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We calculated the momentum distribution and one-particle spectral function for the ground state
of two holes in a finite-cluster t-J model in the framework of the string picture. Previous numerical
results for these quantities could be reproduced at least qualitatively. Our interpretation of these
data, however, supports a rigid-band approximation starting from the single-hole case rather than
a nearest-neighbor hopping band and large Fermi surface. We argue that in order to interpret the
finite-cluster data properly, it is crucial to take into account the well-established fact that the ground
state of two holes in a finite cluster is a bound state with nontrivial symmetry.

I. INTRODUCTION

The problem of strongly interacting fermions on a
lattice has received considerable attention during the
last years. This is because one can hope to gain some
insight into the nature of the carriers responsible for
high-temperature superconductivity. The simplest model
Hamiltonian, which incorporates the key features of the
strong correlation limit, is the t-J Hamiltonian:

H = t ) (c, —c~ +H.c.) + J) S, Ss.
(i,j),o. (i,j)

Here, the S, are the electronic spin operators and the sum
over (i, j) stands for a summation over all pairs of near-
est neighbors on a two-dimensional square lattice. The
operators c~ are expressed in terms of ordinary fermion

operators as c, (1 —n, )
The problem of a single hole moving through a "back-

ground" of spins has been discussed in considerable
detail. There is general agreement that the dispersion
relation is a next-nearest-neighbor hopping band of width
2j, with four degenerate minima at (+2, +2). This is
well understood in terms of the "string" picture, where
one assumes that; a hole hopping in an antiferromagnet-
ically ordered spin background leaves behind a trace of
misaligned spins, which must be repaired by the trans-
verse part of the Heisenberg exchange in order to enable
coherent motion. Then, the simplest way to extend this
theory to a Rnite concentration of holes is to assume that
the "quasiparticles" may be treated as weakly interact-
ing fermions and to fill up the calculated band ("rigid-
band approximation"). One obtains four "hole pockets"
around the four degenerate minima of the one-hole dis-
persion relation. The fraction of the Brillouin zone cov-
ered by these pockets equals the hole concentration 6 and
is therefore not consistent with the Luttinger theorem. It
seems plausible that similar considerations should apply
to the motion of holes in any translationally invariant
"spin background" which has suKciently strong short-
range antiferromagnetic correlations ("spin liquid" ).

A completely different kind of Fermi surface is pre-
dicted by 1/N expansion techniquess 7 starting from the
slave-boson representation of the t-J model. In this case
one obtains a large Fermi surface which is essentially
identical to the Fermi surface obtained from the ordinary
nearest-neighbor hopping dispersion and which covers a
fraction of 2 of the total Brillouin zone in agreement
with the Luttinger theorem. The width of the nearest-
neighbor hopping band, however, is found to scale with
the exchange constant J. Thus, one has two completely
difFerent scenarios for the band structure and Fermi sur-
face of the t Jmodel in-the spin liquid phase: (a) The
string picture, together with the rigid-band approxima-
tion which predicts a next-nearest-neighbor hopping dis-
persion and small hole pockets with a total volume of
b and (b) the slave-boson mean-field theory would pre-
dict a nearest-neighbor-hopping dispersion and a large
Fermi surface with a fractional occupancy of the Bril-
louin zone of 2 . Numerical evaluation of the momen-
tum distributions (nk ) and the one-particle spectral
function in the ground state of two holes in clusters with
18 and 20 sites (this corresponds to a hole concentration
of 10—12%) seems to support scenario (b). It is the pur-
pose of the present paper to show that the exact diago-
nalization data are in fact consistent with the rigid-band
picture. The key point is that the ground state of two
holes in a finite cluster is a bound state with dz2 y2 sym-
metry. This has a number of consequences, both for the
momentum distribution and the spectral function, which
apparently have not been realized before.

The plan of the paper is as follows: in Sec. II a vari-
ational ansatz for the ground state of a single hole will
be sketched. In Sec. III the momentum distribution will
be discussed and evaluated using a generalization of the
single-hole wave function to obtain an approximate two-
hole ground state. In Sec. IV we present a reinterpre-
tation of the spectral function found in Ref. 9, which
is based solely on previous e~act diagonalization results
and elementary symmetry considerations and which im-
plies that the nearest-neighbor hopping band postulated
in Ref. 9 does not exist. In Sec. V it is shown that in this
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II. VARIATIONAL WAVE FUNCTION
FOR A SINGLE HOLE

It is well known that when a hole is created at a site j
in a Neel-ordered spin state and allowed to hop around,
it will feel some "effective potential" due to the formation
of "strjngs". ' Thjs potentjel tends to localjze the hole
around the site j. Let us denote by

l j, v, P) a state gen-
erated by v-fold forward hopping starting from the Neel
state with the electron at site j removed. The symbol 7
denotes a set of numbers which parametrize the geome-
try of the path the hole has taken. Also we introduce the
following decomposition of the t-J Hamiltonian

J:Ho+ H])

Hp = t ) (CI ~C& s—+ C& Csi, u) + Hising~

(i,j),cr

a =J) (s s* —"'"')
(',j)

a, = —) (s+s;+ s;s+).J' (.,3)

(2)

Then one can make the following ansatz for the ground
state of Ho in the subspace of string states with starting
point j:

IC'~) =).~- ).Ij ~&)

reinterpreted form the data are consistent with the string
picture. In the conclusions we summarize the arguments
in favor of our interpretation.

At this point, the following remark might be appropri-
ate: there is by now overwhelming experimental evidence
that high-temperature superconductors have a Fermi sur-
face which is essentially identical to the one predicted
by local-density-approximation calculations. Therefore it
may seem not very wise to even think of hole pockets in
the t-J model. The question is, however, if the t-J model
should really reproduce this Fermi surface. After all, if
the t-J model is considered as a simplified version of the
large-U Hubbard model, even its exact solution would
correspond only to a first-order perturbation treatment
of the kinetic term. On the other hand, the Fermi surface
found in a noninteracting system is generically a property
of precisely the kinetic term and it is unclear if it survives
the perturbation treatment of this term. Namely it is the
kinetic term that is subject to drastic restrictions in the
canonical transformation formalism that leads to the t-J
model. Therefore it might be worth seriously considering
the possibility that the t-J model may by construction
be unable to reproduce the large Fermi surface predicted
by the Luttinger theorem and therefore we believe that
the following calculations are not so unreasonable.

Assuming that the number of frustrated bonds increases
linearly with the length of the string and introducing a
new function P by P„= n /(z —1)"~~ (z = 4 is the
number of nearest neighbors) one can show that the P's
can be determined from the discrete version of a one-
dimensional Schrodinger equation with a linearly ascend-
ing potential:

Z
tPI ——EaPp

z —1

t(P--. +P. )=tE J(.-+ ,') jP.-,

where E~ is the "binding energy" of the localized state
lC, ) and t = gz —S t.

The t-J Hamiltonian allows for a number of processes
by which the hole can escape from the string potential.
The most important one is the truncation of the string by
the transverse part of the Heisenberg exchange. Another
less important process is hopping along a spiral path as
first discussed by Brinkman and Rice. With each of
these processes one can associate a potential barrier the
hole has to penetrate. Namely in each of these processes
the number of frustrated bonds first increases and then
decreases again. Thus one can see an effective tight-
binding Hamiltonian emerge: while moving through the
lattice the hole mostly finds itself in localized states like
lC~) where it is bound to one particular site by the string
potential and mostly by means of the string truncation
process it can tunnel from one of these localized states to
the next one. Obviously these tunneling processes con-
nect only the sites of one sublattice, so the most natural
ansatz for the wave function of the hole with momentum
k is

l&(k)) = —) e '"
IC )

2

Here N denotes the number of sites in the system and
the summation over j runs over the sites of one sublattice
only. The dispersion relation E(k) for coherent motion
can be obtained by forming the expectation value of the
full t JHamiltonian -with the wave function (5). One
finds that the energy is given by

E(k) = EN;,i+ 2J+ Egg + e(k),

where e(k) is obtained from an "effective" tight-binding
Hamiltonian with nonvanishing hopping matrix elements
between second- and third-nearest neighbors. The ad-
ditional shift by J is due to the four broken bonds,
which cost an energy of 2 each. It turns out that this
simple formalism can reproduce the results of finite-size
diagonalizations ' and other numerical methods ' '

with remarkable accuracy. Such a description might be
viewed as the t-J version of the spin-bag concept pro-
posed by Schrieffer et at.

The inner sum in this expression runs over all different
paths of length v and the coeKcients a, are to be de-
termined from the requirement of minimum total energy.

III. MOMENTUM DISTRIBUTION

First we discuss the momentum distribution, i.e. , the
ground-state expectation value of the operator
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(7)

The momentum-distribution function found by numeri-
cal calculations for the t-J model ~ usually shows
the following features (see for example Fig. 1 of Ref. 9):
it is larger inside of the Fermi surface evaluated from the
unconstrained hopping term H& —— t p—

~, l (e, c~ +
H.c.) for the half-filled band than outside. For more than
one hole in the cluster no indication of "hole pockets" has
ever been seen. At first sight, this finding clearly rules out
the rigid band picture, but one can deduce from very sim-
ple arguments that precisely such a kind of momentum
distribution is to be expected also within this scenario.

First, in any system, where the kinetic energy is
given by a nearest-neighbor hopping term, the expec-
tation value of the kinetic energy can be expressed in
terms of the spin-summed momentum distribution nk =

(nk, ) as follows:

(H~) = t ) —p(k) ni„
kgBZ

(8)

where p(k) = 2[cos(k ) + cos(k„)]. Using p(k) = —p(k+
Q), where Q = (tr, tr) is the antiferromagnetic wave vec-
tor, the sum over momenta can be restricted to the mag-
netic Brillouin zone, i.e. ,

(Hq) = t ) —p(k)(ni, —nk+g).
k6 2BZ

(9)

Taking into account, that p(k) is positive throughout the
magnetic Brillouin zone, one can conclude that in order
for the expectation value of the kinetic energy to be neg-
ative (as it has to be), the average of (ni, —ni, +g) over
the magnetic Brillouin zone must be positive; in other
words, ng must be larger inside the Fermi surface of the
half-filled, noninteracting band than outside. In addi-
tion p(k) has its maximum value in the center of the
Brillouin zone, so that it is most advantageous to make
the difference nk ~o 0~

—nk
~ ~

the largest one. Thus
any reasonable theory of the t-J model must produce
the general shape of the momentum distribution found
in exact diagonalizations (it is interesting to note that
this is independent of possible antiferromagnetic order in
the system: the momentum distribution cannot resemble
the broken symmetry because otherwise the expectation
value of the kinetic energy would vanish, which must be
wrong). Observing such an overall shape of (nk ) on a
finite (and rather coarse) mesh of k points does there-
fore not allow conclusions on the existence or location of
a Fermi surface defined as a line of discontinuity in the
momentum distribution. The most obvious counterex-
ample is the mean-field spin-density-wave ground state
of the Hubbard model. It shows the same overall shape
of the momentum distribution [see Eq. (9) and Fig. 6 in
Ref. 20] but no Fermi surface.

I et us now discuss the string wave function (5) in the
light of these considerations. Prom exact diagonalization
studies for a single hole it is known that the spin-2

spin-bag-type ground state described by this wave func-
tion can compete successfully with the Nagaoka-type fer-
romagnetic state (which gives the optimum value of the
kinetic energy) for ratios of t/ J up to 20. Thus despite
the small coherent bandwidth 2J this wave function
must give an appreciable expectation value of the kinetic
energy and hence must have an appreciable variation of
nk over the Brillouin zone. By inspection of the expres-
sion for the energy, Eq. (6), one can see that the only
term which can account for this large kinetic energy is
F~, the "binding energy" of the state IC'~). Thus the
variation in (nk ) must be due to the rapid motion of
the hole "inside of" the spin bag and straightforward
evaluation shows that this is indeed the case. Namely, in
a preceding paper~~ it has been shown that the momen-
tum distribution function for a single-hole state like (5)
with 8, = —

2 can be written as

(1
(@(kp) lni, t l@(kp)) =

I

———
I

I, 2 N)
~2 ( 2&——'

I gati, k. + ~i,i.+g ——
I2 4

'' '' Ny

(10)

The various terms in this expression have different physi-
cal interpretations: the first term corresponds to the total
number of electrons and is a constant for different values
of t/J. The second term is the contribution from the
"center of gravity motion" of the quasiparticle. It is pro-
portional to o.o, which is quite reasonable because this is
the weight of the "string of length zero, " i.e. , the bare
hole in the wave function (5) as can be seen from (3).
is also the simplest estimate for the pole strength of the
quasiparticle peak, so the discontinuity in the momen-
tum distribution at the "Fermi surface" (which encloses
only kp) is equal to the strength of the quasiparticle pole,
as it has to be.

The third term has two notable features: it does not
resemble the broken symmetry of the wave function (5)
and it is independent of the "quasiparticle momentum"
ko. This term originates from the rapid motion of the
hole inside of the function IC~) or, stated differently, the
incoherent hole motion inside the spin bag. Namely the
momentum distribution operator (7) has matrix elements
between any string of length p and other string states of
length v 6 1. Then in Eq. (7) j and j' must be nearest
neighbors, and therefore the k dependence is given by
the nearest-neighbor tight-binding harmonic p(k). Upon
insertion into (8) this term must give the expectation
value of the kinetic energy, which can be expressed as

(H, ) = tO, Z~

This can be verified using the expressions given in Ref.
21. The term which stems from the "center of gravity
motion" gives no contribution in (8). This is reason-
able, because the delocalization of the hole is mainly due
to the "string truncation process, " which involves the
Heisenberg exchange and should therefore contribute to
the expectation value of this term. From (10) one gets
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the clear prediction that the expectation value of the ki-
netic energy be independent of the total momentum kp.
This is readily confirmed by exact diagonalizations: by
inspection of Tables II and III of Ref. 22 one can see that
'the expectation value of the kinetic energy for the lowest
single-hole state is to good approximation independent
of the total momentum.

From (10) one would expect that for a single hole there
are still hole pockets at the ground-state momentum, al-
though the magnitude of the discontinuity is substan-
tially smaller than 1 (numerical evaluation shows that
for example at t/J = 3 one has 22i 0.12). It should
be noted that the momentum distribution function for a
single hole in a finite clusterzs is in agreement with (10).

On the other hand, for two holes in the cluster one
cannot expect to see such pockets any more. This is
due to the well-established fact 2 that two holes in
a finite-cluster t Jmod-el always form a bound (or at
least strongly interacting) state. A bound state of two
"quasiparticles" with zero momentum and spin should be
written

I@p) = ) .&(k)&k, t~—k, J, I0)

as well as its physical meaning was discussed in detail in
Ref. 27.

Throughout the remainder of the calculations it will be
assumed that the two removed electrons have opposite
spins. Thus m, m' will always denote spins on the up
sublattice whereas n, n' will always denote sites on the
down sublattiee. Since one is dealing with more than
one hole one also has to consider the statistics of the
particles. Therefore in all that follows it will be assumed
that the "initial state" for the construction of 14 „) is
always the state c~ 1 c„~14~;,i).

The coefficients o.„ in Eq. (14) should be determined
variationally in such a way that the state 14~ „) is the
ground state of Ho in the subspace of irreducible states
with starting points m, n. Then, the state IC'~ „) might
be called a state with two spin bags sitting at the sites m
and n. In the following we will be exclusively concerned
with the case that m and n are nearest neighbors. Using
analogous approximations as in the derivation of the Eqs.
(4) and introducing P„„=n~ /(gz —1)" one can
show " that this latter function has to obey the following
set of difFerence equations:

where 6(k) = 6(—k). Evaluating the momentum distri-
bution function of the quasiparticles in this wave function
one finds

t(P„+i, —+Pi, +i+Pal i,.+Pi,-i)-
J

&a —
2

Kz —2) (V + v) + 1 —4,p~, pj 14, .

Therefore (nk ) will in general be spread out over the
whole Brillouin zone and there will be no discontinuity.
Strictly speaking the very concept of a Fermi surface is
meaningless in a bound state.

To be more quantitative we need to have a reason-
ably accurate approximation for the two-hole ground-
state wave function. To that end, let us first define "two-
string states". 2~ We start with a state where two holes
have been created independently in the Neel state at the
sites m, n and consider the subspaee of states obtained
by repeated application of the hopping term. Generaliz-
ing Eq. (3) one can write down the following ansatz for
the ground state of Hp within this subspace:

E& is the ground-state energy of Ho in the subspace of
irreducible states with starting points m, n and it is un-
derstood that P's with a negative index are to be set
equal to zero. Equation (15) can be solved numerically.

Next, from exact diagonalization studies, 2 it is
known, that the ground state of two holes in 16- and 18-
site clusters is a bound state of d~~ z~-type symmetry.
Thus, the simplest ansatz for a tightly bound two-hole
state with the proper symmetry is

14 „)= ) n„) 1mn pv'PP')
piv pip

(14)

Here Im, n, y„v, P, P') denotes a state obtained by creat-
ing two holes in the Neel state at sites m, n and letting
the hole at m hop p times and the other one v times.
The symbols 'P, P' denote two sets of numbers which
parametrize the geometries of the paths the two holes
have taken. An important point is that in the ansatz Eq.
(14) the summation over the different paths (as described
by the symbols 'P, P') will be'restricted to "irreducible
states". The definition of an irreducible state is as fol-
lows: a state Im, n, p, v, 'P, 'P') which has been created
by hopping is called an "irreducible state with starting
points m and n' if it is not possible to generate the same
state with fewer hops starting from a state where the
holes have been created at other sites. This definition

(16)

where A. denotes the up sublattice and e~ „ is equal to 1
if m and n are nearest neighbors in the x direction, equal
to —1 if they are nearest neighbors in the y direction, and
zero in all other cases. It has been shown by Dagotto and
Schrieffer that a wave function of this type is a good
approximation for the two-hole ground state. Next, we
insert everything:
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I I ' 'Im)A)m )A $Q jg

(C'm', n' ~C ~ ~&j,cr ~C m, n)&m, n &m', n'.

There will be quite a number of difI'erent contributions
to this expression. First, one can always choose j = j .
This means that one is simply counting the number of
spin-o electrons and the result is

1 1
6(nk ) = ———.

2 N (18)

Next, let us consider what is the analog of the contribu-
tion which for a single hole described the motion of the
"center of gravity" of the spin bag. One process which
gives an analogous contribution is shown in Fig. 1. In this
process one has j = n', j' = n and consequently the phase
factor is e '~"* "&~. The process connects two "double
strings" of length 0, which each have the expansion co-
efficient np p = pp p. There is one minus sign from the
product of the e „and a second one from fermion anti-
commutation relations (it is a hole that is moved) Namely
the state in Fig. 1(a) reads cm tcn i~C»;,~). By acting
with ct &c„ t it is transformed into —c tc„ i~@N;,~),
i.e. , there is a minus sign due to Fermi statistics. All in
all, the pefactor is (—1)2Pp2 p. By analogous reasoning, for
the process shown in Fig. 2 one obtains a contribution
of —pp p e '"&. Summing over all symmetry-equivalent

t

processes one obtains

6(alp ) = Pp p [ cos(2k~) + cos(2k„)

2 2 ' — - 2
ppp «=pop+ ).pp .

v=1
(20)

To see the consequence of this contribution, let us con-

—4 cos(k ) cos(k„)]. (19)

Thereby the expression within the brackets is just the
square of the Fourier transform of the "real-space wave
function" 4(Rm —Hn) = e „.Finally, the same process
is possible if the hole sitting at site m in Figs. 1 and 2
has hopped an arbitrary number of hops away from this
site without crossing the site n'. This can be taken into
account by replacing

sider the value of the square bracket for some highly syrn-
metric k points. Obviously for k = (0, 0), (vr, n), (2, 2)
this contribution is —2 whereas, for k = (7r, 0) it is
+4. This explains the finding of Stephan and Horsch,
that in the 20-site cluster the value of (nk) is smaller at
k = (vr, 0) than at the ground-state momentum of a single
hole, which is (s, s ). This redistribution of the holes,
however, is due to their mutual interaction and is not
the consequence of the formation of a "large" Fermi sur-
face (it should be noted that such a strong redistribution
of the holes due to their interaction is by no means irn-
plausible, because the dispersion relation for a single hole
is almost degenerate on the surface of the magnetic Bril-
louin zone). This interpretation is confirmed by the work
of Poilblanc and Dagotto. Namely one way of interpret-
ing the contribution (19) is that in the bound-state wave
function ~4'g) those states have the largest weight, where
the two quasiparticles have momenta +(7r, 0) or +(0, 7r)
(this was also found previously in an analytic treatment
of the ground state of two holes in the t-J model, see Ref.
27). This in turn is consistent with the results of Poil-
blanc and Dagotto, who found that the matrix element
between the two-hole ground state and a state obtained
by creating a second hole in a single-hole state is sharply
peaked, when the initial (single-hole) momentum is (n, 0)
and the momentum of the added hole (—7r, 0). In the mo-
mentum distribution of the bare electrons, however, this
trend is strongly suppressed because of the small over-
lap. of the "spin bag" with the bare hole (as exemplified
by the small quasiparticle pole strengths 0.1), so that
"deep" pockets at (vr, 0) cannot be observed. Thus the
present interpretation reconciles in a simple way the ap-
parently contradicting results of Stephan and Horsch and
Poilblanc and Dagotto.

In addition to the contribution discussed previously,
there will again be a contribution from the hole motion
inside of the two spin bags which upon insertion into (8),
must give the expectation value of the kinetic energy.
These contributions are discussed in Appendix A. One
finds again a contribution

I' 0n

0 O

O Jl

0
o

Ir O ir

JL O Jk

(c) (c)

FIG. 1. A process that contributes to (nq, i). FIG. 2. A process that contributes to (ng, i).
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c
b(nk ) = —p(k), (21)

gN = N((nk='(0, 0),cr) (nk=(n, m'), rr)) (22)

should be independent of the cluster size N if the number
of holes is kept fixed (e.g. , two holes in a 20- or 18-site
cluster). Indeed, by using the values given in Table I of
Ref. 9 one finds regis

= 3.6736 and rlzo = 3.6868 (these
values are for J = 0.4). While the number of lattice
sites N changes by 10%, the quantity rIN changes by a
mere 0.3%%uo. Thus the change of (nk) under the variation
of the hole concentration is to very good approximation

where the constant c' can be extracted from Tables I—
IV. In Table V we now compare the numerical values for
the momentum distribution obtained by summing up the
different contributions from the string ansatz calculation
with the data obtained in Ref. 9. One can see that the
values are reasonably close, and especially the string pic-
ture is very capable of describing correctly the order of
magnitude of the variation in (nk ). Clearly the agree-
ment is not particularly good. One should remember,
however, that many approximations had to be made, es-
pecially concerning the two-hole ground-state wave func-
tion.

Since it seems impossible to distinguish between the
difFerent interpretations of the momentum distribution
on the basis of its overall shape, one can consider its
change under a change of hole doping or, equivalently,
under a change of the system size for a fixed number of
holes in the half-filled band. The string picture inter-
pretation and the "band interpretation" would predict a
quite different behavior of the momentum distribution:
If one assumes that the shape of the momentum distri-
bution is due to a band, which crosses the Fermi level,
a change of the size of the cluster for Axed number of
holes (which is equivalent to a change of the hole con-
centration) should lead to a change of (nk ) predomi-
nantly near the Fermi surface [see Fig. 3(a)]. On the
other hand, the string picture would predict that one
has an expression of the type (nk ) = const+ N f(k),
i.e. , under a change of N the k - dependent part of (nk )
should scale with N throughout the Brillouin zone [see
Fig. 3(b)]. One can conclude that the quantity

0 '

(0, 0)

0
(0, 0)

(b)
(m,n).

FIG. 3. Change of the momentum distribution function
under a change of the hole concentration as expected from a
band picture (a) and the string picture (b). The lower hole
concentration corresponds to the thick line.

consistent with the predictions of the string picture. It
should be noted that a more conclusive test would be
possible using data from the 16-site cluster. Namely both
the 16- and the 20-site cluster contain the point (a, 0)
so that one could also check the N independence of the
quantities

gN N((nk=(0, 0), ) (nk=(, 0), ))

QN N((nk=(n, vr), (r) (nk=(n, o),o))

which would be particularly significant because (vr, 0) is
in the immediate neighborhood of the "large" Fermi sur-
face.

To summarize this section it has been shown that the
shape of the momentum distribution function as found
in exact diagonalizations for the t Jmodel is -a general
property of any system where the kinetic energy is given
by a nearest-neighbor hopping term. Thus on the ba-
sis of this overall shape of the momentum distribution
one cannot conclude that there is a corresponding Fermi

TABLE I. Contribution from different classes of processes depicted in Fig. 15 (the corresponding
harmonic factors are listed in Table II).

„(4)

—,
' (.', &',.+ .', E =.C,.) [», (k) —~,.(k)]

-'( -1) E„.„,n. , -n. ,.+. ~(k)

N $ P& p ~ p Pk, yP++1, P f( )
( -~)

1 1

g E„=o.=o &~, +i&-,~+»(k)(z-i)
1 1
N 4 Eg=o, ~=o ~P ~+&~P+»~ +( )

(z—i) ~
1 1 o„oP~, +2Pi+3, W(k)(z-1)

Figs. 15(a) and 15(b)

Fig. 15(c)

Fig. 15(d)

Fig. 15(e)

Fig. 15(f)

Fig. 15(g)
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TABLE II. Harmonic factors used in di8'erent expressions.

p(k)

pi, i(k)
pg, o(k)

2 [cos(k ) + cos(k„)]
2 [cos(k + k„) + cos(k —k„)]
2[cos(2k ) + cos(2k„)]

E(k) pJ

surface. This is all the more true because the ground
state of two holes in a finite-cluster t Jm-odel is a bound
state, where one cannot expect to obtain any kind of
Fermi edge discontinuity at all. The numerical values of
(ni, ~) over the whole Brillouin zone can be reproduced
with reasonable accuracy using the string picture, which
is also consistent with the numerical results of Poilblanc
and Dagotto. The doping dependence of (nk ), as ex-
emplified in the remarkable constancy of the quantity rliv,
is in very good agreement with the string picture.

IV. SPECTRAL FUNCTION

I et us now turn to the discussion of the one-particle
spectral function. First, let us consider the part cor-
responding to the creation of an additional hole in the
ground state of the 18-site cluster t Jmodel -with two
holes, I@o ). It can be written as(~h)

~~(k ~) = ) I(@.""'Ick,llano'"') I'~(~-(E""l—Eo'"')),

(24)

where Eo is the ground-state energy of two holes and{ah,) ~

the sum over v runs over all eigenstates of three holes in
the cluster.

As compared to the definition used in Ref. 9 we have
omitted a constant shift in the argument of the b func-
tion but since we will be concerned predominantly with
the dispersion of the peaks this is not of relevance. The
rigid-band approximation would be well justified if the
dispersion of the peaks with low excitation energy would
be similar to that found for a single hole. Indeed Stephan
and Horseh found, that "remnants" of the dispersion
found for one single hole created in the Heisenberg anti-
ferromagnet can be seen in the dispersion of the peak
with the smallest excitation energy, i.e. , the smallest

IE —Eo I. In Fig. 4, the dispersion of the lowest(3h) (2h)

I

(o 0)

FIG. 4. Comparison of the k dependence of the lowest
excitation energy for the transition from two holes to three
holes (squares) and from no holes to one hole (triangles) in
an 18-site cluster. The ratio t/J = 2.5. The lines are guides
to the eye.

energy peak obtained in the transition from two holes to
three holes (extracted from Fig. 3(a) of Ref. 9) is com-
pared with the respective dispersion obtained in the tran-
sition from no holes to one hole ( extracted from Fig. 12
of Ref. 15, the dispersion for the transition from two to
three holes is turned upside down as compared to Fig.
3 of Ref. 9). From this figure one can see that the two
dispersions are essentially identical. Out of this band
Stephan and Horsch have taken three peaks [the ones at
( s, s ), (0, 0), and ( s, 0)] and interpreted them as part of
a nearest-neighbor hopping band. Their main argument
in doing so was the pole strength, which is particularly
large for these peaks. It should be noted, however, that
even for a single hole the pole strength along the (next-
nearest-neighbor) quasiparticle band has a rather pro-
nounced k dependence, which can be explained very well
by the string picture. 2i Especially, the pole strength is
signi6cantly smaller outside the magnetic Brillouin zone
(i.e. , the Fermi surface of the free half-filled band) than
inside (see, e.g. , Fig. 6 in Ref. 21). Thus the k depen-
dence of the pole strength found by Stephan and Horsch
is not a new feature of the doped ease, but is qualitatively
the same as for the single hole.

Let us now turn to the spectral function describing the
creation of an electron. This can be written as

&.(k ~) = ) .I(@""'Ick,
I
I~o'"') I'~(~-(E""'-Eo'"'))

TABLE III. Contribution from different classes of processes depicted in Fig. 16.

n(7)

n(s)

„(10)

(12)

—iv, , Q„oP„,iPo, i ~iv2, o(k)

N ig —1) E~=o,m=1

N (x—il Ep=2

N' (z —1)i z —1 2,0 + z —1 p,=2»0 $1,1

N (z 1)z z 1 20+ z 1 p—2 g, o y, —, 1,1

Pf ( 1)2 1 2,0 + 1 &—0 P,2

Fig. 16(a)

Fig. 16(b)

Fig. 16(c)

Fig. 16(d)

Fig. 16(e)

Fig. 16(f)
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TABLE IV. Contribution from di8'erent classes of processes depicted in I'ig. 17.

n(13) 2 1 1 z —2 ~
N 2

—2)* —1 Z O=O PI, 2P1,»+1 —1 Z O=O, =2 Pl P 12+1—)
p2, o(k) + 2pi, i (k)

(g 1)2 g 1 g i ~ 1 ~ 2 P)P 1~P —1 Qlq1

N (z-1)& z —] 2,P 1,1 + z —1 & P 2,P, @+1,1 +1,1

N (z—l)~ z —1 1,1 + z —1 p, —1 @~1 Y1,1

Fig. 17(a)

Fig. 17(b)

Fig. 17(c)

Fig. 17(d)

where the sum over p, runs over all eigenstates with one
hole. Here the numerical datas at first sight show a clear
contradiction with what one may expect from the rigid-
band approximation: one would guess that a sizable spec-
tral intensity can be seen only near the the ground-state
momentum of one hole, ko = ( s, 0). The spectra shown
in Ref. 9, however, show sizable intensity for quite a num-
ber of k points. On the other hand, one again has to bear
in mind the fact that the ground state of two holes in a
finite cluster is a bound state. To see the consequences,
let us again consider the simple wave function (12). By
annihilating one "quasiparticle" in this state one obtains

&k, TI@o) = &(k)o'' k, il0) (26)

This has two consequences: First, there is a nonvanishing
pole strength whenever the "bound-state wave function"
A(k) is different from zero for the respective k point.
In other words, one may not expect to find a line in k
space where the pole strength Zh, discontinuously drops
to zero. Second, the spectral weight Zg will be propor-
tional to IA(k) I, which is determined entirely by the in-
ternal structure of the bound state and which may very
well have a sizable influence on its k dependence. In fact,
as has been mentioned in the discussion of the momen-
tum distribution function, the interaction of the holes
may be expected to lead to an appreciable redistribution
of the holes in k space. In addition, as will be shown be-
low, the special symmetry of the two-hole ground-state
wave function and the resulting selection rules completely
dominate the k dependence of the pole strength in the
spectral function A, (k, ~).

I(~.""'(k)Ic-~, i. I&a ) I' (2S)

For J = 0.4t, the peak with the lowest excitation energy
IE„—Eo I

in the inverse photoemission spectrum in(ih, ) (2h, )

Ref. 9 is situated at k = ( s, 0), the ground-state mo-
mentum of a single hole in the 18-site cluster t-J model
for this value of t/J Thus it . seems reasonable to as-
sume that the state responsible for this peak is indeed
the single-hole ground state. Then, in Fig. 5 the dis-
persion of the lowest excitation energy for the transition
from two holes to one hole (extracted from Fig. 3(a) of
Ref. 9) and the transition from no holes to one hole (ex-
tracted from Fig. 12 of Ref. 15) are compared under the
assumption, that the peaks at ( s, 0) in both spectral
functions originate from the same final state, i.e. , the
ground state of the cluster with one hole. One can see
that at ( s, 0) as well as at (vr, s ) there appear to be ob-
servable transitions from the two-hole ground state into
the "quasiparticle band. " [Thereby it is unclear why for
momentum (n, s) the peak obtained in the transition

To be more specific, let us first note that by creating
a hole in the ground state I@o ) of the Heisenberg an-(oh, )

tiferromagnet and by annihilating a hole in the two-hole

ground state I@Ii ) one is probing the same manifold of
final states I@( )(k)) (both I@Ii )) and I@o( )) are spin
singlets and have zero momentum). The only difference
is in the pole strengths, which are given by

I(+""'(k)Ic.', t I+' ') I' (»)
and

TABLE V. Momentum distribution for the 4 x 4 and 18-site cluster in the two-hole ground
state. The table shows the exact diagonalization data of Stephan and Horsch (Ref. 9) (SH) and
the results of the string calculation (string).

(0, 0)

(n, 0)

(n, z)

ni, , ~ (SH)

0.54681
0.54016
0.51224
0.47270
0.37804
0.35589
0.36247

ni, , (string)
I

0.53671
0.53870
0.50475
0.43703
0.42832
0.36779
0.23100

(o, o)

(n, m.)

nk (SH)

0.55160
0.55111
0.50406
0.35993
0.36012
0.34751

ni, , ~ (string)

0.54078
0.54396
0.49069
0.37411
0.40577
0.20110
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I

2T
3

FIG. 5. Comparison of the k dependence of the lowest
excitation energy for the transition from two holes to one
hole (squares) and from no holes to one hole (triangles) in an
18-site cluster. The ratio t/J = 2.5. The lines are guides to
the eye.

from two holes to three holes is lower in energy than
the one obtained in the transition from no holes to one
hole. ] On the other hand, along (0, 0)-(vr, 7r) there appear
to be no transitions to the quasiparticle band. Rather
the peaks obtained by starting from the two-hole ground
state are an energy of at least J above this band. This is
readily traced back to a symmetry-related selection rule:
For any k point along the (1, 1) direction the operation
T which consists of reflection by a plane along (1, 1)
and perpendicular to the basal plane belongs to the little
group of that k point. Now there is overwhelming nu-
merical evidence ' ' ' that the ground state of two
holes, ~@o ), has d~2 y2 symmetry in other words: it(~h, )

is odd under T~. On the other hand, it seems obvious
that the ground state of the Heisenberg antiferromagnet,

), has the full symmetry of the lattice. In other(oh)

words, it is even under T~. Thus, by inspection of the
expressions for the matrix elements (27) and (28) one can
deduce that any state ~@ (k)), which can be observed by
creating a hole with momentum in (1, 1) direction in the
ground state of the Heisenberg antiferromagnet (HAF),
cannot be observed by creating an electron in the two-
hole ground state and vice versa. This explains why the
poles in the spectral function A, (k, u) along the (1,1)
direction are much higher than the ones in the spectral
function for the creation of a hole at half filling.

More evidence for this interpretation is provided by
the work of Hasegawa and Poilblanc. These authors
have evaluated the lowest-energy states for all possible
momenta and for all irreducible representations of the
corresponding little groups in 16- and 18-site clusters of
the t-J model. In Fig. 6 the energy dispersions of the
lowest one-hole states with total spin 8 =

z for represen-
tations, which are even (Ai representation) and odd [this
is the A2 representation for all points along (1, 1) except
for (0, 0) and (vr, vr), for which it i.s the Bi representa-
tion] under T~, are compared to the data from Ref. 9.
Thereby the relative location of the energies obtained by
Hasegawa and Poilblanc for the 16- and 18-site clusters
was fixed by identifying the energies of the Ai states at
momentum (0, 0). The relative location of the energies
between the data of Stephan and Horsch, and Hasegawa
and Poilblanc was done by identifying the ground-state

FIG. 6. Dispersion of the lowest excitation energies as ob-
tained in Ref. 9 in the transition from two holes to one hole
(squares) and in Ref. 15 for the transition from no holes to
one hole (triangles) for k = (A:, A:). These are compared to the
energies of states transforming according to the Aq represen-
tation in the 18-site cluster (crosses) and the 16-site cluster
(circles) as well as states transforming according to the A2 or
Bi representation in the 18-site cluster (diamonds) and the
16-site cluster (stars) as obtained by Hasegawa and Poiiblanc
(Ref. 22). The full line corresponds to the Fermi energy in-
troduced in Ref. 9.

energies. In the data of Hasegawa and Poilblanc one can
roughly identify two "bands, " one of them consisting of
crosses and circles (these are the states belonging to the
trivial representation Ai) and the other one consisting
of diamonds and stars (these are states belonging to the
representations A2 and Bi, which are odd under T~).
The stars at (0, 0) and (vr, 7r) do not fit very well into this
band, but it should be noted that the 4 x 4 cluster from
which they are obtained has many additional degenera-
cies which are absent in the 18-site cluster. In addition
arguments will be presented below that the higher-lying
A2 states are more susceptible to finite-size effects. Obvi-
ously, the states observed by Stephan and Horsch in the
inverse photoemission spectrum (squares) are all lying
in the "A2 band, " and they are indeed remarkably close
to the states found by Hasegawa and Poilblanc in the
18-site cluster (diamonds) (this is all the more remark-
able because the spectrum in Ref. 9 has been evaluated
for t/J = 2.5 whereas the calculation of Hasegawa and
Poilblanc has been performed for t/J = 4; when mea-
sured in units of J, however, the dispersion relation for
the individual bands seems to have little dependence on
the ratio t/J). This shows that the above symmetry
arguments indeed determine the inverse photoemission
spectrum. However, one can also see something else if
one takes into account the additional information pro-
vided by the data of Hasegawa and Poilblanc from the
16-site cluster (circles and stars): one can clearly see that
there is not a single state having the correct symmetry
to be observed in inverse photoemission starting from
the two-hole ground state, which is closer than 2J to
the "Fermi level" introduced in Ref. 9 (shown as the full
line in Fig. 6). Thus an interpretation of the spectra in
terms of a band that approaches and even crosses this
Fermi level seems highly questionable. Using the results
of Hasegawa and Poilblanc shown in Fig. 6 and the selec-
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tion rule explained above, one can predict that the lowest
state which can be reached with a nonvanishing matrix
element by creating an electron with momentum (2, 2)
in the ground state of two holes in the 4 x 4 cluster [the
star at (~, ~)] would lie almost an energy of 2J above
the large Fermi surface whereas it should be immediately
above it if the interpretation in terms of a nearest neigh-
bor hopping band were correct. This provides quite a
strong argument against the large Fermi surface, because
a quasiparticle band should be particularly well de6ned
in the neighborhood of the Fermi surface, whereas in in-
verse photoemission along the (1, 1) direction there will
be no observable state that is closer to the Fermi energy
than 2J, i.e., almost half of the width of the proposed
nearest-neighbor hopping band.

Let us now briefiy summarize what we believe is the
correct interpretation of the spectra shown in Fig. 3 of
Ref. 9 (see Fig. 7): in the w ( 0 part of the spectral
function one obtains again the quasiparticle band found
already in the transition from no holes to one hole. This
interpretation is suggested by the very good agreement
of the dispersion curves obtained in the transition from
no to one hole and from two to three holes (see Fig. 4),
which seems too good to be mere coincidence.

In the u ) 0 part of the spectral function at ( s, 0)
and at ( s, m) one has transitions into the familiar quasi-
particle band for one hole. This is suggested by the fact,
that the ground state of a single hole (which belongs to
this quasiparticle band) is known to be at ( s, 0) and
the peak with the lowest excitation energy in the inverse
photoemission spectrum is indeed at this momentum (for
t/J = 2.5). Along the (1, 1) direction a selection rule for-
bids transitions into the quasiparticle band and the low-
est states, that can be reached with a nonvanishing ma-
trix element belong to a higher-lying, symmetry-different
band. This interpretation is confirmed by comparison
with the data of Hasegawa and Poilblanc

While nothing can be said about what the inverse pho-
toemission spectrum would look like if one did not start
from a bound state with special symmetry, one can see
that in the spectral function for the creation of an addi-
tional hole there is again the same next-nearest-neighbor
hopping dispersion with a bandwidth of 2J which was

already observed in the creation of a single hole in the
ground state of the HAF. This is precisely what one
would expect from the rigid-band approximation, and
therefore it seems that this approximation is very well
justified until well into the range of dopings where su-
perconductivity occurs. Thus what remains to be done
is to explain the higher-lying Az band along the (1, 1)
direction as well as the k dependence of the matrix ele-
ments for transitions into this band in the framework of
the string picture. Here the following should be stressed:
this band has never been observed in any numerical study
of the one-hole spectral function in the t-J model. This,
however, is prevented by the above-mentioned selection
rule and therefore by no means excludes the existence of
such a band.

V. STRING CALCULATIONS

First, we consider the possible final states l4'„(k)) for
inverse photoemission when k is along the (1,1) direction.
From the above analysis one can conclude, that in order
to be observable, these states have to be odd under T~
or, stated differently, they should transform according to
the A2 representation of the little group of k points along
the (1, 1) direction. For the description of the T even
(or Ai) quasiparticle band we have chosen [see Eq. (5)] a
coherent superposition of localized states, which in turn
are linear combinations of individual string states. Thus
the quasiparticle has an internal structure and this inter-
nal structure will also contribute to the transformation
properties of the wave function. In order to obtain a wave
function belonging to the Az representation it is sufficient
to choose a coherent superposition of states lC~), which
are odd under T~, i.e. , which satisfy T lC~) = —lC~. )
(thereby it is assumed that the mirror plane goes through
the central site j). There are actually two different types
of states which have this property: a state with d~~

type symmetry and a state with p~ &-type symmetry.
These can be written as

(29)

(~, vr) (0, 0)
I tj

(0, vr) (z, ~)

FIG. 7. This figure summarizes our interpretation of the
spectral functions Ah(k, ur) (this is the negative frequency
part of the figure, i.e., squares) and A, (k, u) (positive fre-
quency part, triangles) as obtained in Ref. 9. The figure di-
rectly can be compared to Fig. 3(a) of that reference.

Thereby the extra factors Pi(P),$2(P) are determined
by the direction of the first step of the path P as indi-
cated in Fig. 8. This choice of the phase factors makes
sure that the states defined above have the correct trans-
formation properties. As in the case of the symmetric
quasiparticle, the coefBcients 6~", which are assumed to
depend only on the length of the path, are determined
from the requirement that these states are eigenstates of
Ho in the subspace of string states with starting point j.
Inserting them into the Schrodinger equation and intro-
ducing P„" = a " /(z —1)~ one finds that the P~» both
have to obey the same set of difference equations:
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a constant shift of the string potential by 1.5J. Conse-
quently one could expect that the solutions are quite sim-
ilar except for a shift in the index v: P P„ i. Hence
the expectation values of the kinetic energy, which can
be written as

(Hi) = —tz[o.pai + (z —l)o.i+2 + ],

(b)

FIG. 8. Dependence of the phase factors Pi('P) (a) and

p2( P) ('b) on the direction of the first hop along the path p.

—t(P.+i + P„,) + (i'+ —,)JP„=E~P„,

where it is understood that Pp = 0 and the superscript
p, will be omitted henceforth. These equations are the
analog of (4) for the symmetric quasiparticle, and E~ is
the binding energy of the localized state. The difference
E~ —E~ [where E~ is defined in (4)] then determines
essentially the separation in energy between the original
(Ai) quasiparticle band and the A2 band. This quantity
is shown in Fig. 9 as a function of t/J, and it is indeed
a constant of order 1.5J. This can be understood by
inspection of the two sets of equation systems, (4) and
(30). Since one has Pp = 0, the minimum length of the
string in the A2 wave function is 1, and therefore the
smallest value of the "string potential" is 1.5J (the first
step creates three frustrated bonds), whereas it is zero
for the symmetric state. It should be noted that Fig.
9 is essentially the explanation why the "bandwidth" in
the u1 & 0 part in Fig. 3 of Ref. 9 scales with J: this
bandwidth is mostly due to the separation between the
Ai states and the A2 states.

This observation also allows for another cross check
against exact diagonalizations: both the Schrodinger
equations for the symmetric and antisymmetric quasipar-
ticles have a linearly ascending potential with the same
slope. If one replaces, 'i —+ 1 in Eq. (4) and ignores the
fact that in this equation in the first step the string po-
tential increases by 1.5J rather than J, these equations
are actually identical, except for a shift in the index v and

(Hq)' = tz(z——1)[Gia2 + (z —l)6262 + ],

should be essentially identical for the lowest (Ai) states
and the A2 (or Bi) states along the (1, 1) direction and it
should be so independently of the momentum. By inspec-
tion of Tables II and III of the paper by Hasegawa and
Poilblanc one can see that the expectation value of the
kinetic energy indeed shows a significantly smaller vari-
ation both under a change of the momentum and under
a change of the irreducible representation than the total
energy. This is precisely what one would expect from the
string picture interpretation and we believe that this pro-
vides good evidence for our interpretation of these states.

Next, for a state with momentum k we make the ansatz

I @(k))= ) I@'"'(k))

~

i' {+)(k)) ) —2k R~ ~@{V))N 2

(32)

Ei,2(k) = ENeel + J + EB + 4hi + 2~2 + 2h2&

J
Iii =

( 1), ) ./3 /3 +2,
v=1

2t
Ii2 =

( I),P2Ps~

(33)

It should be noted that along the (1,1) direction this
ansatz is particularly suited because from group theory
one knows, that there can be only states which are either
odd or even under T~. The coefficients ci 2 are varia-
tional parameters and to set up the variational equations
one can proceed in a completely analogous fashion as in
Ref. 14 for the symmetric quasiparticles. Then it can
be shown (Appendix A) that to good approximation one
obtains two dispersionless bands with energies

1.5—

I I I I I I I I

and the respective eigenvectors are

(ci
(

= —[1 + cos(2k)],
2

~B +B
J

0.5—

1 2 3 4 5 6 7 8 9 10

t/J ~
FIG. 9. Energy difFerence (Eri —E~)/J as a function of

the ratio t/ J.

(34)

ic2i = —[1 ~ cos(2k)].
2

The dispersion relations for the Aq band and the A2
bands are shown in Fig. 10 and are compared to the
results of Hasegawa and Poilblanc. One can see that
particularly for the A2 bands there is not a very good
agreement. It should be noted, however, that the func-

tions ~C ." ) are much more delocalized than the function
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FIG. 10. Dispersion of Al band (full line) and the A2
bands (dashed lines) as obtained from the string ansatz along
the (1, 1) direction. The diamonds (circles) correspond to
the Al states of Hasegawa and Poilblanc for the 18 (16) site
cluster, the triangles (stars) to the A2 states. The ratio J/t =
0.25.

~CI&) (they have a node in the center), so they are cer-
tainly much more sensible to the finite size of the cluster.
Thus one can expect much stronger finite-size eKects for
these bands. On the other hand, the range of energies
where the A2 bands should be situated is predicted rea-
sonably well by the string ansatz.

Next, let us proceed to the k dependence of the pole
strength for transitions from the two-hole ground state

) into the A2 bands. To that end, we use again the
wave function (16) used already in the calculation of the
momentum distribution function. We then need to know
the matrix elements

m„(k) = (@")(k)~ck ~@~),

which can be written as

(35)

0 0

', 0',
I I

1(

1
IOI
I I
I
I I
I I

I

iI
jr

(c)

FIG. 11. Some processes that give rise to a nonvanishing
contribution to (C'~. ~ci 1~CI~,„).The state shown in (a), which
is a "double string" of length 0 is thereby transformed into
a string of length 1, shown in (b). The state shown in (c),
which is a "double string" of length 1 is transformed into a
string of length 1, shown in (b).

m (k) = 1 ) 'k (R,;-R, ) (C, ( ) [~t ]C, )P g 3 III,II j / 'l III, II
mqA, n, , t

(36)

? et us first consider the matrix element of the type
(CI ]c& &~CI~ „). There are various processes which give

(1) -t

rise to nonvanishing matrix elements of this type. Ex-
amples are shown in Fig. 11. From the state shown in
11(a) the one in 11(b) can be obtained by creation of
an electron. This is a string of length 1, which has ex-
pansion coefficient al. There is an additional minus sign
from fermion anticommutation relations so that one ob-
tains a contribution of —o,o 06q. In this process orie has
to identify j = l = m, so the phase factor is unity.

From the state shown in Fig. 11(c) the one in 11(d) is
obtained. This is a string of length 1 in the y direction,
and in the state ~CII )) it has the expansion coefficient
—nl. In this process one should identify j = m and
t = n so the phase factor associated with this contribu-
tion is e '" . There is again an extra minus sign due
to fermion anticommutation relations, so that the total
contribution to mj is o.o i6ie . Collecting all possible
processes involving strings of length t ( 4 one arrives
after some straightforward calculations at the following
expressions for the matrix elements:

1
ml(k) = (xl + x2[cos(k ) + cos(A;y)]),

N
xl = (2cr0,0crl + 8cro, 1cr2 + 20o0,2crs + 6crl, lcr3)l

x2 = (4cr0, 1&%1 + 6o,0,262 + 9a.l ln2), (37)
m2(k) = ixs[sin(k ) + sin(k„)],

x3 (4cI0,2&2 + 6&i,1cr2) ~

It should be noted that the general form of this expression
is determined essentially by the symmetry of the string
states and the geometry of the individual strings. Thus,
while the coefficients xg 2 3 might change slightly if longer
strings are taken into account, there will be no change in
the overall form. The overall form of ml (k) leads already
to a k dependence of the pole strength for transitions into
the Aq bands which is qualitatively the same as observed
by Stephan and Horsch:0 it is large near the corner of
the zone and small near the center. This behavior is
then still modulated by the eigenvectors (cl, c2). The re-
sulting pole strengths for transitions from the two-hole
ground state into the two A2 bands is shown in Fig. 12
as a function of the wave vector k. Obviously, the overall
trend in the exact diagonalizations comes out correctly:
the residuum is very small in the center of the Brillouin
zone, but large near the corner. It is hard to uniquely
assign the exact diagonalization points to the bands, but
it should be noted that the information from the finite
clusters is not sufficient, to do this: for some represen-
tations (such as the two-dimensional E representation)
Hasegawa and Poilblanc did not give the energy of the
state with total spin 8.= 2, At the highly symmetric
points (0, 0) and (vr, 7r), however, the A2 band must be
connected smoothly to states which transform according
to the Bl and E representations (this comes out in the
string calculations as can be verified by inspection of the
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0.1

27
3

FIG. 12. Pole strengths for the creation of an electron
with momentum (k, k) in the two-hole ground state as ob-
tained from the string ansatz along the (1,1) direction. The
dashed line corresponds to the lower A2 band, the dashed
dotted line to the higher one. The ratio J/t = 0.4.

eigenvectors) .
Another point is that in the exact diagonalizations the

pole strength at k = ( s, s ) is larger than at k = (vr, vr)

in contrast to the analytical result. It should be borne in
mind, however, that the analytical calculation certainly
is very rough because many strong approximations (espe-
cially concerning the ground-state wave function ~4o ))

(ah, }

had to be made. However, it seems fair to say that both
the range of energies where the A2 bands should lie as
well as the k dependence of the pole strength P(k) de-
scribing transitions from the two-hole ground state into
this band ean be predicted roughly correctly by the string
picture. From that point of view all the data in Ref. 9
are at least qualitatively in agreement with the string
picture.

VI. CONCLUSION

In the preceding sections it has been shown that the
exact diagonalization resultss for the momentum distri-
bution and one-particle spectral function in the two-hole
ground state of finite-cluster t-J models can be repro-
duced at least qualitatively by the string picture.

In Ref. 9 it was concluded that the single-hole case is
"a problem of only marginal relevance" for the moder-
ately doped case and that possible theories of the t-J
model have to reproduce a large Fermi surface and a
nearest-neighbor hopping band. In this interpretation,
the ground state of two holes is viewed as a representa-
tive for a Fermi sea of quasiparticles.

We find on the contrary, that the two-hole case can be
treated as the natural extension of the single-hole case
and that there is neither a large Fermi surface nor a
nearest-neighbor hopping band. In our interpretation,
the two-hole ground state is simply a bound state of two
spin bags and does not represent an infinite system at
finite doping.

We would like to summarize the arguments which we
believe to be in favor of our interpretation.

(a) It is easy to see that the shape of the momentum-
distribution function found in exact diagonalizations is a
general property of any system where the kinetic energy
is given by a nearest-neighbor hopping term. Thus on
the basis of this shape of (ni, ) found on a finite k mesh

one cannot conclude that there is a correspondingly large
Fermi surface and therefore one of the key arguments in
favor of the large Fermi surface is invalid.

(b) Our interpretation takes into account the fact that
the two-hole ground state is a bound state with nontriv-
ial symmetry, This is important, first because it excludes
any kind of discontinuity both in the momentum distribu-
tion and the quasiparticle pole strength, second because
it gives a contribution to (nk ), which is determined by
the "internal structure" of the bound state, and third be-
cause it enforces selection rules in the spectral function.

(c) Our interpretation reconciles the apparently con-
tradicting results of Stephan and Horsch and of Poil-
blanc and Dagotto in a simple way.

(d) The change in the momentum-distribution function
under a change of the hole concentration is to very good
accuracy consistent with our explanation in terms of the
string picture.

(e) Our interpretation of the low-lying peaks in the
spectral function for the creation of an electron is con-
firmed by the data of Hasegawa and Poilblanc. 2z In ad-
dition, by making use of these data one can predict that
in the 4 x 4 cluster the peak in the spectral function
for the creation of an electron at (2, 2) (which is par-
ticularly significant because it is very close to the "large
Fermi surface") must be an energy of 2J away from
the nearest-neighbor hopping band and the correspond-
ing "large Fermi surface" introduced in Ref. 9, making
this band a highly implausible interpretation.

(f) Our interpretation is consistent with the work of
Dagotto and Schrieffer. These authors have first con-
structed "quasiparticle operators, " which describe the
wave function for a single hole in a finite cluster very well.
In a second step they constructed a two-hole wave func-
tion with the correct d ~ „~ symmetry by replacing the
"bare" electron annihilation operators by the "quasipar-
ticle operators" optimized for a single hole. They found
that the trial wave function obtained in this way had a
large overlap ( 90%%uo for t/J = 2.5) with the exact two-
hole ground state. This not only justifies our ansatz (16)
for the two-hole ground-state wave function, but also pro-
vides evidence against the notion of some kind of "phase
transition" that occurs when going from the undoped
cluster to the cluster with two holes, which is suggested
at least implicitly in Ref. 9.

(g) It has been shown that all the results for the mo-
mentum distribution and the spectral function can be
explained at least qualitatively but often also quantita-
tively by the string picture.

Quite generally our interpretation explains and unifies in
a consistent way quite a number of exact diagonalization
results.
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APPENDIX A

The first problem in evaluating the momentum distri-
bution is the calculation of the norm of the wave function
~4g) [see (16)j. This can be done using the formalism
outlined in Ref. 27 and one finds that

(C,„ ic, c, , iO,„) (A2)

is different from zero. In order to do the bookkeep-
ing properly, we introduce the following graphical no-
tation: we represent the states included in cz ~4m „) by
putting circles on the sites m and n and a square on the
site j. The "track" of the holes is denoted by arrows.
Similarly, the states in c~' ~4m „.) are represented by
putting crosses onto the sites rn' and n' and a diamond
on j'. Then, each time the spin configurations and the
positions of the holes in the two graphs match, we ob-
tain a nonvanishing contribution. To assign a numerical
value one has to bear in mind that a configuration where
the first hole has hopped p times and the second hole v
times has a prefactor of n„„=P„„/(z —1)I"+ l~2. In
addition there may appear extra factors of (—1) which
are either due to Fermi statistics or the extra factors of

„. In order to assign the factors due to Fermi statis-
tics properly, one has to bear in mind the following de-
tail: by acting with the hopping term on the "initial
state" cm lc„ 1~@N;ei) one obtains among other states,

cm lcl, l cm, lcm, i IC'Neel) — cl, icn, i Sml@Neel). Thus, the
"double-string states" actually have additional prefactors
of (—1) whenever the length of the string is odd. These
extra factors have to be taken into account.

All in all we will obtain a representation of the spin-
summed momentum distribution ng in the following
form:

1 1 1n„= ———+ —) n&'l
2 N n

n=(ed~ed) =1 —2n, +2n„
where ni, n2 are defined in Ref. 27.

Next it is easy to see that there is a trivial contribution
to the momentum distribution, which can be obtained by
always taking j = j . This then means that one is simply
counting the number of spin-o. electrons, and the result
is of course 2

—~ for each spin and each k. In order
to obtain nontrivial contributions the main problem is in
finding all the combinations of sites such that the matrix
element
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In this appendix the calculation of the dispersion re-
lation from the ansatz (32) will be sketched. In order to
evaluate the expectation value of the Hamiltonian one
needs to know matrix elements such as (4" ~H~C,.

"
)

and overlap integrals such as (4" ~4,
" ). As has been

discussed in Sec. II, in a Neel-ordered spin background
there are two ways in which a hole can delocalize: by
the string-truncation process, where the transverse part
of the Heisenberg exchange repairs the defects created
by the hopping hole and by hopping along a spiral path
as first discussed by Brinkman and Rice. In order to
treat this second way of delocalization, one has to go
beyond the retraceable path approximation s and it has
been demonstrated in Ref. 14 that this can be achieved
via the definition of "irreducible paths. " Thereby a state
obtained by creating a hole at some site j and acting on
it repeatedly with the hopping term is called an "irre-
ducible path with starting point j" if it is not possible
to generate the same state with fewer hops starting from
a state where the hole was created at another site than
j. This definition is illustrated in Fig. 14. In the follow-
ing we assume that the summation over paths in (29) is
restricted to irreducible states with starting point j. It
will be assumed, however, that the use of the function P
obtained by solving (30) remains a good approximation.

Let us first evaluate the matrix elements of the spin Hip
term Hi = Q~, l 2 (S,+S. + S, S+). Consider the state

shown in Fig. 13(a). In the state ]C ) it has expansion
'

(1)

where n is defined in (Al). The simplest graphs (i.e. ,
the ones involving the shortest strings) corresponding to
each type of contribution are shown in Figs. 15, 16, and
17. The corresponding expressions are listed in Tables
I, III, and IV. It should be noted, that the contribution
n~ ~ has already been discussed in the main text. For
the sake of completeness it has been listed a second time
here.

0
1(

I
I I
I II

'. 0,'

FIG. 13. Some processes that contribute to the matrix
element (C&~.", l ~Hi ~C'."l) .
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(c,(i)IH lo(i))

(c,( )IH IC,I ))

2h1

—h1,

(c, - „-IHil@, ) = —2hi,

(C, ,-~„-IHilC,. ) = 2hi,

hi, (B1)

—(C',"s „-IHilC', ) = —2hi,

(C,.
'

s„.lHilO, ) == —hi,

J At

( 1),).P 0+2 ~

U=1

coefIicient 63. By acting with H1 it can be transformed
into the state in 13(b). This one has expansion coefficient
—ni inthe state I4, ) [the minus sign is due tothe phase
factor Pi (P) . Thus from this transition one gets a contri-
bution of —&61@3.By evaluating the contributions from
the transitions Figs. 10(c)—10(d) and Figs. 10(e)—10(f)
(thereby paying attention to the extra phase factors due
to the geometry of the paths) and summing everything up
one finds a total contribution of ——,61m~. This can also
be generalized to longer paths and the whole procedure
can also be repeated to obtain all matrix elements of the
spin-flip term. One obtains (j and j are second-nearest
neighbors and j and j" are third-nearest neighbors)

Jl

j0 ir

I
I
I r
I

j

I

lf
I

1 I

', 0,'

Jk
lP

JE

(b)

I I

Jl
I

I I
I r-------~
1
I I'0,'

L

. ,0
j

FIG. 14. Spiral path propagation mechanism for the hole.
Starting from the state in (a) the one in (b) is obtained by
three hops. One more hop leads to the one in (c), two more
hops give the one in (d). The state (c) can be obtained with
four hops from the one in (a) but with only two hops from
the one in (d). Therefore it is not an "irreducible path with
starting point j and is not included in IC'~). The state in (c)
can be obtained by three hops from both the state in (a) and
the one in (d) and is therefore included into both IC z) and
IC'~').

Next, let us turn to the matrix elements of the remain-
ing term, Ho. To that end one can introduce the pro-
jection operator Pz which projects onto the subspace of
irreducible paths with starting point j and its orthogonal
complement Q~ = 1 —P~. Then we have

C1 0 0

0

xxQ

xQ

(c'"'IH
I
C"') = (C""'IP Ho I@")+ (C'"'I Q H

I
C"') (c) 0 0

=z (CI"&IOI ))+(CI"'IH, ICI")) (B2) Qo0
where in the second equation we used the fact that in the
subspace of irreducible states with starting point i IC,. )
is an (approximate) eigenstate with eigenvalue EJ3. In
the second term only those hopping processes will con-
tribute, where the hole is hopping "out of the subspace"
of irreducible paths with starting point i. One example is
the transition from the state shown in Fig. 14(b) to the
one in 14(c). Prom this transition one will get a contribu-
tion which is equal to tastes (for p, = v = 1). Note that
there is an additional factor (—1) due to the phase factors
P&(P). Similarly one finds a contribution to the overlap
of —63. Generalizing these considerations one obtains
the following matrix elements of the Hamiltonian:

000 A.
A

cl 0 0 A

FIG. 15. Some processes that contribute to the momen-
tum distribution.
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(b)

(c) v
(c)

+ )(

FIG. 17. Some processes that contribute to the momen-
tum distribution.

(c, iq H, ic

h2

=hg,

=(cI'&. „~q,H, ~c('&) =-s„
= (C(".,„iq,e, iCI") = Z„(B3)

=-(c&". „~q,a, ~c,"') = —a„
= 2t62a3.

Inserting the ansatz (32) one finds that for a wave vector

FIG. 16. Some processes that contribute to the momen-
tum distribution.

(k, k) the Hamilton matrix reads

a(k) =4e,
i sin(2k), —cos(2k)

(B4)

The overlap matrix reads

cos(2k), i sin(2k) 'I—
i sin(2k), —cos(2k) ~

'

If one now assumes that the overlap integral n is small
(this is confirmed by numerical evaluation), one can ob-
tain the eigenvalues and eigenvectors simply by diago-
nalizing the matrix H. Then one obtains the expressions
given in the main text.
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