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We have carried out strong-coupling calculations using the Eliashberg formalism, which provide
strong evidence for the description of the planar quasiparticles in YBa2Cu307 as a nearly antiferromag-
netic Fermi liquid. We show that when one takes into account the full structure (in frequency and
momentum space) of the spin-Auctuation-induced interaction between quasiparticles, a superconducting
transition temperature of 90 K is obtained with a dimensionless coupling constant,
A, =0.402%(0)g=0. 83, for a hole concentration of 0.25, a quasiparticle spectrum characterized by
nearest-neighbor hopping, t =0.25 eV, and a spin-fluctuation spectrum determined by experiment. With
a next-nearest-neighbor hopping, t = —0.45t, the coupling required to obtain a T, of 90 K is reduced by
some 10%%uo. Strong-coupling calculations of the normal state, using these latter parameters, yield a resis-
tivity that varies linearly with temperature, with a magnitude at 90 K of 62 pQ cm, a frequency depen-
dence of the optical conductivity in quantitative agreement with experiment for energies 0. 1 eV, a
quasiparticle spectrum characterized by a momentum-dependent wave-function renormalization con-
stant, 0.4 ~ Z~ ~ 0.6, and a self-energy whose imaginary part is proportional to co for energies up to 0.25
eV. We give a progress report on the extent to which a self-consistent description of the spin-Auctuation
excitation spectrum can be found by taking y(q, to) =f'(q, to)/[1 —1(q)f(q, co) ], where g(q, co) is the irre-
ducible particle-hole susceptibility calculated for quasiparticles coupled to spin excitations whose spec-
trum is given by y(q, co) and J(q) is the effective spin-spin coupling.

I. INTRODUCTION

Since the discovery of high-temperature superconduc-
tivity in the copper oxides by Bednorz and Mueller, ' a
key question has been "what is the origin of the super-
conductivity in these systems?" The possibility of d-wave
pairing in the context of the Hubbard model was con-
sidered by Bickers and co-workers. In three previous pa-
per [hereafter referred to as Monthoux, Balatsky, and
Pines (MBP) (the first two) and Monthoux and Pines
(MP), respectively] we have examined the possibility that
spin fluctuations might be a candidate mechanism for
high-temperature superconductivity. A similar examina-
tion, using somewhat different parameters, has been car-
ried out by Ueda, Moriya, and Takahashi. We have de-
scribed the results of weak-coupling calculations, which
demonstrate that the retarded interaction between planar
quasiparticles induced by the exchange of antiferromag-
netic paramagnons, whose excitation spectrum was deter-
mined by 6ts to normal-state experiments, leads uniquely
to a transition to a superconducting state with d 2x —y
symmetry. ' However, weak-coupling estimates of the
transition temperatures attainable with this model turned
out to be unreliable and the "proof of concept" for spin-
fluctuation-induced superconductivity only came later
from a careful strong-coupling calculation. Theorists
had been generally skeptical that spin fluctuations could
be effective enough to yield high-temperature supercon-
ductivity, primarily because they believed that the short
lifetime for the scattering of quasiparticles against spin
fluctuations would prevent the quasiparticles from taking
su5cient advantage of the spin-fluctuation-induced in-

teraction to superconduct at high temperature. These be-
liefs were supported by many calculations ' that, howev-
er, employed approximations developed in the context of
phonon-induced superconductivity and were shown by
MP to give poor results when applied to the spin excita-
tion spectrum proposed by Millis, Monien, and Pines
(hereafter referred to as MMP). A notable exception was
the work of Bickers, and co-workers, in which the full
frequency and momentum dependence of the interaction
was taken into account for a two-dimensional (2D) Hub-
bard model. This calculation, which yielded a transition
temperature of order 30 K, as well as that of Ref. 5,
demonstrates that it is only when the Eliashberg equa-
tions are solved allowing for the full momentum depen-
dence of the effective interaction that high transition tem-
peratures are obtained.

Still, many questions remain. Due to strong-coupling
effects the transition temperatures are reduced consider-
ably from their weak-coupling values and the high T, 's

obtained by MP require relatively large values of the cou-
pling constant g. It is thus necessary to calculate the
normal-state properties of the model with such values of
g, and we present the results of such calculations here.
We also explore the dependence of the calculation of T,
and normal-state properties on the choice of the bare
quasiparticle spectra and present our results for the
dressed quasiparticle properties in the normal state.

The plan of our paper is the following. In Sec. II we
present a comparison of the transition temperatures ob-
tained with different Fermi surfaces for a given value of
the doping. We consider the simple nearest-neighbor
hopping tight-binding band with hopping parameter
t =0.25 eV and the inclusion of a next-nearest-neighbor
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II. THE SUPERCGNDUCTING TRANSITION
TEMPERATURE

Following MBP, the simple model Hamiltonian for the
planar quasiparticles is given by

&=&o+&;„,,

where

(la)

hopping t'= —0.45t. We also give the functional depen-
dence of T, on the coupling constant in the strong-
coupling limit for the case t' =0, and discuss the effect of
Van Hove singularities on the transition temperature. In
Sec. III we discuss the properties of the self-energy, the
tunneling density of states and the frequency dependence
of the gap at T, with the coupling constant and chemical
potential that yield a T, of 90 K and an electron density
n =0.75. In Sec. IV we present our results for the tem-
perature dependence of the electrical resistivity, the fre-
quency and temperature dependence of the optical con-
ductivity with the parameters required to obtain a
strong-coupling transition temperature of 90 K, for both
Fermi surfaces, t ' =0 and t ' = —0 45t. In Sec. V,
we give a progress report on the extent to which
a self-consistent description of the spin-fluctuation
excitation spectrum can be found by taking
g(q, co)=f(q, co)/[I —J(q)f(q, co)], where g(q, co) is the
irreducible particle-hole susceptibility calculated for
quasiparticles coupled to spin excitations whose spectrum
is given by y(q, co) and J(q) is the effective spin-spin cou-
pling; as a first step toward self-consistency, we show that
for a suitable choice of J(q), the y(q, co) that one obtains
with the irreducible particle-hole g(q, co) calculated for
quasiparticles coupled to the MMP spin excitation spec-
trum is close to the input susceptibility yMMp(q, co). Sec-
tion VI contains our conclusions.

Fermi level for an electron doping below one half and
with an electron density n =0.75, the Van Hove singular-
ity is below the Fermi level. Another important feature
of this dispersion relation is that in contrast to the
nearest-neighbor tight-binding form, Eq. (lc), there are
pieces of the Fermi surface that are connected by the an-
tiferromagnetic wave vector Q below half filling.

describes an effective spin-spin interaction be-
tween the planar quasiparticles, which we model phe-
nomenologically as an interaction between the planar
quasiparticle excitations and the spin fluctuations. We
thus write it as

&;„,=—gg(q)s(q) S( —q),=1 (le)

where

s(q)=
2 X 4~+q,.~.p0~, p

a, P, k

and S is the spin-Auctuation operator whose properties
are determined by the spin-spin correlation function
g;~(q, co)=5,Jg(q, co). The interaction has to be short
ranged and thus g(q) should not be very momentum
dependent. For simplicity we will ignore the momentum
dependence of the coupling to spin fluctuations and set
g(q) =g. Moreover, we require that y(q, co) be such as to
provide a quantitative fit to NMR experiments. We
choose to use the low-frequency form of y(q, co) deter-
mined by NMR, because as yet neutron-scattering experi-
ments have not produced a consensus on the behavior of
y(q, cu) in the frequency range 1 —50 meV. We thus adopt
the form of y(q, to) proposed by Millis, Monien, and
Pines, which has been shown to provide a quantitative fit
to the NMR experiments involving Cu, ' 0, and Y, in
the YBazCu307 superconductor:

&o=ge g
p, 0'

(lb) XQ
XMMP q~

1 +g2( Q)2 / qx(,co)=, )0, )0,
describes the quasiparticle excitations of energy e . We
will consider two bare quasiparticle spectra E'p The first
and simplest is the nearest-neighbor tight-binding disper-
sion relation

e = —2t [cos(p, a )+cos(p»a ) ], (lc)

with t'= —0.45t. The bandwidth is still St=2 eV. With
this next-nearest-neighbor hopping the Fermi surface is
never perfectly nested, the Van Hove singu1arity is at the

with t =0.25 eV. a is the lattice constant. This spectrum
has the perfect nesting property at half-filling with the
Van Hove singularity at EF. Upon hole doping, the wave
vectors that span the Fermi surface are then smaller than
~Q~ where Q=(vr/a, vr/a ) and the Van Hove singularity
is above the Fermi level. However, photoemission experi-
ments' suggest that this spectrum is not realistic for
YBa2Cu307 and that a more appropriate dispersion rela-
tion includes a next-nearest-neighbor hopping

e = —2t [cos(p a ) +cos(p a ) ]—4t 'cos(p a )cos(p» a ),
(ld)

where gQ is the static spin susceptibility at wave vector
Q=(~/a, vr/a). In the normal state, y&

—=go(g/a ) f3'

where go is the experimentally measured long-wavelength
spin susceptibility, which is in general temperature
dependent, g is a temperature-dependent antiferromag-
netic correlation length, f3=m . With this form of y(q, co)
there are no well defined low-frequency magnetic excita-
tions, but rather one has a relaxational mode, the
paramagnon, whose energy is given by

r
P'"~(g/a)' ' (3)

where I =0.4 eV plays the role of a magnetic Fermi en-
ergy. The fits to NMR experiments on YBazCu307 yield

g( T, ) —2.3a and hence cosF( T, ) —8 meV.
Our phenomenological model Hamiltonian, specified

by Eqs. (la) —(lf), leads to a self-consistent description of
the spin behavior of the system to the extent that the re-
sulting calculated quasiparticle spin fluctuation spectr-al
density, y(q, co), agrees with the input value, yMMp(q, co).
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We carry out this comparison in Sec. V.
The 2D Eliashberg equations" for the critical tempera-

ture of a single CuO plane in the Matsubara representa-
tion reduce, in the case of a spin-fluctuation-induced in-
teraction between the quasiparticles, to

k~T
X(p, ice„)=g z g gg(p —q, ico„iI—I„)G(q,iQ„),+2

%'(p, ice„;q,iQ„)= —g (k~T/N q)J(p —q, iso„—i Q„)

X G(q, i A„)G( —q, i 0„)
is equal to one. For the present model the argument
presented for the weak-coupling case still holds: A non-
trivial solution can only be found for a d-wave gap

4(p, i co„)~ cos(p, a ) —cos(p a ) .

1
G(p, ice„)=

i co„—( e —p) —X(p, i co„)

(4)

where X(p, ice„) is the self-energy, G(p, ice„) is the one-
particle Green's function, CI(p, ice„) is the anomalous
self-energy and is proportional to the order parameter,
e is the bare electron spectrum, and p is the chemical
potential. Xq is the total number of momenta
in the Brillouin zone and co„=(2n + 1 )vrks T,
n = —~, . . . , —1,0, 1, . . . , + oo. For convenience, the
coupling constant g is chosen to be equal to 2g,z as
defined in MBP, that is g =3/4g . y(q, iv„) is related to
the imaginary part of the spin response function
Imp(q, co), Eq. (2), via the spectral representation

+ ~ den Imp(q, co)
g(q, i v„)=—

7T l V COn

To get y(q, iv„) to decay faster than 1/v„ for large v„,
we introduce a cutoff coo and take Imp(q, co)=0 for
co & coo. In the following we will adopt the value coo=0.4
eV.

The equations are solved with a fast Fourier transform
(FFT) algorithm on a 64X64 lattice, with a Matsubara
frequency cutoff of -three times the bandwidth, that is
-6 eV. Because the bandwidth of the tight-binding
dispersion relation with next-nearest-neighbor hopping is
independent of t', it is possible to use the same number of
Matsubara frequencies with both bare quasiparticle spec-
tra for a fixed ratio max( ~co„~ ) to the bandwidth (one
must keept this ratio fixed in order not to introduce ficti-
tious temperature dependences). This is very important,
since the FFT algorithm requires one to use a number of
Matsubara frequencies that can be expressed as a product
of powers of 2, 3, and 5, that is a limited number of tem-
peratures. It is only because the bandwidths of the two
dispersion relations Eqs. (lc) and (ld) are equal no matter
what t' is that one is able to calculate all properties at
the same temperatures for both cases, which is a great ad-
vantage.

The critical temperature for the model is determined
from Eq. (6), which is an eigenvalue equation for the vec-
tor N(p, ice„). A nonzero solution for the order parame-
ter can be found when the largest eigenvalue of the ma-
trix

, k, T
N(p, ice„)= —g 2 g gg(p —q, icII„iA—„)G(q,iQ„)

q A„q
X G( —q, i A,„—)@(q,i II„),

(6)

where N(0)= —(2/mN )g ImG+(p, 0) is the tunneling
density of states for both spin orientations calculated
from the "no lines crossing" one-particle Green's func-
tion at T, . N (0) is obtained by analytic continuation us-

ing X-point Pade approximants. ' The above formula
gives T, to an accuracy of at least 0.2% for the four data
points that we considered (T, =90, 96, 100, and 108 K).
For T, =90 K, one has g =2.35 eV, N(0) 2 =1.349

~c

states/eV. The values for T, =96 K are g =2.85 eV,
N(0) ~ =1.301 states/eV, and for T, =100 K one has

c
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FIG. 1. The critical temperature T, vs coupling constant
squared. The full line is the result of the strong-coupling calcu-
lation, the dotted line is the weak-coupling result obtained by
MBP, while the dashed line is the result obtained using the
"phonon-inspired" Eliashberg calculation of Millis (Ref. 12), all
calculated for the same model parameters.

Figure 1 shows the relation T, = T, (g) for the bare
quasiparticle dispersion relation Eq. (lc) along with the
MBP weak-coupling calculation, and the strong-coupling
result one obtains upon making the approximations pro-
posed by Millis' and that have been used by other au-
thors. The difference is physically significant, and one
does not reach the conclusion that spin fluctuations can
yield high transition temperatures unless one solves the
full problem, i.e., with the complete momentum depen-
dence of the effective interaction.

It is interesting to note in the case t'=0, for coupling
constants greater or equal to the coupling constant,
g =1.53 eV, required to obtain T, =90 K, the transition
temperature may be written as

T, =0.636 exp
I 1

0.402N(0)g
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g =3.28 eV, N(0) ~ =1.257 states/eV. Finally, for
Tc

T, =108 K the numbers are g =4.50 eV,
N(0) 2

= 1.151 states/eV. Another quantity of interest
g 'Tc

is the value of the expression in the exponential in Eq. (8).
At T, =90 K one has 0.402N (0)g =0.83.

We see that the strong-coupling expression for the crit-
ical temperature takes a form similar to the weak-
coupling expression obtained by MBP, except that the di-
mensionless coupling constant A,„-N (0)g is replaced
by const X QA, (where const is a numerical factor of or-
der unity). A similar coupling-constant dependence was
previously found by Hirsch and Scalapino' in
perturbation-theoretic and Monte Carlo calculations that
examined the role which Van Hove singularities in low-
dimensional systems play in enhancing T, . In the present
case, with an electron density of n =0.75, the Fermi sur-
face is far from the Van Hove singularity; it is conceiv-
able that the strong-coupling aspects of our calculation
make it possible for Van Hove singularities to make a
significant contribution to the pairing interaction despite
their comparatively large distance from the Fermi sur-
face. It is interesting to note that the prefactor in Eq. (8)
is smaller than the weak-coupling result by about a factor
of two. Since the quasiparticle damping becomes large
much more rapidly than in usual Fermi liquids as one
moves away from the Fermi surface, the range of fre-
quencies that can contribute to the pairing is reduced
compared to its weak-coupling value.

The coupling constant that yields a T, =90 K super-
conductor is g =2.35 eV when using the nearest-
neighbor tight-binding dispersion relation. The chemical
potential of the interacting system is then about 140 meV
lower than that of the noninteracting electron gas with
the same density. If one uses the more realistic spectrum
that includes next-nearest-neighbor hopping with
t'= —0.45t, the coupling constant required to get a tran-
sition temperature of 90 K is smaller, namely g =1.85
eV . Interestingly, the chemical potential in this case is
hardly changed (only a few meV) from that of the free-
electron gas of the same density. There are several
differences between the two dispersion relations, Eqs. (lc)
and (ld). We have already mentioned that the spectrum
with next-nearest-neighbor hopping has the property that
pieces of the Fermi surface are spanned by the antiferro-
magnetic wave vector Q. That implies that one is better
able to take advantage of the spin-fluctuation-mediated
interaction, which is sharply peaked at Q. However, the
self-energy is also sensitive to the better match between
the wave vectors spanning the Fermi surface and Q, and
is likely to be larger as well. To the extent that these two
effects cancel each other out, the smaller coupling con-
stant required to obtain a transition temperature of 90 K
can be attributed to the larger density of states at the Fer-
mi level that one obtains with the spectrum Eq. (ld) [see
next section and Figs. 5(a) and 5(b)].

III. QUASIPARTICLE PROPERTIES
AND GAP STRUCTURE

Self-energy corrections arising from the coupling of
quasiparticles to spin fluctuations have been calculated

previously by Kampf and Schrieffer, ' who determined
first-order corrections to the self-energy at T=O for a
wide range of values of the correlation length g/a, and by
Bickers and White, who for specific choice of Hubbard
model parameters, calculated quasiparticle properties in a
conserving approximation and examined as well its par-
quet extension. In the present context, to obtain dynami-
cal information on our model, one needs to look at the
self-energy on the real frequency axis. This is accom-
plished by analytic continuation of X(p, iso„) using N-

point Fade approximants. ' Figure 2 shows the frequen-
cy dependence of imaginary part of the self-energy with
t'= —0.45t at T=90 K for two points on the Fermi sur-
face, and the real part is displayed in Fig. 3. Our first-
order perturbation-theoretic results are similar to those
found by Kampf and Schrieffer' for comparable values
of g/a. The coupling constant was chosen to yield a T,
of 90 K. ImX(pF, co) goes like aT+yco, for frequencies

(a)
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0.5—
0)

3 04—
tL

03
E

0.2—

O. I—

0.4

(b)
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FICr. 2. The frequency dependence of the imaginary part of
the self-energy for t'= —0.45t at T=90 K for two representa-
tive momenta on the Fermi surface and with the coupling con-
stant required to obtain a transition temperature of 90 K. The
full line is the self-consistent result in the no lines crossing ap-
proximation, and the dotted line shows the first-order perturba-
tion theoretic result for the same parameters. (a) shows
—ImX(p, co) vs co for p=pF'—= (1,0.092)~/a and (b) shows
—ImX(p, co) vs co for p=p'F" =—(0.371,0.371)m/a.
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changed by the interactions but its area remains constant.
Figure 4 shows that the point p~" on the interacting Fer-
mi surface is closer to the Van Hove singularity than the
corresponding point on the Fermi surface obtained from
the bare quasiparticle spectrum Eq. (ld) with t'= 0.4—5t.
Also shown in Figs. 2 and 3 are the results one obtains
with the bare Green's function in Eq. (4) for the self-
energy. The difference between the first-order
perturbation-theoretic result and the self-consistent one is
most important at pF, the point on the Fermi surface
closest to the Van Hove singularity. For instance, at pF
the quasiparticle residue

8 ReX(pF", co)
Z (l)= 1

PF BCO

0.4

(b)

0.2—

0)

3
U

0)

-0.2—
= (0.371, 0.37I) a
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FIG. 3. The frequency dependence of the real part of the
self-energy for the same parameters as in Fig. 2. The full line is
the self-consistent result in the no lines crossing approximation,
and the dotted line shows the first-order perturbation theoretic
result for the same coupling constant and chemical potential.
(a) shows ReX(p, co) vs co for p=pF'—= (1,0.092)m/a and (b)
shows ReX(p, co) vs co for p =pF '= (0.371,0.371)m/a. The
sharp feature in the real part of the first-order perturbation
theoretic ReX(p, co) at co= —0.5 eV is associated with the rapid
drop of the imaginary part of the self-energy at the same fre-
quency seen in Fig. 2. A similar feature is present at co=2 eV
but not as pronounced because the density of states near the top
of the band is smaller.

one obtains in first order is 0.212, whereas the self-
consistent result is 0.407, nearly a factor of two larger.
On the other hand, at pF ', the first-order result for Z„' F
is 0.495 and the self-consistent one 0.560, which is about
a 12% difference. Therefore, we conclude that self-
consistency is especially important for the points on the
Fermi surface that are near Van Hove singularities. The
difference between the first-order quasiparticle residue
and the self-consistent result is very important in our
case, since the d ~ 2 gap on the Fermi surface is max-

X

imum at pF". A first-order perturbation-theoretic calcu-
lation of lifetime effects on T, would overestimate the im-
portance of self-energy corrections. We also have calcu-
lated the quasiparticle residue in the case t ' =0, to check
the effect of the Fermi surface shape on that quantity.
The representative points on the Fermi surface are now
pF'—= (0.781,0)m/a and pF'—= (0.449 0.449)m/a. In this
case one has Z (&) =0.410 and Z (2) =0.471. The quasi-

PF PF

1.0

0.5

0

smaller than the characteristic spin-fluctuation frequency
cosF, where a and y are constants. However, the imagi-
nary part of the self-energy becomes linear in co for fre-
quencies large compared to cps„. It is interesting to note
that near the Van Hove singularity, at
pz" —=(1,0.092)vrla, the crossover from quadratic to
linear co behavior occurs at lower values of co.

As may be seen in Fig. 3, ReX(pF, O)WO and thus the
chemical potential is changed by the interactions. Be-
cause of the momentum dependence of the real part of
the self-energy at m =0 that rejects both the inAuence of
the scattering against spin fluctuations and the tight-
binding spectrum with next-nearest-neighbor hopping
t'= —0.45t, the shape of the Fermi surface is slightly

-0.5

-I.O -0.5 0
k„( units of —,)

0.5 I.O

FIG. 4. The Fermi surface with t'= —0.45t and 0.25 hole
doping. The full line is the Fermi surface obtained with self-

energy corrections, e~
—p+ReX(p, 0)=0, and the dotted line is

the Fermi surface for the noninteracting system 6p po 0,
where po is the chemical potential that gives n =0.75 when
ReX(p, 0)=0.
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particle residue is larger along the diagonal in both cases
and the Fermi surface shape does not have a large
influence on its magnitude.

The quasiparticle effective mass on the Fermi surface
m„* along the x axis is given by

m* =z-i
PF

mx B ReX(p, O)

pF Bpx P=Pp
(9)

where m is defined via Be&/Bp„~& &
——pz /m . There

PF x

are thus two contributions to the effective mass, one com-
ing from the frequency dependence of the self-energy and
the other from its momentum dependence. It was found
by one of us' in a first-order perturbation-theoretic cal-
culation (with much smaller coupling constants than
those reported here) that the momentum dependence of
the self-energy only contributed about 10% to the
effective mass. A similar result is to be expected here and
can be understood by the following argument. The
denominator in Eq. (9) can be written as
1+[BRe%(p, O)/Bp ](Be /Bp ) '. The real part of the
self-energy ReX(p, O) and e are smooth functions of the
momentum p. Thus their derivatives with respect to p
should be, in appropriate units, of the same order of mag-
nitude as the functions themselves. Note that when
Be /Bp„vanishes for symmetry reasons, so does
BReX(p, O)/Bp and the ratio remains finite. Now, e„ is
of the order of 1 eV and ReX(p, O) of the order of O. l eV
as can be seen from Fig. (3). The denominator in Eq. (9)
is thus expected to be about 1.1, and therefore within, say
20%%uo, the mass enhancement is given by the inverse of the
quasiparticle residue, namely between 1.8 at pF and 2.5
at pF". To conclude, we note that in spite of the strong
coupling, the quasiparticle mass enhancement is only
moderate.

The results for X(pF(",co) shown in Figs. 2 and 3 have
another interesting feature. One notices that both the
real and imaginary parts of X(pF('), co) calculated in first
order have a very strong frequency dependence for fre-
quencies slightly below the Fermi level and a very sharp
peak. This peak is precisely located at the Van Hove
singularity. This feature is totally absent in the self-
consistent result; the Van Hove singularity has no direct
effect on the frequency dependence of the self-energy cal-
culated in the no lines crossing Eliashberg approxima-
tion.

The tunneling density of states N(co)
= —( I/nN& )g&lmGz (p, co) for one spin orientation, ob-
tained from G(p, iso„) by analytic continuation using N
point Pade approximants, ' for both t' =0 and
t'= 0.45t are shown —in Figs. 5(a) and 5(b), respectively.
The temperature is 90 K and the coupling constant was
chosen to yield a T, of 90 K. Also shown are the densi-
ties of states for the noninteracting systems of the same
density. It is obvious from the plots that lifetime effects
seriously affect the influence of the Van Hove singularity
on N(co), although in the t'=0 case the remnant of the
singularity has been shifted to the Fermi level. This may
remind the reader of the effect we discussed in Sec. II,
where it was argued that because of the strong coupling
the functional dependence of T, on the coupling constant
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FIG. 5. The frequency-dependent tunneling density of states
Ã(co)= —(1/vr)Tr[lmG~(p, co)j for the noninteracting system
(dotted line) and with the no lines crossing Eliashberg one-
particle Green's function (full line). (a) shows the case t'=0;
note how the Van Hove singularity, which is far from the Fermi
level is broadened by lifetime effects and shited towards co=0.
(b) shows the case t'= —0.45t. The large density of states near
the bottom of the band is due to the fact that the dispersion re-
lation Eq. (1d) is very flat near p=(0, 0). Note also the much
larger particle-hole asymmetry compared to (a), and the consid-
erable reduction of the twin peaks by lifetime effects.

was affected by the Van Hove singularity, in spite of the
relative distance of the latter from the Fermi surface. It
will be interesting to see if one gets the same effect with
the more realistic bare quasiparticle spectrum with next-
nearest-neighbor hopping.

On comparing Figs. 5(a) and 5(b), one also sees that the
tunneling density of states at the Fermi level is larger for
t'= —0.45t. The plot of the tunneling density of states
actually provides us with an estimate of the contribution
of the momentum dependence of the self-energy to the
quasiparticle effective mass. For co=0 we can approxi-
mately write Gz(p, ni)=Z /(co E+i5) where E—is
the renormalized quasiparticle spectrum with effective
mass m *. The tunneling density of states at the Fermi
level IN(0) = —( I/vr)Tr[lmGz (p, O)] I is thus given by Z
times the density of states of a noninteracting system of
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@(p,ice„)=b,(p, icy„) 1—ImX(p, ia)„)

This is different from MBP in that the frequency depen-
dence of the gap is taken into account, and thus b, (p, co)
will in general be complex. It is interesting to note that
by the time one reaches the MBP cutoff, ~ I /m, of
about 50 meV, the imaginary part of b, (pz ', co) is as large

quasiparticles of mass m *. To the extent that the
momentum dependence of ReX(p, O) does not contribute
appreciably to m *, then (m '/m )Z = 1 and the tunneling
density of states at E~ is not changed very much by the
interactions. Figures 5(a) and 5(b) demonstrate that even
though the interactions can change the overall shape of
the tunneling density of states N(co) substantially, the
value of N (0) for the free-electron system and the value
of N (0) for the interacting system are not very different
[the difference is —1% when t'=0, Fig. 5(a)] and -20%
when t'= 0.45—t [Fig. 5(b)]. It is interesting to note
that, as we have pointed out, the renormalization of the
chemical potential is very small when a next-nearest-
neighbor hopping t'= —0.45t is included (a few meV, to
be compared with 140 meV when t'=0), signaling a very
small value of ReX(p, O) for p on the Fermi surface (see
Fig. 3). We would therefore expect the contribution to
the effective mass from the momentum dependence of the
self-energy to be even smaller when t' = —0.45t than was
found by one of us' in the case of t'=0. Figures 5(a) and
5(b) show that this is not the case, since the tunneling
density of states N(0) is more changed by the interac-
tions for t'= —0.45t than with t'=0. This is an indica-
tion that ReX(p, O) is more strongly momentum depen-
dent for p near the Fermi surface when t' = —0.45t, than
when t'=0.

As we have shown, self-consistency in the calculation
of the self-energy is important given the relatively large
coupling constants required to obtain high transition
temperatures and the proximity of Van Hove singulari-
ties. In fact, for these coupling constants, a first-order
perturbation-theoretic calculation of the self-energy gives
results that are not compatible with Luttinger's theorem,
in that the doping obtained by integrating the tunneling
density of states calculated with the first-order self-energy
X"'(p, co) is not equal to the area enclosed by the Fermi
surface, the latter being given by the equation
ez —p+ReX' "(p,O) =0. ' It is only when the self-energy
is computed self-consistently that the agreement is re-
stored. We have actually used this fact as a check on the
consistency of the analytic continuation using Pade ap-
proximants for both the density of states and the self-
energy.

The frequency dependence of the gap, obtained by ana-
lytic continuation using N-point Pade approximants, ' at
T, =90 K is shown in Figs. 6(a) and (b) for t'=0 (in order
to compare with the MBP calculation) at the point
pF" = (0.781,0)~/a on the Fermi surface where the gap is
maximum. The weak-coupling result is the one obtained
from Eq. (6) where the no lines crossing Green's func-
tions are replaced by free particle propagators and
C&(p, ice„)= 6 (p, iso„); in strong coupling,
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FIG. 6. The frequency dependence of the real (full line) and
imaginary part (dashed line) of the gap at T, =90 K for t'=0.
The point on the Fermi surface is chosen as that where 6(pF, co)
is maximum, p'F" —=(0.781,0)~/a. The normalization conven-
tion is such that Reh(pF", 0)=1. (a) shows the weak-coupling
result obtained from Eq. (6) with G(q, iA„) replaced by bare
propagators. (b) shows the strong-coupling frequency-
dependent gap.

as the real part. It is thus not a good approximation to
ignore the imaginary part of b, (p, cu) even when self-
energy effects are not accounted for. As a consequence of
this, part of the large difference between the MBP T, and
the transition temperature one obtains solving the
strong-coupling Eliashberg equations (see Fig. 1), is due
to the neglect by MBP of the imaginary part and frequen-
cy dependence of the gap; the rest is due to self-energy
effects. The coupling constant that yields T, =90 K, in a
weak-coupling calculation where the frequency depen-
dence of the gap is taken into account, g =0.545 eV,
gives a transition temperature of about 225 K when using
the MBP gap equation. Still, strong-coupling effects
remain the dominant cause for the reduction in T„since
that coupling constant would yield a strong-coupling
transition temperature well below the lowest tempera-
ture, T=33.75 K, achievable in the present calculation
because of computer memory constraints; the coupling
constant required to get a strong coupling T, of 33.75 K
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is g =0.75 eV . As was the case with the normal-state
self-energy, one notices a feature in the frequency depen-
dence of the weak-coupling gap at about 140 meV. With
t'=0 and n =0.75, this is precisely at the Van Hove
singularity. The latter produces a peak in Imb, (p~",co) at
co=140 meV and the corresponding dispersive structure
in Red. (pF', co) at the same frequency. As was the case
with the normal-state self-energy, this feature disappears
when lifetime effects are taken into account in the one-
loop approximation.

IV. OPTICAL CONDUCTIVITY AND RESISTIVITY

Another normal-state property of interest is the
frequency-dependent optical conductivity, which, for an
applied field in the direction of a CuO plane, is given by

2eo.(co)= cr(co),
Ac

(10a)

where c is the lattice constant along the z axis, the factor
of 2 comes from the two CuO planes per unit cell, and the
dimensionless function o (co) is expressed in terms of the
current-current correlation function R (co) as

(10b)

R (co) is obtained by analytic continuation using X-point
Pade approximants' from R(iv„), which is given, ignor-
ing vertex corrections, by

2k T (jgR(iv„)=—
2

XG(p, ice„)G(p,ice„+iv„), (10c)

where N is the total number of points in the Brillouin
zone and G (p, ice„) is the no lines crossing Green's func-
tion obtained from Eqs. (4) and (5). The calculation is
most effectively done in imaginary time; one uses a one-
dimensional FFT to go from Matsubara space to imagi-
nary time and vice-versa. The same Matsubara cutoff (-
three times the bandwidth) as in the Eliashberg equations
was used in the calculation of the conductivity. In spite
of this, finite-size effects are still present for small v„. For
these, since G(p, iso„) ~ 1/co„ for large co„, the product of
Green's functions in Eq. (10c) scales as 1/co„as m„—+ oo

and thus the sum over the Matsubara frequency co„ is ex-
pected to deviate from its value for an infinite Matsubara
cutoff by a term proportional to the inverse of the total
number of Matsubara frequencies. This has been explic-
itly checked to be correct and the finite-size scaling
analysis reveals that the finite Matsubara cutoff of -6 eV
turns out to affect the optical conductivity only for fre-
quencies smaller than 10 meV, with the maximum effect
at co=0 being of the order of 5%. Since impurities,
which we have not taken into account, are also expected
to affect the frequency dependence of the conductivity in
this range of values of ~, we have ignored this fairly small
effect in the results presented below.

Since we have shown that approximations borrowed
from the electron-phonon problem fail to give a quantita-
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FICx. 7. The calculated resistivity due to spin-Auctuation
scattering as a function of temperature for two choices of quasi-
particle spectra, t' =0 (full squares and dotted line) and
t'= —0.45t (open squares and full line). For each of these
choices the coupling constant g is taken to be that which yields
T, =90 K. The squares (open and full) are the calculated
values, while the lines (dotted and full) are fits p(T) = A +BT.
One obtains A = —28.09 pQcm, B =1.25 pQcmK ' for t'=0
and A = —53.94 pQcm, B=1.29 pQcmK ' for t'= —0.45t.
The slope of 1.2—1.3 pQcmK ' compares we11 with experi-
ment. However, the intercepts are somewhat too negative.

tive estimate of the critical temperature T„we would ex-
pect these approximations, as were used in Ref. (8), to be
unreliable in the calculation of transport properties as
well. This appears to be the case. We wish to stress the
importance, when studying the normal-state properties of
a strongly coupled system whose Fermi surface is rela-
tively near a Van Hove singularity (as is the one studied
in this paper), of calculating self-energy effects self-
consistently, while taking into account the structure (in
momentum and frequency space) of the effective interac-
tion.

The temperature dependence of the resistivity

p = 1/Reo. (0) is shown in Fig. 7 for t ' =0 and
t'= —0.45t. In each case the coupling constant was
chosen to give a transition temperature of 90 K and the
chemical potential adjusted to obtain an electron density
of n =0.75. We thus have no free parameters (apart for
t') in our calculation of the normal-state charge response.
p is obtained from the extrapolated value of Reer(co) ~„
since Rea(co) ~lmR(co)/co and both quantities tend to
zero as co goes to zero. The small scatter in the data
points reflects the difficulty in extrapolating to zero fre-
quency from the analytic continuation. We have not cal-
culated the resistivity for T)250 K, since we do not
have the NMR data to determine the spin-fluctuation
spectrum at these temperatures.

Our results show that not only are we able to obtain a
resistivity that is linear in temperature from T, up to 250
K, but that the magnitude of the resistivity at 90 K is in
quantitative agreement with the best experimental
values' [28 pQ cm ~ p( T, ) & 55 pQ cm, depending on the
single crystal and the orientation of the applied field].
Our model does not take into account the orthorhombic
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FIG. 8. The frequency dependence of the calculated optical
conductivity (normalized to its value at co=0) at T=200 K for
t'=0 (dotted line) and t'= —0.45t (full line). For each of these
choices the coupling constant g is taken to be that which yields
T, =90 K. The experimental points from Ref. 18 are denoted
by diamonds.

distortion in the a -b plane and the possibility of a
different band mass in the a and b direction [i.e.,
Be /Bp„&Be&/Bp~ in Eq. (10c)],which may be at the ori-
gin of this anisotropy. Note also that the smaller cou-
pling constant in the case t'= —0.45t results in a smaller
resistivity at 90 K and that the slope of p versus T is
nearly the same in both cases.

The frequency dependence of the conductivity at
T=200 K is shown in Fig. g for t'=0 and t'= 0.4—5t (in
both cases the coupling constant is that required to ob-
tain T, =90 K) and compared to the experimental results
of Orenstein et al. ' When compared to the results of
Arfi, ' our results show that the frequency dependence of
the conductivity is markedly influenced by quasiparticle
lifetime effects. The improved quantitative agreement
we obtain with the next-nearest-neighbor hopping,
t'= —0.45t, provides another argument in favor of this
assignment. In Figs. 9(a} and 9(b} we show the tempera-
ture dependence of the optical conductivity for frequen-
cies up to 0.2 eV, for t'=0 [Fig. 9(a)] and t'= 0.45t-
[Fig. 9(b)]. We postpone to a future paper a detailed
comparison of these results with experiment.
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V. SPIN EXCITATION SPECTRUM

We next examine the extent to which our model Ham-
iltonian provides a self-consistent description of the
normal-state spin properties of YBa2Cu307. To do so we
first use our calculated quasiparticle excitation spectrum
to determine the irreducible particle-hole spin susceptibil-
ity, f(q, co), in the no lines crossing approximation; we
then consider whether, with a momentum-d. ependent
coupling, J(q), between the irreducible particle-hole bub-
bles, f(q, co), we can come close to retrieving our input
spin susceptibility, yMMp(q, co).

In the Matsubara frequency representation g(q, co) is
given by

2k~ T
f(q, iv„)= — 2. g G(p, ice„)G(p+q, ice„+iv„), (11)+2
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FIG. 9. The temperature and frequency of the conductivity
(normalized to its value at co=0 and T=90 K). The parameters
are the same as those speci6ed in the caption to Fig. 8, for t'=0
(a) and t'= —0.45t (b).

where X is the number of points in the Brillouin zone.
Pf (q, i v„) is seen to be the autocorrelation of the smgle-

particle Green's function. Autocorrelations, as for con-
volutions (i.e., one-loop Eliashberg equations), are most

efhciently performed using a FFT algorithm. To be con-
sistent, the number of points in the Brillouin zone and the
Matsubara cutoff were chosen to be the same as those
used in the solution of the Eliashberg equations. As was
mentioned in connection with the optical conductivity,
the finite Matsubara cutoff produces finite-size effects of
the order of the inverse of the total number of Matsubara
frequencies. We have not carried out a finite-size scaling
analysis in this case, but the error should be of the same
order of magnitude as in the case of the conductivity and
it should not affect our main conclusions.

The static irreducible susceptibility g(q, O} is shown in
Figs. 10(a) and 10(b) for t'=0 and t'= —0.45t. Also
shown is the susceptibility fo(q, O) one obtains with bare
Careen's functions in Eq. (11}.The considerable structure
present in jo(q, O), which rejects the Kohn anomalies as-
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FICx. 11. The low frequency irreducible dynamic particle-
hole susceptibility Imp(q, ~)/co, as a function of q at T=90 K
(full line) and T=200 K (dotted line).
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FIG. 10. The irreducible particle-hole susceptibility y(q, 0)
calculated using bare propagators (dotted line) and in the no
lines crossing approximation at T=90 K (full line) and T=200
K (dash-dotted line) for t'=0 (a) and t'= —0.45t (b).

sociated with transitions that span the Fermi surface, is
considerably modified by lifetime effects, while the mag-
nitude of the susceptibility is reduced. One also notices
that the Kohn anomaly peaks are further away from the
commensurate wave vector (girja, nja ) when using the
quasiparticle spectrum with next-nearest-neighbor hop-
ping t'= —0.45t. The change in temperature of f(q, O)
seen in Figs. 10(a) and 10(b) likewise retlects the conse-
quence of quasiparticle scattering against spin Auctua-
tions, since at higher temperatures the quasiparticle life-
tirne is shorter. The calculated percentage reduction with
increasing temperature is nearly twice as large in the vi-
cinity of (rrja, rrja) as near q=O; in other words, the
commensurate irreducible spin susceptibility is more sus-
ceptible to lifetime effects than is the long-wavelength
X(q, O).

We have also calculated the low-frequency quasiparti-
cle response Imp(q, ru)/ro, which is of importance for
NMR experiments, for t'= —0.45t, using N-point Fade
approximants. ' As may be seen in Fig. 11, apart from
the expected peak near q =0

I
in the absence of lifetime

efFects Imp(q, co) would vary as q
' in the collisionless

Imp(q, co) =i'(q, O)co!I (q), (12)

which measures the low-frequency quasiparticle magnetic
response. Figure 12 shows I (q) for T=90 K and
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FICx. 12. The characteristic energy I (q), which measures the
low-frequency "irreducible" quasiparticle response [see Eq. (12)]
as a function of q for T=90 K (full line) and T=200 K (dotted
line).

limit of interest to us herej, Imp(q, ru)/co is remarkably
featureless Ithe two small peaks near (rrja, rr/2a) and
(3'/4a, 3vr/4a) reflect the Kohn anomalies]. The quasi-
particle spectrum with a t %0 is very important in calcu-
lating Imp(q, co)/cu at low frequencies; it enables one to
get a nonzero answer at q=Q, since with this spectrum Q
is a wave vector that spans the Fermi surface. With the
nearest-neighbor tight-binding spectrum (t'=0), all the
wave vectors spanning the Fermi surface are sma11er in
magnitude than Q, as we pointed out earlier. Thus, one
should have Imp(Q, co)=0, as co~0, and therefore a
much weaker NMR response. Another quantity of in-
terest is the characteristic energy, I (q), defined, for
co~0, by
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x(q, ~)=
1 —J(q)f(q, co)

(13)

with a momentum-dependent coupling J(q) between the
particle-hole "bubbles" g(q, co ), which is peaked at
(~ /a, ~ /a) and has a range of the order of one lattice
spacing. It is natural to enquire whether there exists a
J(q), which for low frequencies, brings y(q, co) close to
the input susceptibility yMMp(q, co ), the MMP low-

frequency response function which provides a quantita-
tive account of NMR experiments. To facilitate the com-
parison, note that for low frequencies Imp(q, co) is given
by Eq. (12) and that Ref(q, co) =f(q, O). Then the imagi-
nary part of Eq. (13) at low frequency reduces to

y(q, O)neo/I (q)Imp q, co =
[1+F'(q)] + [F'(q)~co/I (q)]

where

(14)

F'(q) = —J(q)f'(q, O) (15)

measures the strength of the momentum-dependent
"Fermi-liquid" correction to the irreducible susceptibility
Sq, ~),

0) X q&Sq, O)

1+F'(q)
(16)

Expressing f(q, O) in terms of y(q, O) from Eq. (16), Eq.
(14) may be written, after a trivial rearrangement, as

y(q, O)co/cos~(q)
Imp(q, co) =

1+ [F'(q)co/cos„(q) ]

where

(17)

T=200 K. The temperature dependence and structure
for wave vectors near (7r/a, ala) reflects the interplay
between the momentum and temperature dependence of
g(q, O) [Fig. 10(b)] and that of Imp(q, co)/co (Fig. 11).

Both the reduction of the incommensurate Kohn
anomaly peaks of f(q, O) and their relative distance from
(m /a, m /a) seen in Fig. 10(b) are also essential features; as
shown below they allow us, to the extent that vertex
corrections may be neglected, to obtain a commensurate
random-phase approximation (RPA) susceptibility

tibility, g&=44 states/eV found in the MMP analyses.
To obtain a RPA susceptibility, Eq. (13), which is peaked
at the commensurate wave vector (vr/a, vr/a ), most of the
dispersion in J(q) has to occur between the Kohn
anomalies of g(q, O) shown in Fig. 10(b). A functional
form of J(q) that achieves this is

J)
J(q) =Jo+ 1+2$J [2+cos(q a )+cos(q~a ) ]

(20)

S(q, co) =
CO

1 —exp — T
k~

Imp(q, co)

as a function of momentum for co =3, 6, 12, and 15 meV
at T=90 K with the same J(q). It will be interesting to
compare this calculation with the results of neutron-
scattering experiments once a consensus has been reached
on YBa2Cu307.

If we assume that Jo, J&, and gJ do not depend on tem-
perature, a comparison of our calculated values of y(q, O)
and Imp(q, co)/co at T=200 K with the MMP values

-0.5

which is peaked at Q, with the dispersion of that peak
determined by gJ. We determined gz by taking the
dispersion of f(q, O) in the vicinity of Q= (rrla, rr/a ) into
account and requiring that the dispersion of g(q, O)
around Q be of the MMP form. At T=90 K, the values
Jo =0.399 eV, J& =0.250 eV, and gJ =0.761 were found
to give a y(q, O) in good agreement with the MMP form.
Our calculated value of F'(q) is shown in Fig. 13. y(q, O)
is compared to the MMP results at T=90 K in Fig. 14,
while our calculated Imp(q, co)/co evaluated in the low-
frequency limit is compared with the MMP result in
Fig. 15. The maximum of ImgMMP(q, co)/co, at
q=(vr/a, ~/a ), is y(q, O)/cos„. The slight discrepancy
between our calculated Imp(q, co)/co and MMP near Q is
due to the fact that the calculated cps~ from Eq. (18) is
about 10 meV, to be compared with the value found by
MMP, 8 meV.

Figure 16 shows the dynamic structure factor

I (q)[l+F'(q)]
~sF q (18) -0.6—

A comparison of Eq. (14) with Eq. (2) shows that in the
vicinity of the commensurate antiferromagnetic wave
vector (m /a, rr/a ), where F'(q) ——1, Imp(q, co) is of the
MMP form, Eq. (2).

In choosing a J(q), or what is equivalent, F'(q), which
yields an expression close to the phenomenological ex-
pression used by MMP, we were guided by the two limit-
ing values,

F'(q =0)= —0.535,

)cr
O

LL

-07—

-0.8—

-09—

—l.o
(o,o) ( Q, o) (——)

7T 7T

Q 'Q (o,o)

F'(q=Q) = —0.965, (19b)

which are required to yield the long-wavelength suscepti-
bility, go=2. 62 states/eV, and the commensurate suscep-

FIG. 13. The value of F'(q) at T=90 K, calculated using the
J(q) parameters cited in the text, and the calculated value of
x(q o)
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FIG. 16. The calculated d namic
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ynamic structure factor
[

—exp( —co/k~T)] )Imp(q, co) at T=90 K as
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, as one for exam le b

Moriya, Takahashi, and Ued
'

h
' p

e a, in t eir self-consistent re-
normalization approach.

The rather oog od agreement between y(q, n) and the
phenomenological expression y ( co)

'

i o ers ope that a self-consistent expression for "(
p

'
good quantitative account of NMR exper-

iments can be obtained, in the sense that the se a t e spectral den-

, an ence o f q, co), will, for a suitable choice
o q, yield that same response function
Qf E . (13). Iq. ). ndeed, since y(q, co) is close to the input
+MMp q co ), it may turn out that with 1 f Jva ues o J q) not

far from those considered above, one can
consistenc . We

a ove, one can achieve self-
ncy. e are currently examining th'is possi i ity.

VI. CONCLUSION

In this pa er we reP P eport on strong-coupling calcula-
tions, which demonstrate that 'f

uctuations can ield i
a anti erromagnetic spin

y' d high-temperature superconductivi-
ty in a 2D system in which the

o t e quasiparticle and spin excitations are chosen
from experiments on YBa Cu 0 . Th
an transport properties of this system have been calcu-
lated and found to agree with some ke

n . e resul r or t e propo-n . e results provide strong support for h

YB
e p anar quasiparticle excitations in

a2Cu 0 form a
li uid w

3 7
~ ~

a nearly antiferromagnet' Fic ermi
'q ', which exhibits a transition at -90 K

gin.

'ng 2 2 pairing state of purely electronic ori-

As in a normal Fermi liquid, the s in and cP g P P

describes YBa C
e near y antiferromagnetic Fermi liquid h' h, w ic

mined b
BazCu307 are not separated bothe; o are deter-

y quasiparticle interactions. The
p p

' of the system come about be f hro erties
e anomalous

u ecause o the cou-

ec rum is s arply peaked at the commensurat
wave vector (m. /a m.

ura e

terize the
/, m. /a ). The sharp features th t ha c arac-

e wea -couplintunneling density of states th k-
gap, the first-order quasipart' 1 if-

' ~

ic e se -energy, and the
quasiparticle response are smooth d t The ou . e wave func-
tion renormalization const t Z ' f
tween 0.4 and 0.6 as one o

an is ound to vto vary be-
an . as one goes around the Fermi surface.

espite the fact that for a wi
and ener i

or a wide range of temperatures
an energies, the imaginary part of th lf-
as cu or as T, rather than the co T

e se -energy varies

from ordinary Fermi li uids
e co or variation familiar

'qui s, the nearly antiferrornagnet-
ic ermi liquid is a Fermi liquid; were it not for the su-
perconducting transition at low enou h

1 fid Xn m ~p, co, T)-m in(co) or T ln(T) (depending
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on whether one takes the T~O or co~0 limit) charac-
teristic of normal 2D Fermi liquids, while explicit calcu-
lation shows that Luttinger's theorem is obeyed.

While our numerical calculations provide the necessary
"proof of concept" for spin-fluctuation superconductivity
and lead to an appealing description of the normal-state
properties of YBa2Cu307, a number of challenging
theoretical problems remain, of which we mention three
here: (i) Can an effective spin coupling J(q), be found
that yields a self-consistent description of the normal
state which agrees with experiment for YBa2Cu307? (ii)
Can one extend this approach to the entire YBaCuO fam-
ily, where, as a result of lower oxygen content (and re-
duced hole doping) the spin susceptibility becomes tem-
perature dependent, and T, is lowered'? (iii) Can the
dependence of coupling on hole concentration be derived
microscopically?

In conclusion, we wish to emphasize that the correct-
ness of the nearly antiferromagnetic Fermi-liquid ap-
proach we have described will not be determined theoret-
ically, but by experiment. If the pairing state of
YBa2Cu307 is proved to be other than the d 2 2 state
unambiguously predicted by our theory, then our theory,
no matter how appealing it might be, and no matter how
well it describes the normal state, does not apply to

YBa2Cu307. A direct test of the pairing state is thus
highly desirable, as are the theoretical calculations of the
superconducting properties, which will make possible a
quantitative comparison of theory with experiment.
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