
Fig. 1. The quantities g& and $2 are the superconducting
order parameters in regions 1 and 2, respectively. If the
amplitude and phase of the superconducting order pa-
rameter in the presence of the vortices are written as P(r)
and p(r), respectively, the Ginzburg-Landau (GL) free
energy for this model is expressed as

'2
1 4 2e b ~(r)F = g f dr ct;g (r)+ P;g (r)+ [Vg—(r)] + P (r) Vy(r) — A(r) +
2 4m, 4m; Ac 8~
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Q2+ [Vg(r)]

FIG. 1. Superconducting order parameter in the absence of
the vortices under consideration. g, and $2 denote the order
parameters in regions 1 and 2, respectively.
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where a; and P, are the GL parameters in the region i
and the subscript i of the integral symbol indicates the in-
tegral over the region i In E.q. (1), A(r) is the vector po-
tential and b(r) is the microscopic magnetic field. Taking
variation of the free energy Eq. (1) with respect to ttt(r)
and A(r), we obtain the CxL equations

where t/, is the amplitude of the superconducting order
parameter in the absence of the vortex in the region i.
The free energy F& is the so-called vortex core energy,
which is created by the modification of the amplitude of
the superconducting order parameter due to inclusion of
the vortex. This local approximation is justified in the
case where the distance between the vortices is much
longer than the vortex core size. This free energy con-
tributes to the pinning force.

The free energy Eq. (7) is the electromagnetic part of
the free energy and is written using Eq. (3) as

Fb = g J dr A[/ /t/j(r)]
C

where j(r) is the superconducting current and @o is the
unit fiux hc/2e. The variation of the free energy Eq. (1)
with respect to the phase &p(r) gives the relation of the
current conservation. We solve Eqs. (2) and (3) under the
boundary conditions at the interface, which are given in
Sec. V. Using the vortex solution, we study the driving
and pinning forces acting on the vortex near the inter-
face.

III. VORTEX FREE ENERGY IN THE SYSTEM

We take the x and y axes in the plane of the interface
and the z axis perpendicular to the interface. A vortex
that is parallel to the x axis and passes through the point
(x =0, y =0, and z =zo) is described by introducing a
phase singularity expressed by

V'X Vy(r)=2~e 5(y )5(z —zo),

e being the unit vector in the direction of the x axis.
For simplicity, we assume that the system is homogene-
ous along the x axis, that is, all physical quantities are in-
dependent of x and only dependent on y and z. Hereaf-
ter, the position vector r stands for a two-dimensional
vector (y, z) in the yz plane. The increase of the free ener-

gy due to inclusion of the vortex in the system is given
from the free energy Eq. (1) with use of Eq. (3) by

X j (r)+ b (r)1 2

8n

where A, , is the penetration depth defined by

A, ; =m;c /8ne g,

The free energy Fb contributes to both the driving force
and the pinning force. Let us consider the case where an
electric current is externally injected into the system in a
magnetic field. In this experimental arrangement, the
vortex configuration and the magnetic-field penetration
from the surface and thus the microscopic superconduct-
ing current j(r) are determined in a self-consistent
manner. For convenience, we divide the superconducting
current into two parts

j(r) =j,(r)+ j,(r), (10)

where j,(r) is the vortex current and j,(r) is the micro-
scopic transport current defined by j(r) —j„(r). As seen
from the definition, the current j,(r) originates from the
current of the vortices other than the vortex under con-
sideration and from the surface current. In a similar way
we divide the magnetic field into two parts

b(r) =b„(r)+b,(r),
where b, (r) is the magnetic field induced by j,(r) and
b, (r) is the magnetic field induced by j,(r). If we insert
Eqs. (10) and (11) into Eq. (8), we have

6F=F]+Fb ) Fb =F"+Fg+F' (12)

with with
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Fbd= g f dr A, , [f, /g(r)] j„(r) j,(r)
i =1,2 c

+ b, (r) b, (r)1

4~

2~,Fg= g f dr A~[g;/f(r)] j,(r)+
i=1,2 C 8m.

(13}

(14)

where V', is the derivative operator with respect to the
0

position of the vortex center. As proven in Appendix A,
(c/4')V, Xb, (ro) is equal to the transport current at the

0

position ro in the absence of the vortex. We write this
current as j,o(r) and call it the true transport current,
since the spatial average of the true transport current is
equal to the observed transport current, as proven in Ap-
pendix B. Using the true transport current, Eq. (19) is
written as

2n ~ i ~ b, (r)
Fb = g f dr k, [P;/f(r)] j,(r)+

=12 C 8m
40

j,o(ro)Xe, .
C

(20)

IV. DRIVING FORCE

The free energy Eq. (13) is rewritten by using Eq. (3) as

F,'= g f"'
7

4~ . 4O
j, (r) A„(r)— Vy(r}

c 2'

+b, (r) b, (r)

The free energies Fb and Fg contribute to the driving
force and the pinning force, respectively.

The driving force is expressed by the true transport
current just at the center, although the vortex current
spreads out over the lengths of the penetration depths A, ,0
and A, 2, which are several thousands A in cuprate super-
conductors. It is worthwhile to notice that the true
transport current is different from the microscopic trans-
port current given by (c/4n. )VXb, (r), which vanishes at
r =ro.

The distribution of the true transport center near the
interface is determined in the following way. As shown
in Appendix C, we have the boundary condition at the in-
terface

@o—V Xb, (r) A„(r)— Vy(r)
277

+b„(r) b, (r) (16)

~i[j;o( )li=~z[jo( ]2 (21)

the subscripts 1 and 2 indicating regions 1 and 2, respec-
tively. If we write the spatial average ofj f~(r) near the
interface in regions 1 and 2 as j1 and j2, respectively, the
boundary condition (21) is written as

where A, (r) is the vector potential inducing the vortex
magnetic field b, (r). Integrating the first term in the
bracket of the second line in Eq. (16) by parts, we have

~1J1=~2J2 ~ (22)

Then, from Eqs. (19) and (A5), the driving force acting on
the vortex in region 1 is given by

Fbd= g f
7

40—b, (r) [V X A, (r) — V X Vqr(r)] +0fd=, A (23)

+b, (r).b, (r) (17)

In deriving Eq. (17) we used a boundary condition in
which the interface energy vanishes. The term
—b, (r) VX A„(r) in Eq. (17), which comes from the in-
teraction energy between the microscopic transport
current and the vector potential of the vortex, is compen-
sated with the magnetic-field energy expressed by the last
term in Eq. (17). Using Eq. (4), we have the free energy
Fb as

and the force in region 2 is given by

C'0 .
J2 ~

c
(24)

(to«)i 1

The calculated driving force for the ratio A,2/k, =2 is
shown as a function of the position of the vortex center in
Fig. 2. As seen in Fig. 2, the driving force for the vortex

No
Fb = b, (ro) e (18)

ro being the position of the vortex center (O, zo). Equa-
tion (18) indicates that the free energy Fb is related to the
magnetic field induced by the transport current just at
the vortex center. The driving force is calculated from
Fb" as

(4o/c) Jz

Zo

+0fd= —V, Fb = [V, Xb, (ro)]Xe„, (19)

Flax. 2. Driving force fd as a function of the vortex center zo.
j& and j& are the transport current densities in regions 1 and 2,
respectively.
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in region 2 is much weaker than that for the vortex in re-
gion 1, since j2 is much smaller than j, as seen from the
boundary condition Eq. (22).

V. PINNING FORCE

In this section we calculate the pinning forces that
originate from the free energies Eqs. (6) and (14). For
this purpose we should obtain g(r) and A, (r) by solving
the GL equations for the vortex near the interface. The
CsL equations (2) and (3) are rewritten as

2

—
g, V g(r)+g; Vy(r) — A„(r) P(r)

0

boundary condition

N0
A;(r) — V,y(r)

277

N0
A;(r) — V, y(r)2' 2

(33)

The condition Eq. (33) is the same as that obtained from
the continuation of the current Eq. (3) at the interface.
In a way similar to Appendix C, we can derive the
boundary condition for the vector potential and the
phase as

(34)

where g; =(A' /4m, ~a; ~

)' is the coherence length of the
superconductor i The b.oundary conditions for 1tj(r) and
A, (r) at the interface are given in the following way. ~

We assume that the phase y(r) of the superconducting
order parameter %'(r) =g(r)exp[i'(r)] is continuous at
the interface, and that the order parameters for both
sides of the interface are related to each other with a
linear relation

[%(r)],=p[%(r)]z, (27)

where p is a constant independent of the position in the
interface. In the absence of the vortex, p is given by

P, /f2. If we assume the same value for p even in the
presence of the vortex, Eq. (27) is rewritten as

[e(r)]l/el = [e(r))2/e2 . (28)

We also assume a similar linear relation for the derivative
of the order parameter in a gauge-invariant form

V, — &;(r) +(r)
0 1

=q V, — A;(r) %'(r) (29)

with a constant q. From the condition that the current

j'„(r)= . 4*(r) V, — A„'(r) %(r)—c.c.eA, 2mi

2m) l N0

(30)

is continuous at the interface, q is determined as

VXVX A, (r)

1 N0+ [g(r)/P; ] A, (r) — Vy(r) =0, (26)
2~

The amplitude of the order parameter P(r) and the vec-
tor potential A, (r) of the vortex are determined by solv-
ing the GL equations (25) and (26) under the boundary
conditions Eqs. (28), (32), (33), and (34).

For Vy(r), we use a solution of Eq. (4),

Vy(r)=( —z+zo, y)/[y +(z —zo)2] . (35)

To solve Eqs. (25) and (26) numerically, a certain domain
in the yz plane, which includes the vortex and the inter-
face, is divided into meshes. Then, we replace the
differential equations (25) and (26) by difference equations
with respect to the lattice points in the mesh. By solving
the coupled difference equations numerically, we obtain
g(r) and A, (r) for the vortex. In the numerical calcula-
tion, we assume m& =m~ =m and gz=g&=g', and take
the parameter values of k2/A, &=2, v&=k&//=5, and
a&=i,2/(=10. The details of the numerical calculation
are given in Appendix D.

A. Pinning force originating
from the vortex core energy

The order parameters for the vortices at zo/g= —2,—1, 0, 1, and 2 are, respectively, shown as functions of
z/g in the plane of y =0 in Fig. 3. The solid and dotted
curves indicate, respectively, the order parameters with
and without the vortex in the system. The amplitude of
the order parameter and its slope jurnp at the interface
z =0. The loss of the order parameter due to inclusion of
the vortex center in the weakly superconducting region is
smaller than that in the strongly superconducting region.

Using the numerical result for P(r), we calculate the
pinning force originating from the vortex core energy.
The free energy of the vortex core per unit length Eq. (6)
is rewritten as

q = ( m, /m ~ )( P2/P, ) . (31)

Using Eq. (31), from the real part of Eq. (29), we have the
boundary condition

2

V
P(r) (36)

(Q)/m, )[V,g(r)])=($2/mz)[V, Q(r)]2, (32)

and from the imaginary part of Eq. (29) we have the
where H, ;=CD/(2&2nA, , g) is the thermodynamic criti-
cal field of the superconductor in the region i. The quan-
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FIG. 3. Superconducting order parameters for five positions
of the vortex center as functions of z/g in the plane of y =0.
The solid and dotted curves indicate, respectively, the supercon-
ducting order parameters with and without the vortex in the
system.

F. =g H, I /8~ . (37)

tity H, ; /8' in Eq. (36) is the superconducting condensa-
tion energy in the absence of the vortex. In Fig. 4, the
free energy F& is shown as a function of the vortex center
zo/g. The free energy F& is normalized by

Shown in Fig. 5 is the calculated pinning force as a func-
tion of the vortex center zo/g. The maximum pinning
force appears just at the weakly superconducting side of
the interface. It is shown that the maximum pinning
force rapidly increases as the ratio A, z/A, I increases.

B. Pinning force originating
from the electromagnetic energy of the vortex

The magnetic field b, (r) calculated from V X A, (r) has
only the x component. The distribution of the vortex
magnetic field is shown as a function of z/g in the plane
of y =0 in Fig. 6. The order parameter is also shown by
the dotted curves in this figure. The curves in Fig. 6
change their slope at the interface. The ratio
[db, /dz ]I /[db„/dz]z at the interface is given by (A,z/A, I )

from the boundary condition Eq. (34). The magnetic field

Since the vortex core radius is —g, the free energy drasti-
cally changes in the range —

gonzo
~ g' around the inter-

face.
The pinning force acting on the vortex per unit length

is given by

(38)
0
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FIG. 4. Vortex core free energy I'~ as a function of the vor-
tex center zII /g.

Z/

FIG. 6. Vortex magnetic fields for four positions of the vor-

tex center as functions of z/g in the plane of y =0. The solid

curves indicate the vortex magnetic fields and the dotted curves

indicate the superconducting order parameters.
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at the vortex center for zp )0 is much larger than that for zp & 0.
The free energy Eq. (14) is rewritten as

b„(ro) f— b, (r).+o dS
8m

' 4m.

Np 4p
A„(r)— Vp(r) Xe, — A„(r)— Vy(r) Xe,

277 $ 2' (39)

If the boundary condition Eq. (34) is fulfilled, Eq. (39) is
reduced to

Np
Fg= b, (ro),

8m
(40)

where b, (r )ois the vortex magnetic field at the vortex
center rp. In Fig. 7, the free energy is shown as a func-
tion of zola'. In this figure, the core pinning energy F&
for A,2/k, =2 is also plotted by the dotted curve for com-
parison.

The pinning force acting on the vortex per unit length
is given by

ft,'= — Ft', = —(0&o/8ir) b„(ro) .d — d
dzp dzp

(41)

'The pinning force ft,' is shown by the solid curve as a
function of the vortex center z&&/g in Fig. 8, along with
the core pinning force plotted by the dotted curve. In
contrast with the core pinning force f&, which shows the
maximum at zo =0, the electromagnetic pinning force ft,'
has the maximum at zo//=1. 2. We see that the max-
imum core pinning force is larger than the maximum
electromagnetic pinning force. It is shown that the max-
imum core pinning force rapidly increases as A, z/A,

&
in-

creases and tends to infinity in the limit of kz/A, ,~~,
while the maximum electromagnetic pinning force slight-
ly increases and tends to a certain value. Therefore, the
vortex pinning force due to the interface is dominated by
the core pinning force for large values of X2/A, &.

In Figs. 9(a) and (b), we show the total free energy F,
which is given by the sum of the core and electromagnet-
ic free energies, and the total pinning force f, which is
given by the sum of the core and electromagnetic pinning
forces, respectively. As seen in Fig. 9(b), the maximum of
the pinning force appears in the weakly superconducting
region. This result plays a crucial role of enhancing the
critical current, since the driving force is weak in this re-
gion.

VI. CRITICAL CURRENT

In this section, we demonstrate that the inhomogene-
ous distribution of the transport current plays an impor-
tant role for the pinning of the vortex bound near the in-
terface. Figure 10 shows the sum of the free energies
Eqs. (18), (36), and (40). The curves show the free ener-
gies for the several values of the normalized transport
current density in the weakly superconducting region
j2/(cE/g4o). For A, z/A, , =2, the transport current den-
sity in the strongly superconducting region j &

is
(X2/A. , ) =4 times as large as that in the weakly super-
conducting region j2. The vortex is pinned at the posi-
tions of the local minima indicated by the solid circles in
Fig. 10. As seen in Fig. 10, the pinning position moves
toward the interface as the transport current density in-
creases, and reaches the interface at the critical current
density j2/(cE/$@o)=6. 5. The total force, which is
given by the sum of the driving force Eq. (20) and the
pinning forces Eqs. (38) and (41), is plotted in Fig. 11.
The total force changes its sign at the pinning positions
indicated by the solid circles. The pinning position
moves toward the interface as the transport current in-
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(
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]
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FIG. 7. Electromagnetic free energy of the vortex Fb is indi-
cated as a function of the vortex center zp/g by the solid curve.
The vortex core energy is also plotted by the dotted curve.

FIG. 8. Electromagnetic pinning force fg is indicated as a
function of the vortex center zo/g by the solid curve. The vor-
tex core pinning force is also plotted by the dotted curve.
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FIG. 9. Total pinning free energy of the vortex F~ and the to-
tal pinning force f as a function of the vortex center zo/g. (a)
The total pinning free energy F~ defined by the sum of the core
free energy F& and the electromagnetic free energy F„, and (b)
the total pinning force f defined by the sum of the core pinning
force f&

and the electromagnetic pinning force fb
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creases and reaches the interface at the critical current
density.

To see the importance of the inhomogeneous distribu-
tion of the transport current for the pinning, we consider
a fictitious case where the transport current uniformly
flows in all regions of the system and its current density is

FIG. 11. Sum of the driving force fd and the pinning force

f~ as a function of the vortex center zo/g. The vortex is pinned
at the positions indicated by the solid circles where the total
force changes its sign.

given by the average of the transport current densities in
regions l and 2, (j, +j2)/2. The total free energy in this
case is shown in Fig. 12 For the current density
jz /(cE/g4o) =2, the vortex is Pinned at the local
minimum of the free energy appearing near the interface.
However, for the current densities of j2/(cE/g+o)=4
and 6, the minimum disappears and thus the vortex is de-
pinned in contrast to the case in Fig. 10. The observed
critical current density for the inhomogeneous current
distribution is [l+(Az/A, I) ]/2 times as large as that for
the uniform (fictitious) current distribution. The ob-
served critical current density is very much enhanced for
a large value of A, 2/k, . For the case of A,z/k& =2, the ob-
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FIG. 10. Sum of the driving free energy Fd and the pinning
free energy F as a function of the vortex center zo/g. The
values ofj 2/(cE/gCIo) indicate the strength of the driving force
acting on the vortex in region 2. The vortex is stabilized at the
positions indicated by the solid circles.
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FIG. 12. Fictitious total free energy as a function of the vor-
tex center where we suppose the current density with (j &

+j2)/2
uniformly Rows in the system.
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served critical current densities for the inhomogeneous
and uniform current distributions are 16.25 and 6.5 in
units of cE//@0, respectively.

VII. DISCUSSION

As was mentioned in the Introduction, the critical
current in Bi2Sr2CaCu208+& is independent of the rela-
tive angle between the directions of the critical current
and the applied magnetic field in the film plane. ' "'
On the other hand, experiments show that in
YBa2Cu3O7 &, the critical current in the applied magnet-
ic field parallel to the current is larger than that in the
magnetic field perpendicular to the current. This
difference may be explained within the framework of the
present theory in the following way. As shown in Sec.
VI, the critical current density due to the pinning for
A,z/1, , =2 in the magnetic field perpendicular to the
current is 16.25 in units of Ec/C&0$, where E is defined by
Eq. (37). The order of magnitude of Eel&op for cuprate
superconductors is 10 A/cm . The critical current den-
sity increases as the magnetic field deviates from the
direction perpendicular to the current. The pair-
breaking effect also limits the critical current density.
The pair-breaking effect is caused by the kinetic energy of
the superconducting current exceeding the superconduct-
ing condensation energy. ' The depairing current den-
sity due to this effect is estimated to be 11.1 for X2/k& =2
in the same units of Ec/@0(. Since the depairing current
density is smaller than the critical current density due to
the pinning mentioned above, the observed critical
current density is determined by .the depairing current
density. Therefore, the observed critical current density
in this case is independent of the angle between the
current and the magnetic field. We suppose that
Bi2Sr2CaCu20, +z corresponds to this case.

The calculation shows that the depairing current densi-
ty increases as A, 2/A, , decreases and tends to 17.8 in units
of Ec/&bog in the limit of A, ~/A, &=1. On the other hand,
the critical current density due to the pinning drastically
decreases as X2/A. , decreases and vanishes in the limit of
kz/X, =1. Therefore, below a certain value of kz/X& the
pinning critical current density becomes smaller than the
depairing current density. In this case the observed criti-
cal current density in the magnetic field perpendicular to
the current is determined by the pinning critical current
density. The observed critical current density in the
magnetic field parallel to the current is still determined
by the depairing current density, since there is no driving
force in this configuration. As a result, the critical
current is anisotropic with respect to the relative angle
between the current and the magnetic field. We suppose
that this is the case for YBa2Cu307

Note added in proof. An extensive survey of supercon-
ductivity in layered superconductors is given by a book
entitled Layered Superconductors by R. A. Klemm (Ox-
ford, New York, 1993).
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APPENDIX A

In this appendix, we show that (c/4')V, Xb, (ro) is
0

equal to the true transport current j,o(ro), the transport
current in the absence of the vortex under consideration.
The microscopic transport current j,(r) and the magnetic
field associated with this current b, (r) satisfy the
Maxwell equation

VXb, (r)= j,(r) .
4~ .

(A 1)

Integrating (A 1) with respect to z from —~ (or ao ) to zo,
we have

4~
b, (O, zo) = dzjf (O, z;zo ),

C —oo
(A2)

lI ii IL I I II lf II I

(c)

zo

bio

T

I

I

zo

b,

FIG. 13. Schematic representation for the spatial variation of
the microscopic and true transport currents, j,(r) and j,o(r),
and the magnetic fields induced by these currents, b, (r) and
b,o(r), around the vortex center (O, zo). (a) The streamlines of
the transport currents in the yz plane, (b) the transport current
densities as a function of z, and (c) the magnetic fields as a func-
tion of z. The solid and dash-dotted curves indicate the currents
and magnetic fields with and without the vortex in the system.

where we rewrite j~(O, z) as jf(O, z;zo), indicating that the
microscopic transport current is a functional of zo. Since
Fig. 13(a) shows that the total number of streamlines
crossing the part of the z axis between —~ and zo does
not depend on whether the vortex is or is not at (O, zo),
jf(O, z;zo) in Eq. (A2) is replaced by the true transport
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current jfo(O, z) as

b, (O, zo)= dz jfo(O, z) .
4m

—oo
(A3)

S2 S

d 4~ .yb, (O, z() ) = j,()(O, z() ),
zo C

(A4)

Note that jfo (0,z) is independent of zo. Taking the
derivative of (A3) with respect to zo, we have

),)(z)

\

or

4~ .
V, Xb, (ro)= j,o(ro) .

0 c
(A5)

APPENDIX B

The driving force acting on the vortices intersecting a
unit area I in the yz plane is given by

(B2)

It is shown from the thermodynamic argument that
the observed transport current density JT is given by

In this appendix, we prove that the average of the true
transport current densities at the vortex centers is equal
to the observed transport current density. From Eqs. (19)
and (A5), the driving force acting on a vortex at r; is ex-
pressed in terms of the true transport current as

NQ NQ
fd(r;)= (V, Xb, (r;)) Xe, = j,o(r;)Xe . (Bl)

4~ i ' c

FIG. 14. Junction consisting of the superconductors 1, I, and
2. The penetration depth k&(z) indicated by the dashed curve
smoothly changes in region I, and connects with k~ at the inter-
face S& and with A, 2 at the interface S2. In the limit of region I
vanishing, the junction changes to the interface shown in Fig. 1.

gy is rewritten as

A, ,(z)
Fb = — dS [b,o(r)Xj,o(r)], e,2c

A, ,(z)+ dS [b,o(r)Xj,o(r)], e, ,
S2 2C

(C2)

where dS is the surface element in the interfaces and e, is
the unit vector in the direction of the z axis. In Eq. (C2),
S& and Sz denote the surfaces of region I, which contact
with regions 1 and 2, respectively, and the subscript I
denotes region I. Since j,o(r) and b,o(r) are (;ontinuous at
the interfaces, the free energy Eq. (C2) is written as

n@o
JT Xe

c
(B3) Fb: dS[b(0(r) X j,o(r)], e,

2c
where n is the number of vortices in the area I . From
Eqs. (B2) and (B3), we have + f dS[b,o(r)Xj,o(r)]z e, ,

2C S2
(C3)

JT= —g j,()(r, ) .
1

iGI
(B4)

APPENDIX C

Thus the observed transport current density is given by
the average of the true transport current densities at the
vortex centers.

the subscripts 1 and 2 indicating regions 1 and 2, respec-
tively. If we take a limit of the separation between S&
and S2 vanishing, the free energy in Eq. (C1) vanishes, be-
cause of the integrand in Eq. (Cl) having finite values.
Thus, in the same limit, the free energy Eq. (C3) vanishes.
Then, if we used the condition that b,o(r) is continuous at
the interface, from Eq. (C3) we have the boundary condi-
tion Eq. (21).

For the purpose of obtaining the boundary condition
Eq. (21), we insert a fictitious intermediate region I be-
tween regions 1 and 2. In region I, the penetration depth
changes as it connects smoothly with the penetration
depths in regions 1 and 2, as shown in Fig. 14. The free
energy of region I is given by

Fbo= fdr A, , (z)j,o(r)+ b,o(r)
2m (Cl)

where b,o(r) is the magnetic field induced by the true
transport current j,o(r), and A, ,(z) is the penetration
depth in region I. By using the Maxwell equation and in-
tegrating the free energy Eq. (Cl) by parts, the free ener-

APPENDIX D

(D 1)

A square domain of —L ~y, z ~ L in the yz plane is di-
vided into 2NX2N meshes. The y and z variables are
discretized with an equal step d =L/N to the mesh
points (y&, z&). The amplitude of the order parameter and
the vector potential at the mesh point (y&, z& ) are denoted
by P& and A&, respectively. Using the difference formulas
to evaluate the derivatives, we transform the difT'erential
equations (25) and (26) into the difference equations for P&

and A&. Starting from an initial guess for g(&" and A(I'',

we iterate the order parameter and the vector potential
by the relaxation method

q(n+)) q(n)+ Gi(
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A(n + & i = A(ni+
I I ~ I (D2)

where GI@ and GI are, respectively, the difference repre-
sentation for the left-hand sides of Eqs. (25) and (26), that
is, GO=0 and Fir =0, are, respectively, the difference
equations for Eqs. (25) and (26), and g is a converging pa-
rameter (q( —'). In the calculation, we used d//=0. 1,
q=0. 2, and %=100. The dimension of the domain is

20$X20('. Outside the domain, we fixed gi =g, for z )0
and 1ii=g2 for z +0, and used the London solution for
At. The self-consistency for 1(rI"' and AI"' is taken under
boundary conditions Eqs. (28), (32), (33), and (34) at the
interface. We break off the iteration when the converging
conditions Gf'/g& (10 and Crt /(4&o/2m. l.&) (10 are
fulfilled.
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