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Electron localization with and without barrier formation
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The possibility of polaron formation within a model of local electron-phonon interactions is con-
sidered. It is shown that, unlike the continuous limit, the solution to the Schrddinger equation on a
two-dimensional lattice in the adiabatic approximation provides evidence for the presence of an energy
barrier that separates a small-size polaron and delocalized electronic state. The polaron stability and
metastability regions are determined. The possibility of polaron formation in high-T, superconductors is

discussed.

I. INTRODUCTION

The discovery of high-T, superconductivity stimulated
a large number of theoretical works on this problem. An-
tiferromagnetic order observed in CuO, planes at small
carrier concentration indicates that the magnetic subsys-
tem is of much importance to the formation of the super-
conducting state.! Studies of structural phase transitions
as well as a number of other experiments? provide evi-
dence for the important role of the electron-phonon in-
teraction. The reports concerning the direct observation
of polarons in a dielectric phase upon carrier doping® and
small but nonzero isotope effect* lead to the same con-
clusion. Also it is worth mentioning the recent series of
works.>® It has been shown in Ref. 6 that the magnetic
polaron in CuQ, planes has a lower energy of the ground
state than any other known magnetic phases. Note that
the formation of the magnetic polaron must be accom-
panied by the usual polaronic effect.” One of the indica-
tions of the possibility that polarons are formed in high-
T, superconductors at low carrier concentration is the
observation of midinfrared peaks in the experiments on
the measurement of optical conductivity o(w).” ° These
measurements show two well-pronounced peaks in o(w)
at ®=0.08 eV and ©=0.8 eV.” A qualitative interpreta-
tion of these features has been given in Ref. 10 in terms of
small-size polaron theory.

The possibility of a small-size polaron (SSP) formation
the two-dimensional (2D) case within the model of a local
strain interaction between an electron and dispersionless
phonons (the Holstein model'!) is analyzed in this paper.
It is shown that, unlike the continuous limit!?~'* taking
no account of a finite width of the nonrenormalized elec-
tronic band, the formation of a self-trapped state in a 2D
lattice is accompanied by the formation of an energy bar-
rier. The effect of the electronic band spectrum on the
formation of a self-trapped state is analyzed. Nonadia-
batic corrections to the energy of the SSP are calculated
in the 2D case.

II. VACUUM EQUATIONS

In order to treat the problem of SSP formation, we
consider the following model: An electron interacts lo-
cally with a single dispersionless phonon mode 1, (the
Holstein model'!). The Lagrangian of such a system
reads:
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where ¥;(1;) is the fermionic field describing creation (an-
nihilation) of an electron at a site i, ¢; is the scalar field
corresponding to a local displacement at the site
i—¢;=1/V2(b] +b;), with b](b;) being local phonon
creation (annihilation) operator, ¢ is the amplitude for
transferring, the electron from the site i to the nearest-
neighbor site j, and g is the dimensionless electron-
phonon coupling.

Since the Lagrangian (1) is quadratic in fermionic
fields, we can explicitly perform the functional integra-
tion over these fields. Formally the problem is reduced to
calculation of the fermionic determinant in an arbitrary
field ¢. As a result of this procedure, we obtain effective
bosonic action, and its minimum in ¢ is a phonon vacu-
um. Note that the effective action is not merely a classic
quantity, since it involves quantum fluctuations arising
from the fermionic determinant. Below we apply the
method widely used in the theory of nonzero least action.
The main idea of this approximation is to substitute
Schrédinger wave functions for the fermionic fields 1;, 1°
exp(iS.q)=3 C({n,})exp [iT [Ecl(¢)+2 n,e, ] J , ()

r

n,

where C({n,}) is a combinatorial factor, E4(¢#) is the
classical energy of the field ¢;, n, is the occupation num-
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ber, and ¢, is the eigenvalue of the Schrodinger equation
in the field ¢.

Applying variational procedure in ¢ to (2) one can ob-
tain the following set of equations:

6:=—V2g 3 19{"’n, , 3)

t 3 UL+ V28000 b =¢, 97 . “
J

Equations (3) and (4) give the polaron energy and are
written within the approximation 3¢ /d7=0 (adiabatic
approximation'>7!4). Note that the similar equations
have been derived in Ref. 6 for a magnetic polaron in an
antiferromagnetic background. Equation (4) contains no
spatial derivatives, since the ‘“bare” phonon subsystem is
supposed to be dispersionless.

Assuming that a single fermionic mode is excited, the
solution to Egs. (3) and (4) can be written as a power
series in 7 /g 2Q0(2g2Qq >>1):1*

zt? t
—> ()= — ,
8(g20,)? Yo 2820,

Po(0)=1— (5)

go~ —2g20, . ©6)

The total energy of the system is a sum of the electron-
ic energy €, in the strain field ¢ and the energy of the field
¢ itself:
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Note that the correction to E,,, is of the order of ¢t? and
consistent with the result obtained in Ref. 16 through the
summation of a certain set of diagrams with noncrossing
phonon lines. Equations (3) and (4) have the extended
solution

Y, = Vlﬁ exp[i(l, +1,)m],
which reaches the minimum at the point k=(7,7) of the
Brillouin zone and corresponds to the absence of the
self-trapped state.

In the 1D case as g 2Q,>>t, the solution to Egs. (3) and
(4) is given by expressions (5) and (6) with z=2. In the
opposite limiting case g2, <<t, one can obtain the fol-
lowing exact solution:!’

172

172
letar] ch‘ll
e=—2t—

g 200

le+2¢]
2

P(x)=

ta

(8)

The results of numerical analysis of Egs. (3) and (4) in the
1D case are represented in Fig. 1. As can be seen from
Fig. 1, the self-trapped state exists in all g region of in-
terest. If g?Q,<¢, the radius of this self-trapped state is
restricted to a lattice constant. Further decrease of
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FIG. 1. The total energy of the system as a function of
electron-phonon coupling g for different dimensionalities (all
quantities are expressed in dimensionless units).

electron-phonon coupling g leads to the increase in the
radius. Thus in the 1D case a smooth transition from a
SSP with the energy E, ~g? to a large-size polaron with
the energy E, ~ g* takes place and self-localization occurs
without barrier formation. This result is consistent with
a scaling approach.!>!3 Since in the 1D case the kinetic
energy is proportional to R ~2 and a gain in the strain en-
ergy R !, the total energy always has a minimum corre-
sponding to the self-trapped state, and the delocalized
state is always unstable.

Since one encounters considerable difficulties in solving
Egs. (3) and (4) in 2D and 3D cases analytically, we
present the results of numerical analysis of these equa-
tions (see Fig. 1). In the 2D case the results differs from
the 1D case essentially. There are three critical values
of electron-phonon coupling—g2 =2.85t/Q,, g5/p
=3.5t/Q, and g% =27t /Q,. The first one sets limits to
the region where only the delocalized state exists
(g <g¢). The SSP is metastable within the range
8.158<8.- As g>g., the SSP becomes the ground
state of the system. The total energy of the self-trapped
state as a function of its radius at various values of the
coupling constant is represented in Fig. 2. This depen-
dence has been calculated within the variational ap-
proach by using the simple trial function v
(i) < exp(—i*/R?), where i*=i}+i}. It is clear from Fig.
2 that as g, <g <g., the SSP is the metastable state
separated from the delocalized ground state by an energy
barrier. In addition, there exists the third critical value
g% =27t /Q, When coupling g exceeds this value, the
delocalized state becomes absolutely unstable. Within
the range g, <g <g.3, the delocalized state is metastable.
Thus the formation of the self-trapped state in the 2D
case is accompanied by the formation of an energy bar-
rier that separates the self-trapped and delocalized states.
Note that the formation of the barrier is connected with a
finite width of the nonrenormalized electronic band. Nu-
merical study of Egs. (3) and (4) in an effective-mass ap-
proximation indicates that self-localization occurs
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FIG. 2. The total energy of the 2D system as a function of
the effective dimensionless radius of the state at various values
of coupling g.

without the barrier formation. This is closely linked to
the fact that on a decrease in a polaron size, the kinetic
energy and the strain energy are proportional to 1/R?,
where R is the radius of the self-trapped state. However,
as pointed out in,'* the criterion of the polaron formation
corresponds to existence of the self-trapped state with the
radius comparable with interatomic space, and therefore
in this case a finite bandwidth (lattice discreteness) plays
a major role. This fact means that the kinetic-energy
scaling is broken.

In order to clear up the role of the band spectrum in
the formation of the self-trapped state, we introduced the
additional hopping from a site to the next-nearest neigh-
bor sites with the amplitude ¢,. Hence the modified band
spectrum has the following form:

e(k)=2t[cos(k,)+cos(k,)]+4t cos(k, )cos(k,) .

Then the dependence of the strain energy on the radius R
remains unchanged. Yet the kinetic energy as a function
of the radius R depends on the ratio ¢, /t. This depen-
dence results in the obvious fact that the barrier which
separates the self-trapped and delocalized states must be
a function of ¢t and ;. As can be seen from Fig. 3, upon
increasing the ratio ¢, /¢ from O up to 0.5, the energy bar-
rier continuously decreases and finally disappears. This
behavior is accounted for by the fact that the presence of
the additional term proportional to ¢, leads to a competi-
tion between the terms proportional to k2 and k* in the
expansion of the kinetic energy near the band bottom. At
t,=0.5¢, the quadratic terms in the dispersion relation
cancel, so that the kinetic energy is proportional to k*.
Therefore, as R — o the behavior of the system is deter-
mined by a gain in the strain energy (AE <R ~2). As a
consequence, the total energy as a function of R has a
minimum corresponding to the formation of the polaron-
ic state. This state is always stable. Numerical study of
Egs. (3) and (4) confirms this result (see Fig. 3).

Note that in the 3D case, lattice discreteness has no
qualitative effect on the results obtained in the effective-

FIG. 3. The total energy of the 2D system as a function of
electron-phonon coupling g at various values of the ratio /1,
where ¢ and ¢, are the hopping amplitudes to the nearest- and
next-nearest lattice sites, respectively.

mass approximation. As R — oo, the behavior of the to-
tal energy E (R) in the 3D case is determined by the ki-
netic energy proportional to R ~2. Thus, the self-trapped
state is metastable when g ; <g <g., and separated by an
energy barrier from the delocalized state. As g, <g, the
delocalized state becomes metastable. But in contrast to
the 2D case the delocalized state is always stable
[E(R)/BR <0as R — x].

Note that the results obtained in an adiabatic approxi-
mation and represented in Fig. 1 are in good quantitative
agreement with Monte Carlo calculations.!® The regions
of electron-phonon coupling, where the self-trapped state
is metastable can be clearly seen on the plots given in that

paper.

III. NONADIABATIC CORRECTIONS

As pointed out above, Egs. (3) and (4) and their solu-
tions (5) and (6) correspond to an adiabatic approxima-
tion in polaron theory. The calculation of fluctuation
effects in the vicinity of a classic phonon vacuum results
in the nonadiabatic corrections to the energy of the
ground state of a polaron. As a result, phonon frequen-
cies renormalized due to electron-phonon interaction will
be present in the new Lagrangian. In order to calculate
the renormalized frequencies, we shall expand the
effective action S ¢(¢) in fluctuations:

Sp=¢(i,7)— (i) . 9)

Keeping in mind that the minimum of the action S 4(¢)
is realized on the phonon vacuum ¢, obtained in Sec. 1I,
we calculate the corrections to S.4 corresponding to the
one-loop approximation:

5S =ig20}'S 8¢5, — Q)G
ij
[2X9)

where
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is the Green’s function describing the motion of an elec-
tron in the vacuum field ¢y(i), ¥y(i) is the wave function
corresponding to the ground-state energy g,
g, =2t3%_,cos(k;a), and (i) is the wave function of
the electron corresponding to the energy €,. The direct
calculation of (10) gives the expression for S to lowest
order in ¢ /g%Q:

Qgzt?
88 =————186o(Q)]?, (11)
8(g20,)? 840 0]

where the subscript O refers to the center of the polaron.
The additional contribution from (10) gives rise to the oc-
currence of a renormalized phonon mode (see Refs. 14
and 22):

Q=0,|1— (12)

1/2
zt?
)2 ’

2(g%Q,

Also note that expression (12) differs from the similar one
obtained in Ref. 22, which is likely to be valid as Q,>>¢
(antiadiabatic approximation).

The evaluation of the functional integral over &¢;
yields the nonadiabatic correction to the ground-state en-
ergy of the SSP:

E 270 (13)
= -7 as >> .
8(8g290)2 14 gCZ

In the region of coupling g where the delocalized solu-
tion is the most favorable [¢y(i)=0], the corresponding
nonadiabatic correction is well known:!°

g20%

AE=——-.
w12

IV. CONCLUSIONS

It has been shown in this paper that the formation of a
polaron in the 2D case within the model of local
electron-phonon interaction is accompanied by the for-
mation of an energy barrier attributed to a finite electron-
ic bandwidth (lattice discreteness). Yet lattice discrete-
ness has no influence on a qualitative picture of the self-
trapped state formation in 1D and 3D cases.

The criterion of SSP formation has been formulated in
the paper. In 2D and 3D cases it has the following form
under notations of:??

2
Q
g 0>k

A:D ¢ >

(15)
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where D is the bandwidth (D =zt), A, =~ 1.

Note that within the model involved, discontinuous
phase transition to the delocalized state occurs at A=A,.
The criterion (15) differs from the similar one with
A¥~1/V'2z obtained in Refs. 16 and 19. The present
criterion determines a small magnitude of corrections to
polaronic shift. The corrections are connected with the
hopping matrix element taken into consideration. How-
ever, the phase transition to the delocalized state occurs
before these corrections become large. The self-trapped
state, i.e., the bound state of an electron in a background
of static ionic displacements, is formed at A=A}, but it is
metastable.

The 1D case is essentially different from 2D and 3D
ones. The self-trapped state is the ground state of the
system at any value of electron-phonon coupling, at
A>A¥, the radius of this state being bounded by the value
of a lattice constant (SSP). The radius grows rapidly as
A<A}Y [r_a/A as A<<1, see Eqgs. (8)]. Thus, unlike 2D
and 3D cases, in the 1D case phase transition from the
polaron state to the delocalized electronic state is absent.

It is worthwhile to note that in the 2D case the cri-
terion (15) can be essentially different. If the quadratic
terms in the dispersion relation expanded in the vicinity
of the band bottom are absent, the self-trapped state is
formed at any value of coupling. In this case the radius
of the state increases as A > 1.

Fluctuations around the stationary solutions of Egs. (3)
and (4) give rise to nonadiabatic corrections to the pola-
ronic energy (13). It is worthwhile to point out that a re-
gion of strong fluctuations exists near A, due to the fact
that the effective action has two minima with almost
equal energy values. This conclusion puts a limit to the
application of the expression (13), i.e., it is valid as A >>1.

The criterion (15) of SSP formation is rather rigorous.
The estimate of g2 at D ~0.5—-1 eV and the most favor-
able value of 13~0.1 eV is equal to 5—10. This value re-
sults in the picture with the strong renormalization of
effective mass of polaron and means that it is practically
localized. However, the correlation effects play a major
role in high-T, superconductors and lead to the effective
narrowing of electronic bandwidth!® and even to the for-
mation of magnetic polarons.>®?! These effects may
change the criterion (15) essentially. In addition, the for-
mation of the magnetic polarons must result in the
enhancement of the usual polaronic effect.>?® In this
connection it is worth mentioning that an isotope effect
has been observed in all high-T, superconductors.* This
fact indicates that the phonon subsystems is of great im-
portance to the transition to superconducting state.

It is also interesting to note that medium-size polarons
are supposed to be formed in high-T, superconduc-
tors.2%2> In that case an increase of the radius of such a
polaron results in the decrease in its effective mass.
Within the Holstein model considered in this paper, the
formation of a medium-size polaron is possible if the
quadratic terms in the expansion of the dispersion rela-
tion near the band bottom are absent. Note that in high-
T, superconductors the band spectrum renormalized by
spin fluctuations is highly anisotropic.?%?%2” Therefore,
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the coefficients at the quadratic term are small, so that
the criterion (15) is essentially reduced. Upon decreasing
the coupling g, this fact results in the decrease in the
carrier’s effective mass and formation of a medium-size
polaron.
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