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1 JANUARY 1993-II

S. K. Rattan, P. Singh, and S. Prakash
Department of Physics, Panj ab University, Chandigarh 160 014, India

J. Singh
Department oIPhysics, Punjah Agricultural University, Ludhiana, Punj ah, India

(Received 6 July 1992)

The Kanzaki lattice-statics method is extended to investigate the strain field due to point defects in Al
and Cu metals. The dielectric screening method is used to generate host-host and host-impurity intera-
tomic potentials. The Ashcroft-model potential and modified Hartree dielectric function are used for
host and impurity atoms. Considering the interactions up to first nearest neighbors (1NN s), the force
constants, atomic displacements, and relaxation energy are calculated for substitutional alloys

Al(Mg, Zn, Sn) and Cu(Mg, Zn, Sn). The atomic displacements are calculated up to 20 NN's and these are
found to be both positive and negative. The maximum displacement is less than 10% of the interatomic
separation. The displacements and relaxation energy in general are smaller in Al alloys than in Cu al-

loys.

I. INTRODUCTION

The introduction of a point defect in a perfect crystal
changes the electrostatic interactions in the vicinity of
the point defect. This leads to a change in the atomic
force constants. As a result the crystal atoms move to
new equilibrium positions and a strain field around the
defect is produced. ' Precise knowledge of the strain
field is required to study physical properties such as the
self-energy of impurity, the electric-field gradient, the re-
sidual resistivity, and diffusion, etc.

Eshelby' has given a complete formulation of the strain
field in the continuum model but it overestimates the
strain field near the point defect. In this formulation ei-
ther all the nearest neighbors (NN's) are displaced away
from the impurity or towards the impurity causing ex-
pansion or contraction around the impurity, which may
not be the situation in a metallic crystal due to the pres-
ence of conduction electrons. " In the semidiscrete
models, ' ' the lattice is divided into two regions: In re-
gion (a) around the impurity up to a few NN's, the
discrete nature of the lattice is accounted for. Region (b)
consists of the rest of the crystal which is assumed to be
an elastic continuum. The accuracy of these models de-
pends upon the size of region (a).

In the lattice-statics methods, the discrete nature of
whole crystal is considered. Both the Kanzaki's method,
and the Green's-function method are based on the
Born —von Karman model of the crystal. In the Kanzaki
method one works with the dynamical equations in the
reciprocal space to get the strain field. These are then
Fourier inverted to get the strain field in r space. The
Kanzaki method is extended and used for evaluating the
strain field due to vacancy and multiple defects. ' ' In
the Green's-function method one works in r space to get
the strain field due to point defect. Although both the
Kanzaki and Green's-function methods are different in

approach, they are equivalent ' and give elastic continu-
um results in the asymptotic limit. The computer-
simulation calculations are performed to estimate
the impurity-induced strain field. However, the accuracy
depends upon the size of the crystal considered and the
choice of the interaction potential.

Most of the calculations, using the methods described
above, are done either for a vacancy or an interstitial in
simple metals. However, explicit 1attice-statics calcula-
tions for the substitutional impurity-induced strain field
in metals do not exist. This is due to the nonavailability
of a reliable host-impurity potential and hence the force
constants for the substitutional impurity. In this paper
we have generalized Kanzaki s method, which is applic-
able to different types of point defects in cubic metals.
The dielectric screening theory is used to calculate the
host-host and host-impurity potentials and hence the
strain field.

The plan of this paper is as follows: In Sec. II, the
necessary formalism for the impurity-induced strain field
is presented. The calculations and results for dilute sub-
stitutional alloys of Al and Cu are presented in Sec. III
and are discussed in Sec. IV.

II. THEORY

A. General equations of the Kanzaki method

For a perfect crystal with pair potential P(r), the total
interaction energy No is expressed as

@0=g (b(R„),

where R„are the equilibrium positions of the host atoms.
The introduction of an impurity produces atomic dis-
placements u(R„) around itself and thus new equilibrium
positions of atoms R„are
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R„=R„+u(R„). (2) @=@0—gF (q)Q (q)
a, q

Kanzaki assumed that u(R„) are produced by an ap-
propriate distribution of external forces (known as Kan-
zaki forces) in the crystal which depend upon the nature
of the impurity. If the impurity is assumed to be at the
origin, the total potential energy of the defect lattice in
the harmonic approximation is

&0= g P(R„)

where

and

+—g g P &(q)Q (q)Q&(q),
a, p q

F (q) = g F (R„)exp(iq. R„)

(10)

and P &(q)= g P &(n n') e—xp[ —iq (R„,—R„)] .
n —n'

(12)

&0 —4O= —g u (R„)F (R„)

+ —,
' g g u (R„)up(R„,)P p(n, n'),

n, n' a p
(3)

Here N is the number of lattice points. F (q) and P &(q)
are the Fourier transforms of F (R„)and P &(n n'), r—e-
spectively. The equilibrium condition in Fourier space
becomes

where

F (R„)=—
~+na u„=p

(4)

ae
BQ (q)

which in conjunction with Eq. (10) gives

(13)

p &(n, n')=
BQ„BQ„p „=p,„,=p g [NP &(

—q)Q&(q) —F&(q)5 P q q]=0 .

p
(14)

a and P (= 1,2,3) are the Cartesian components. F (R„)
is the o. component of the external force applied on the
atom at R„and P &(n, n') are the force constants which
obey the crystal symmetries. ' The equilibrium values
of u(R„) are obtained by minimizing 4 with respect to
u(R„), i.e.,

Equation (14) gives three simultaneous equations for
three components Q&(q) for each value of q. If P &(q)
and F&(q) are known, Eq. (14) can be solved for Q(q)
which, in turn, gives u(R„) from Eq. (8).

B. Dynamical matrix and Kanzaki forces

B4
Bu (R„)

Substituting Eq. (3) in Eq. (6), one finds

F (R„)=g P &(n, n')u&(R„) .
n', p

(7)

The dynamical matrix for a particular structure can be
obtained from Eq. (12). If P(r) is a central potential, the
components P &(n ) are given as

cl2

dr~a}pp r=RO R„

where

u(R„)= g Q(q) exp(iq R„),
q

(8)

where q is a wave vector and

Q( —q) =Q*(q»

as u(R„) is real. Using Eq. (8) in Eq. (3), one gets

Equation (7) shows that the knowledge of P &(n, n') and
F (R„)is required to evaluate u (R„).

To evaluate P &(n, n') in the Fourier space, u(R„) is
expressed in terms of normal coordinates Q(q) as

(16)

R„ is the n Cartesian component of R„.
In the metallic crystals the ions are screened by the

conduction electrons, as a result P(r) is long ranged and
oscillatory. In d-band metals, the screening is still larger
as compared to the simple metals due to partially local-
ized d electrons. ' Therefore, in metallic crystals the
major contribution to p &(q) and F (q) arises from the
first NN (1NN) interaction. Retaining only 1NN interac-
tions, P &(q) for a fcc crystal is obtained from Eqs. (12)
and (15). The explicit expressions are given as

(q) =2( A &+B& ) 2 —cos q
a a

cos q
—+ cos qP2 r2 (17)

and



47 STRAIN FIELD DUE TO POINT DEFECTS IN METALS 601

a . a
P &(q) =2( A, —B, ) sin q

— sin q&—

where aAPAy and a is lattice constant.
For the interactions up to a 1NN shell, F (q) for the fcc structure is

F (q)=i2&2Fi sin q
a a

cos q
—+ cos qP2 y2 (19)

where a&Ply and Fi is the force at the 1NN site defined in Eq. (4). Considering the interaction for the 2NN shell,
the components of F(q) are

F (q) =i(2F» )sin(q a ) . (2O)

Here F» is the force at the 2NN site.
With the knowledge of F (q) and P &(q), Eq. (14) is solved for Q (q) using a simple matrix algebra. For equal radial

forces on 12 1NN's of the impurity, Q, (q) is given as

8)
sinx( cosy+ cosz), 1— 8)

sinx siny, 1—
1

s1nz slnx

iQi = 8)
siny( cosz+ cosx ), 1+ [2—cosy( cosz+ cosx )], 1—

1

Bi
slny slnz (21)

BI
sinz( cosx+ cosy ), 1— BI

siny sinz, 1+ [2—cosz( cosx+ cosy )]

where

r

BI1+ [2—coax( cosy+ cosz )], 1—8,
sinx siny, 1—BI

sinz sinx

Bi1—
Ai

Bi
sinx siny, 1+ [2—cosy( cosz+ cosx )], 1—

1

siny sinz (22)

Bl,1— 8,
sinz sinx, 1— Bi

siny sinz, 1+ [2—cosz( cosx+ cosy )]

with x =aq, /2, y, =aq2/2, and z =aq3/2.
For equal radial forces on six 2NN s of the impurity, Q, (q) is

1

sin2x, 1—
Ai

8
sinx siny, 1—BI

sinz sinx

F» Bi
iQ, (q) = sin2y, 1+ [2—cosy( cosx + cosz ) ], 1—

1 I
siny sinz (23)

sin 2z, 1—Bi Bi
siny sinz, 1+ [2—cosz( cosx+ cosy )]

Ai

Q2 and Q3 can be obtained from Q, using the cubic symmetry. Equations (21) and (23) reduce to those of Kanzaki for
Bi =0.

C. Model estimation of FI and FII

For the calculation of the external force F(R„)we propose a general model for substitutional and interstitial impuri-
ties similar to that for a vacancy. Figure 1 (part A) shows the four configurations for achieving the strain field in the
presence of a substitutional impurity. The first three configurations are similar to that of a vacancy except that the
strain field produced in configuration (b) is the same as that produced by a substitutional impurity. In configuration (d)
the impurity atom is inserted at the vacant lattice site. Figure 1 (part B ) shows the configurations for an interstitial im-
purity.
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Let PHH(r) and P,H(r) be the host-host and impurity-host interaction potentials, respectively. One can write the
difference in the potential energies of various consecutive configurations. From Fig. l (part A), the energy difference of
configurations (d) and (a) is given as

4(d ) —4(a ) = [@(d) —4(c )]+[4(c ) 4—(b )]+[C&(b )
—4(a )]

= 2 [AH(IR. I) —PHH(IR. I)]+-, & [AHH(IR. —R. I)—&HH(IR'„—R'. I)] .
n, n'

Comparing Eqs. (3) and (24), the second term of both the
expressions is the same, therefore the first terms should
also be the same. Equating the first terms of Eqs. (3) and
(24), the force is given as

C (c)—@(a ) = g' p,H(IR„ I
)

n,.

n, n'

F.(R'. ) =—,y ay( IR. I ),
Bu (R„)

where

NIH( r ) PHH(r )

(25)

(26)
and the equilibrium condition gives

(27)

Equation (25) is general and is applicable to various point
defects. For an interstitial impurity

+ (R'„)=—,g'P, „(IR„I) .
au. (RO„) „

(28)

Here n, counts the NN's of the interstitial impurity
which is assumed at the origin.

To calculate F (R„) for substitutional impurity, bP(r)
is evaluated in the dielectric screening approach. In a
metal the interatomic interaction is written as the sum of
direct ion-ion interaction and indirect ion-electron-ion in-
teraction. For the host metal PHH(r) is written as'

(a) 2 2ZHe Qo slnqr
QHH(r) = + FHH(q) q'dq .

qr
(29)

ZH and Qo are the valence and atomic volume of the host
metal. FHH(q) is the energy wave-number characteristic
function of the host given by ~'

+HH(q) = g +HH(q, q') (30)

where

0,
, VH(q)[~H(q q') —~qq') VH(q')

8ne

{c)

FIG. 1. (Part A) The four configurations of the lattice for
substitutional impurity. (a) Perfect host lattice, (b) strained lat-
tice due to external force, (c) strained lattice with one atom re-
moved, and (d) an impurity atom placed at the vacant lattice
site. (Part 8) The three configurations of the lattice for an inter-
stitial impurity. The description for the (a) and (b)
configurations is the same as for part A. In (c), an impurity is
inserted at an interstitial site.

FiH(q) = g +iH(q, q'» (32)

where

Q
FiH(qq )= , 'Vi (q)[eH(q, q') —5qq'] VH(q') .

S~e
(33)

Here VH(q) and EH(q, q') are the Fourier transforms of
the bare electron-ion potential and dielectric matrix of
the host metal, respectively.

In the presence of a substitutional or an interstitial im-

purity, the overall conduction electron density of the host
metal remains practically the same. In other words, it is
assumed that the impurity is screened by conduction
electrons of the host metal. Therefore, in the presence of
the impurity the energy wave-number characteristic func-
tion F,H(q) becomes
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2Z~ZIe Qo slnqf'
4tH( ) =

~

+, tH(q)
rI qr

(34)

Substituting Eqs. (29) and (34) in Eq. (26), the change in
the interatomic potential is given as

EZZ~e Qo
2

sing p'

b,P(r) = + jb,F(q) q dq,
gI"

(35)

Here VI(q) is the Fourier transform of bare electron-ion
potential for the impurity. The impurity-host interaction
potential becomes Physical

parameters

k~
0

z
r,

B,

7.637
0.927

111.3
3
1.12
0.0287

—0.0029

6.834
0.720

79.8
1

0.81
0.0038

—0.0005

2
1.39

Zn

2
1.27

4
1.30

TABLE I. The physical parameters (in a.u. ) of Al, Cu, Mg,
Zn, and Sn elements.

where b.Z=(Zz —ZH) is the excess impurity valence.
The change in the energy wave-number characteristic
function bF(q) is written as

b, V"(q) = V (q) —V (q) . (39)
bF(q) =FiH(q) —FHH(q) for substitutional impurity

= —FHH(q) for vacancy

=F,H(q) for interstitial impurity . (36)

F(R„)= — b,P(r)
a
c}r lrl = IR„ I

The forces at the 1NN and 2NN sites are calculated
with the help of Eqs. (25) and (35). In the central field ap-
proximation both the displacements u(R„) and forces
F(R„) are parallel to R„. Therefore, one expands
AP(R„) in Eq. (25) in powers of u (R„)and gets

V (q ) = —[4~Ze /q ] cosqr, , (40)

where r, is the potential parameter and Z is the valence.
%'e use a Hartree dielectric function, modified by the
Hubbard exchange and correlation correction f„,(q)
given as

eH(q) =1+, , [1—f„,(i) ) ]
~A' k~r]

b, V"(q) is the excess bare electron-ion potential.
bF(q) can be evaluated if one knows VH(q), VI(q),

and eH(q). We use the Ashcroft-model potential for both
the host and impurity metal ions, its Fourier transform is

(37) 1 —q
2 4q

(41)

If the second term of Eq. (37) is ignored, it is called a first
approximation and may be justified only if the displace-
ments are too small as compared to interatomic dis-
tances. If both the terms in Eq. (37) are retained, it is
called a second approximation. In the first approxima-
tion the force constants of the host lattice are unchanged
by the presence of the impurity, while the second approx-
imation includes the impurity-induced change in the
force constants. The strain field u(R„) in both the first
and second approximations can be evaluated using the
Kanzaki method.

III. CALCULATIONS AND RESULTS

The formalism developed in Sec. II is used to evaluate
the strain field in metallic alloys of Al and Cu. The sub-
stitutional impurities Mg, Zn, and Sn are chosen because
the electric-field gradient and lattice dilation data in
both the Al and Cu matrices are available. In these
hosts the dielectric matrix to a fair extent is diagonal, i.e.,
E'HH(q, q')=EH(q)6qq'. The effect of the d bands in the
Cu host will be discussed later. Thus, FHH (q ) and
F,H(q), in Eqs. (30) and (32) become diagonal. Substitut-
ing FHH(q) and F,H(q) in Eq. (36), one gets
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FICs. 2. PHH(r) vs r for Al and Cu metals. The inset is the en-
larged view of ((Hn(r) for Cu at large r
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FIG. 3. b.P(r) vs r for AMg, AIZn, and AISn
FIG. 4. bP(r) vs r for CuMg, CuZn, and CuSn. The inset di-

agram is for b Plr) for large r.

where g = q /2kf, m is the electronic mass, and kf is Fer-
mi momentum.

The physical parameters of the host metals and impuri-
ties are given in Table I. Figure 2 shows PHH(r) versus r
for Al and Cu. The magnitude of PHH(r) for Al is larger
as compared to that for Cu. Further, PHH(r) for Al is
ong ranged as compared to that for Cu due to a larger

e ectron density. At large distances (t)HH(r ) exhibits
riedel oscillations for both the metals. The first

minimum in PHH(r) of the Al metal is at r=8.0 a.u. ,
which is slightly greater than the 2NN distance and is in
agreement with Duesbery and Taylor26 d S h 1.11r an ing al.

or u, PHH(r) has the first minimum at r=6. 85 a.u. ,
w ich is again close to the 2NN distance. The calculated
parameters 3, and B, are also tabulated in Table I. The
magnitude of these parameters for Al is about ten times
larger than those for Cu.

The change in potential b,P(r) as a function of r calcu-
ated with the help of Eqs. (35) and (38) for Al and Cu al-

loys is shown in Figs. 3 and 4, respectively. hP(r) exhib-
its oscillatory behavior at large distances from the impur-

ity. hP(r) for AlMg, AlZn, and AlSn are well separated
for r & 10 a.u. while for large distances bP(r) for AIMg
and AIZn almost coincide, perhaps due to their same
valence. Similar behavior is observed for Cu alloys.

b, (r)is r
P(r) is maximum for A/Sn and CuSn alloys. In 1ys. n genera,

Fi
r is proportional to hZ. The intercomparison fon o

igs. 3 and 4 shows that b,P(r) is larger in magnitude and
longer ranged for Al alloys than for Cu alloys for the
same impurity.

b,P(r) is further used to calculate F and F usin E .using q.
(37) for different impurities in Al and Cu. The values of
F, and F» in the second approximation are given in Table
II. FI, is smaller by an order of magnitude than F& and it
changes sign also for AlZn and AIMg. As expected from
Figs. 3 and 4, the Sn impurity produces the maximum
force in both hosts.

Using the values of Fi and Fii, A i and B, in Eqs. (21)
and (23), the Fourier transforms of the strain fields Qi,
Q 2 aild Q3 are calculated. These values of Q ( q ) are used
in Eq. (8) to obtain u(R„) in r space. The numerical cal-
culations are simplified by replacing the summation over

TABLE II. Thee forces F& and F» (a.u. ) and relaxation ener ies for
andCu. F andF '

h
& an» are in t e second approximation.

n energies for Mg, Zn, and Sn impurities in Al

F,(10 )

FII(10 )

E„(—e v)

—0.6215
0.3456
0.0001

Al
Zn

—3.0645
0.1228
0.0011

Sn

9.4955
0.8232
0.0093

Mg

5.8739
0.4791
0.0178

CU

Zn

5.2119
0.3865
0.0129

Sn

8.2579
0.8607
0.0339
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q by integration over the cube inscribing the first Bril-
louin zone (BZ) and using the fact that, for any function
F(q),

f F(q)dq= —f F(q)dq
1

BZ 4 cube
(42)

for fcc structures. The cube edge is (4n ja)." The in-
tegration is carried out by the Gaussian quadrature
method.

The atomic displacements calculated combining the F&

and F» force systems are tabulated in Tables III—V for
Mg, Zn, and Sn impurities in Al. We see from Table
III—V that all the Mg, Zn, and Sn impurities in Al dis-
place some of the NN's in the outward direction and oth-
ers in the inward direction, a trend similar to that for a
vacancy in Al." If one examines the displacement of the
1NN, one finds that Mg and Zn cause contraction of the
Al lattice around the impurity. On the other hand, the
Sn impurity causes expansion. Comparison of the atomic
displacements caused by a vacancy" with those due to a
substitutional impurity in Al shows that the strain field
produced by a vacancy is much larger than that of a sub-
stitutional impurity. Such a behavior is expected as the
vacancy produces a larger dilation around itself.

Tables VI —VIII give the atomic displacements due to
Mg, Zn, and Sn impurities in the Cu lattice. In the Cu
metal these impurities have positive AZ. All these im-
purities produce an expansion of the Cu lattice around
themselves. The intercomparison of the atomic displace-

NN's

(ni n2 n3 )

Displacement components
uy uz lul

110
200
211
220
310
222
321
400
411
330
420
332
422
431
510
521
440
433
530
442
600
611
532
620
541

—1.410
0.276

—0.415
—0.530

0.043
—0.264
—0.217

0.052
0.015

—0.242
—0.026
—0.170
—0.117
—0.126

0.025
—0.008
—0.130
—0.117
—0.040
—0.109

0.022
0.015

—0.072
0.007

—0.081

—1.410
0.0

—0.339
—0.530
—0.036
—0.264
—0.201

0.0
—0.017
—0.242
—0.053
—0.170
—0.091
—0.123
—0.006
—0.025
—0.130
—0.101
—0.050
—0.109

0.0
—0.004
—0.066
—0.010
—0.080

0.000
0.0

—0.339
0.0
0.0

—0.264
—0.117

0.0
—0.017

0.0
0.0

—0.128
—0.091
—0.048

0.0
—0.012

0.0
—0.101

0.0
—0.064

0.0
—0.004
—0.046

0.0
—0.023

1.994
0.276
0.634
0.750
0.056
0.458
0.318
0.052
0.029
0.343
0.059
0.272
0.173
0.183
0.026
0.028
0.184
0.185
0.064
0.167
0.022
0.016
0.108
0.012
0.116

TABLE IV. The displacement components (10 a.u. ) of the
NN's of the Zn impurity in Al.

TABLE III. The displacement components (10 ' a.u. ) of the
NN's of the Mg impurity in Al. The coordinates (n &, n2, n3) of
NN's are in units of (a/2) here and in the subsequent tables.

TABLE V. The displacement components (10 a.u. ) of the
NN's of the Sn impurity in Al.

NN's

(ni n2 n3) ux

Displacement components
uy uz lul

NN's

(n] n2 n3 ) ux

Displacement components
uy uz lul

110
200
211
220
310
222
321
400
411
330
420
332
422
431
510
521
440
433
530
442
600
611
532
620
541

—0.293
0.433

—0.069
—0.107

0.080
—0.056
—0.035

0.019
0.027

—0.046
0.019

—0.030
—0.014
—0.019

0.009
0.010

—0.023
—0.018

0.002
—0.017

o.oa4
0.005

—0.008
0.005

—0.011

—0.293
0.0

—0.076
—0.107

0.044
—0.056
—0.032

0.0
0.011

—0.046
0.012

—0.030
—0.010
—0.017

0.003
0.005

—0.023
—0.015

0.001
—0.017

0.0
0.001

—0.007
0.002

—0.011

0.0
0.0

—0.076
0.0
0.0

—0.056
—0.016

0.0
0.011
0.0
0.0

—0.020
—0.010
—0.005

0.0
0.003
0.0

—0.015
0.0

—0.008
0.0
0.001

—0.004
0.0

—0.002

0.414
0.433
0.128
0.151
0.091
0.097
0.050
0.019
0.031
0.065
0.022
0.047
0.020
0.026
0.010
0.011
0.032
0.028
0.002
0.025
0.004
0.005
0.011
0.005
0.016

110
200
211
220
310
222
321
400
411
330
420
332
422
431
510
521
440
433
530
442
600
611
532
620
541

4.344
0.563
1.342
1.645
0.134
0.809
0.704
0.130
0.045
0.761
0.170
0.542
0.397
0.417
0.062
0.067
0.416
0.385
0.163
0.357
0.070
0.040
0.251
0.009
0.269

4.344
0.0
1.024
1.645
0.307
0.809
0.657
0.0
0.108
0.761
0.248
0.542
0.312
0.410
0.035
0.113
0.416
0.334
0.195
0.357
0.0
0.019
0.228
0.047
0.269

0.0
0.0
1.024
0.0
0.0
0.809
0.391
0.0
0.108
0.0
0.0
0.421
0.312
0.167
0.0
0.058
0.0
0.334
0.0
0.217
0.0
0.019
0.161
0.0
0.080

6.143
0.563
1.974
2.327
0.335
1.401
1.039
0.130
0.160
1.076
0.301
0.874
0.594
a.6o8
0.071
0.143
0.589
0.610
0.254
0.549
0.070
0.048
0.375
0.048
0.388



606 S. K. RATTAN, P. SINGH, S. PRAKASH, AND J. SINGH

1
E„= X Fna&na

n, a
(43)

ments caused by the same impurity in Al and Cu shows
that the strain field produced in the Cu lattice is much
larger than that in the Al lattice. In other words, one can
say that the Cu lattice is soft as compared to the Al lat-
tice. This is consistent with the displacements due to va-
cancy in Al and Cu hosts. '

The fractional change in lattice parameters for A/Mg,
AlZn, and AlSn are 0.099, —0.013, and 0.140, respec-
tively, and for CuMg, CuZn, and CuSn are 0.355, 0.056,
and 0.271, respectively. The relative order of magni-
tude and sign of displacements of 1NN's in Al and Cu al-
loys shows the same trend as exhibited by the fractional
change in the lattice parameter except for AIMg. How-
ever, the experimental values of the fractional change in
the lattice parameter are estimated from x-ray-diffraction
data assuming the lattice as a continuum. Therefore, an
exact comparison is not possible. The oscillatory nature
of the potential gives the positive and negative displace-
ments of various neighbors. For distant neighbors of the
impurity, the magnitude of the displacement goes on de-
creasing although not in a consistent manner. Suchdev
and Tewari obtained the 1NN displacement in the
CuFe alloy of the order of —0.006 a.u. , which is smaller
than the values obtained in our calculations for the Cu al-
loys. However, it is noted that these displacements are
quite sensitive to the choice of interatomic potential.

We have also calculated the relaxation energy E„
defined as

NN's
(fl] n2 n3) ux

Displacement components
uy uz lul

110
200
211
220
310
222
321
400
411
330
420
332
422
431
510
521
440
433
530
442
600
611
532
620
541

18.283
1.054
5.590
7.115
0.019
3.646
2.991

—0.926
—0.142

3.362
0.475
2.448
1.670
1.796

—0.497
0.089
1.867
1.746
0.581
1.616

—0.453
—0.332

1.049
—0.195

1.176

18.283
0.0
4.528
7.115
1.170
3.646
2.890
0.0
0.388
3.362
0.979
2.448
1.369
1.817
0.097
0.416
1.867
1.524
0.799
1.616
0.0
0.051
0.999
0.145
1.200

0.0
0.0
4.528
0.0
0.0
3.646
1.737
0.0
0.388
0.0
0.0
1.910
1.369
0.739
0.0
0.206
0.0
1.524
0.0
0.981
0.0
0.051
0.701
0.0
0.350

25.855
1.054
8.500

10.062
1.170
6.315
4.507
0.926
0.566
4.755
1.088
3.954
2.557
2.659
0.507
0.473
2.641
2.774
0.987
2.488
0.453
0.340
1.609
0.243
1.716

TABLE VII. The displacement components (10 a.u. ) of the
NN's of the Zn impurity in Cu.

TABLE VI. The displacement components (10 a.u. ) of the
NN's of the Mg impurity in Cu.

TABLE VIII. The displacement components (10 a.u. ) of
the NN's of the Sn impurity in Cu.

NN's
(fl] 712 n3 ) ux

Displacement components

uy uz lul

NN's
(fl] n2 n3 ) ux

Displacement components
uy uz lul

110
200
211
220
310
222
321
400
411
330
420
332
422
431
510
521
440
433
530
442
600
611
532
620
541

20.594
1.586
6.315
8.017
0.097
4.105
3.379

—1.039
—0.135

3.791
0.561
2.763
1.892
2.031

—0.558
0.113
2.107
1.973
0.666
1.827

—0.512
—0.374

1.189
—0.217

1.330

20.594
0.0
5.094
8.017
1.375
4.105
3.267
0.0
0.453
3.791
1.129
2.763
1.553
2.055
0.113
0.480
2.107
1.724
0.912
1.827
0.0
0.059
1.133
0.168
1.358

0.0
0.0
5.094
0.0
0.0
4.105
1.966
0.0
0.453
0.0
0.0
2.159
1 ~ 553
0.838
0.0
0.239
0.0
1.724
0.0
1.111
0.0
0.059
0.796
0.0
0.398

29.125
1.586
9.580

11.338
1.379
7.110
5.095
1.039
0.655
5.361
1.260
4.465
2.899
3.009
0.569
0.548
2.980
3.137
1.129
2.813
0.512
0.383
1.825
0.274
1.942

110
200
211
220
310
222
321
400
411
330
420
332
422
431
510
521
440
433
530
442
600
611
532
620
541

28.908
3.942
8.941

11.264
0.463
5.753
4.788

—1.437
—0.080

5.336
0.900
3.903
2.703
2.884

—0.775
0.211
2.975
2.800
0.983
2.591

—0.729
—0.523

1.704
—0.294

1.891

28.908
0.0
7.122

11.264
2.179
5.753
4.633
0.0
0.709
5.336
1.696
3.903
2.223
2.923
0.179
0.723
2.975
2.450
1.336
2.591
0.0
0.090
1.624
0.254
1.935

0.0
0.0
7.122
0.0
0.0
5.753
2.801
0.0
0.709
0.0
0.0
3.064
2.223
1.201
0.0
0.362
0.0
2.450
0.0
1.587
0.0
0.090
1.144
0.0
0.571

40.882
3.942

13.468
15.930
2.228
9.965
7.227
1.437
1.006
7.546
1.919
6.313
4.146
4.279
0.795
0.835
4.208
4.455
1.659
3.993
0.729
0.538
2.618
0.389
2.765
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where F„are used from Table II and u„ from Tables
III—VIII up to 2NN's. In the present model, F is isotro-
pic. The calculated values are given in Table II. We note
that the E„ in the Cu alloys is larger by an order of mag-
nitude than for the Al alloys. The relaxation energy is al-
most negligible for AlMg.

IV. DISCUSSION

In these calculations the Ashcroft-model potential and
modified Hartree dielectric function are used to generate
the interatomic potential for the host-host and host-
impurity interactions. This description is more justified
for Al alloys as the core size of Al is small and the elec-
tron density is large. However, in Cu the core size is
larger and the d bands of the finite width are near the
Fermi energy. ' Therefore, the effect of d electrons
would have been considered through VH(q ) and
eH(q, q ). This is an involved calculation and is discussed
elsewhere.

The introduction of an impurity changes the charge
distribution of the host and hence the dielectric screening
function. We have considered this effect only through
the bare ion potential and ignored in the dielectric func-
tion. It is assumed that it is a higher-order correction
and may not affect the results significantly. It was real-
ized that for substitutional impurities the major com-
ponent of binding energy arises from 1NN's. The in-

teractions therefore are considered only up to 1NN in the
evaluation of displacements which is a gross
simplification. Singhal" has considered interactions up
to eight NN's for a vacancy in Al. Our results can be im-
proved by extending these interactions up to higher NN's
but this will involve manifold computational efforts. In
spite of these simplifications, the present results are useful
to estimate other properties of these alloys.

In the elastic continuum model of the lattice the over-
sized impurity produces expansion of the NN's while the
undersized impurity produces the contraction. However,
we find from the present calculations that this is not so.
The screening field decides the nature of displacements of
various NN s. For example, the Zn impurity in Al is an
oversized impurity but produces contraction in the lat-
tice. Mg is an undersized impurity in Cu and produces
expansion of the Cu lattice. Mg impurity in Al metal
causes outward motion for some NN's while inward
motion for others. From the above results, we conclude
that the nature of the strain field is mainly determined by
the electrostatic interactions in the defect lattice.
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