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Hole pairing and clustering in the two-dimensional t-J model
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Hole-density correlation functions in the t-J model on lattices with square geometry are studied by
the method of exact diagonalization for systems of various sizes with up to 26 sites. For the largest
sizes we employ only a restricted basis, whereby for the extrapolation we introduce and test a scaling
procedure. For two holes in an antiferromagnet our results confirm their binding for J ) J, 0.2t.
For four holes the two-point and four-point density correlations, calculated for N = 18, 20 sites,
show clear evidence for hole-clustering instabilities for J ) J, 1.5t; a first instability is likely to be
towards a striped phase, with holes forming domain walls along the (0, 1) or (1,0) direction. Signs
for the phase separation into a hole-rich and a hole-free phase appear only at J & J,* 2.5t. Results
in the intermediate regime 0.4 ( J/t ( 1.2 are consistent with the pairing picture, although there
are also indications for a large weight of configurations representing domain walls along the (1, 1)
direction.

I. INTRODUCTION

Since the discovery of high-temperature superconduc-
tivity (SC) in copper oxides, the central theoretical ques-
tion remains whether proposed models representing elec-
trons in these substances as strongly correlated allow
also for a ground state with SC pairing. In particular, one
would like to have a proper understanding of the phase
diagram of the prototype models for correlated systems,
such as the Hubbard model and the t-J model. 2 There
are numerous analytical approaches giving hope to SC in
these models, in particular in the regimes representing
weakly doped magnetic insulators. On the other hand
the evidence for pairing from numerical studies, at least
for the Hubbard model (results obtained mainly by the
quantum Monte Carlo method), is rather negative so far.

The phase diagram is controversial in the t-J model
as well. 2 Exact diagonalization studies on small systems
indicate that two holes added to the reference antifer-
romagnetic (AFM) insulator form a bound state above
the threshold J ) J, 0.15t. ' The latter effect has
been interpreted by some authors as an instability to-
wards a hole-spin phase separation (PS), appearing at
all J/t for small (vanishing) doping. However, a re-
cent high-temperature-expansion calculation, as well as
a variational approach, supports the existence of phase
separation only in the regime J & J, & 1,24. Still an ex-
planation for such a critical J, is missing, since it is low
as compared to simple phase separation estimates, but
too large to be connected with the onset of hole binding
J,. Although at low doping the intermediate regime
J, & J & J, would be a candidate for enhanced SC cor-
relations, a clear numerical evidence for the latter is not
found in the most extensively studied 4 x 4 system.

Insight into a possible pairing in the t-J and Hub-

bard models has been recently gained by studying one-
dirnensional (1D) models in an external staggered mag-
netic field h. This field simulates in 1D the effect of the
AFM correlations as present in D ) 1 and consequently
the spin-string effect, mass enhancement, and some other
phenomena found previously in 2D models. Within the
t- J-h model it has been shown that at low doping there
exists a broad regime J, & J & J, where one can clearly
establish the existence of paired holes.

With the experience from the 1D t-J-h model we re-
visit in this paper the 2D t-J model. To avoid as much
as possible finite size effects, which appear to be more
pronounced when comparing results of systems with dif-
ferent quantum numbers such as the number of holes N~
and the total spin S, we rely here mainly on the analysis
of correlation functions within a given system. We use in
particular the (two-point) hole-density correlation func-
tion g(r) together with the following simple criteria: (a)
The bound state for Ng = 2 holes should be character-
ized by a well pronounced maximum at g(r = rp) where
rp ( Lp = gN/2, and Lp is the largest distance in a
square system with N sites and periodic boundary con-
ditions. (b) In the phase-separated regime g(r) must fall
off with r, at least for r » Nh. (c) For Nh = 4 the indi-
cation for pairing are two maxima in g(r), one at the pair
radius rp and another at the interpair distance r = Lp.
For Ng = 4 an analogous, but more complete informa-
tion, is contained also in the four-point hole correlation
function G'. Our investigations are complementary to re-
cent exact diagonalization studies, where mainly energies
have been calculated. 5 In this study we are moreover able
to consider larger lattices by using only a restricted basis
and appropriate scaling of the results.

The organization of the paper is as follows. In Sec. II
we present the method with the restricted basis set and
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the corresponding scaling for the extrapolation to the to-
tal basis. In See. III results for the binding of two holes
are discussed. Section IV is devoted to the analysis of
g(r) correlations for four holes. In Sec. V the latter in-
formation is supplemented by four-point correlations G
in order to establish the character of the Nh, = 4 ground
state in the (possible) pairing regime. Numerical and
analytical arguments are also presented that at low dop-
ing the first PS instability is not towards hole-rich and
spin-rich phases but rather to a striped phase with holes
forming (soliton) lines [incommensurate charge-density-
wave (CDW) and spin-density-wave (SDW) structurej.

II. METHOD

We study in the following the 2D t Jmodeli -z

H = t ) (c—, ,c~,, + H.c.) + J) (S, S~ —4n, n~),
(ij)s (ij)

where c;,(ct, ) are projected fermionic operators, tak-
ing. into account that double occupancy of sites is not
allowed. n, and S, are the corresponding local fermion
number and spin operators, respectively.

Our aim is to obtain results for N-site systems with
square geometry and periodic boundary conditions which
satisfy the condition N = l + ni, l, rn integers. i2

Restricting ourselves to even N, we consider the sizes
N = 18, 20, 26, while the N = 16 system has been stud-
ied quite extensively before. Becuase of computer
storage and time restrictions, we are able to perform
the full exact diagonalization of the model at most for
N = 20, Nh = 2 where the total number of basis states,
Nt~t ——462402, and N = 18, Ng = 4, with Nt;~q ——583696.
In both cases the numbers are for the sector with total
spin projection S, = 0 and wave vector q = 0, where the
ground states belong.

For the next larger lattices (with the square geome-
try) the full diagonalization is not yet feasible; e.g. , for
N = 26, Nh, = 2 the total basis would be Nt~q ) 3 x 107,
while for N = 20, Nh = 4, Nt t ) 3 x 10 within the same
sector. We can show, however, that one can obtain, even
for these systems, some sensible results by working within
a restricted basis set with N, t, states and then perform
the appropriate scaling towards Nq t. The choice of the
restricted basis certainly depends on the problem, but in
general it has to satisfy two criteria: (a) The hierarchy
of restricted states should roughly reflect the hierarchy
of the basis states as represented in the ground state
wave function, and (b) the basis set must be easy to use,
i.e. , easy to index, ete. Since we are interested in the
t Jrnodel (1) in th-e regime of pronounced AFM cor-
relation, the natural lowest-order basis states are those
with the diferent hole configurations in the background
spin Neel state. Starting from these No configurations
we then build configurations with a finite number N„
of reversed spins. The maximum number of reversed
spins is N„„=N —Nh, while the results essentially
saturate at N„2 = N,~ „/2. Still we are not able to

AEp oc N, ,", p= —2 ) 0.lng
lnM

On the other hand, if q & 1, we get

(4)

LEO oc ln
Ntot;

Nst

where we have already taken into account that AEp = 0
at N8$ = Nt/t

The scaling arguments presented above cannot be con-
sidered as derivations, but rather as a rough classification
of quantum systems into the perturbative Eq. (4) and
the unperturbative one Eq. (5), at least from the stand-
point of the numerical diagonalization of finite (small)
systems. It is clear that the behavior can depend on
the particular choice of the representation used for the
basis states. Nevertheless it seems that near half-filling
the t Jmodel, both th-e undoped (the Heisenberg model)
and the doped one, belong to the latter class within the
regime of strong AFM correlations, irrespective of the
basis representation employed. On the other hand, the
Hubbard model at modest U/t ) 1 can well fall within
the perturbative class, Eq. (4), for finite systems. This
ean explain the remarkable accurate energies for the 2D
Hubbard model obtained recently by the Monte Carlo
diagonalization method within a restricted basis. 4 We
can note here that if the restricted basis set is chosen

reach N„2 in general, but rather smaller values. E.g. , for
N = 26, Nh, = 2 we reach N„= 6 with N, t ——443612,
while for N = 20, Nh, ——4, N„= 6, with N, &

——729171,
again considering the S, = 0 and q = 0 sector.

Since we are, in the latter eases, still well below N„2,
it is essential to perform an extrapolation of the results.
We present here the basic scaling idea on the example
of the ground state energy Ep Le.t us suppose that the
Hamiltonian can be separated in an unperturbed part
and a perturbation, i.e. , II = Hp + '@II ~ E g, in Eq. (1)
one can consider as perturbation the hopping rl = t/J
and (or) the spin flip term rl = J&/J~~. Formally the
total energy can be written in terms of the perturbation
power series

Eo = t'O+7/ 62+. +F/ 62A;p +2 2kp (2)
where for simp1. icity only even powers have been con-
sidered (as they emerge from the hopping term). As-
suming that rl = 1 is the radius of convergence of the
series, then 62k must all be extensive and of the same
order of magnitude. Because of the hierarchical struc-
ture of the excited states as they become involved in
the perturbation expansion, one needs for the evalua-
tion of a particular term in the series approximately
N, t-

——No, NOM, NOM, . . . , NoM"' states, respectively,
where M )) 1 reflect the connectivity of the model
Hamiltonian. For g & 1 the error by truncating the series
at the order 2ko —2 is

21 pr"
/1 M /'N„ q

21nrl/lnM
AEp ~ ~q

1 —92

(3)
If rl « 1, one obtains from Eq. (3) the power law behavior
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g(&) = N(@sin~(»)nh(» + &)l@o) (6)

where nh(r, ) = 1 —n, W. e employ here as a test the
N = 20 system with Nh, = 2 holes and J/t = 0.4. In
Fig. 1(a) we present results for g(r) for nonequivalent

0.12 I

N=20

using the stochastic algorithm, as has been suggested in
Ref. 14, the difFerence AFo is reduced for a fixed site
of the basis set, nevertheless the scaling behavior is ex-
pected to remain qualitatively unchanged.

Arguments, shown on the example of the ground state
energy, should apply to correlation functions as well, at
least for kp )) 1 or N, t, )) Np. We consider the hole-
density correlations, defined for the ground state l@o),

distances r, whereby the values correspond to difFerent
number of reversed spins N„= 3, 4, . . . , 10, 18. Results
follow very well the scaling ansatz, Eq. (5). Some de-
viations from the general trend appear on approaching
the total basis at N„) N„z, where both degenerate Neel
subspaces of basis states begin to couple. This efFect
is anyhow more pronounced only for the most sensitive
largest distance r = ~10. For N = 26, Nh, = 2 the full
diagonalization cannot be performed, but the analogous
results for g(r), as presented in Fig. 1(b) for J/t = 0.4,
seem to justify the use of the scaling equation (5) for
extrapolating the results to N, t ——Nq q. It should, how-
ever, be noted, that in practice the extrapolation can be
meaningfully performed only for systems which do not
show qualitative changes in the ground state wave func-
tion l4o), when increasing N, t. Some opposite examples
will be mentioned further on when we discuss results for
Nh, = 2 and Nh, = 4.

0.08

r=2

0.0
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FIG. 1. Hole-density correlations g(r) for Nh, = 2, differ-
ent r, and different number of reversed spins N„(dots) scaled
vs Nr r, /N, r (a) for N = 20 lat'.tice and N„= 3, 4, 5, 6, 9, 11,18
and (b) for N = 26 lattice and N„= 3, 4, 5, 6.

III. A PAIR OF HOLES

The ground state of two holes in an AFM insulator
have been so far investigated numerically in most de-
tail for the square 4 x 4 lattice with periodic boundary
conditions. 4 The disadvantage of this lattice is that it
has a degenerate ground state due to a particularly large
lattice symmetry, as well as quite pronounced finite size
effects on the pair binding energy eb Neve. rtheless, more
recent calculations of eb, performed for the larger lattice
with N = 18, N = 20 (Ref. 5) where the ground state
is nondegenerate with momentum q = 0, confirmed the
qualitative behavior of the N = 16 results.

We add to the above results the evaluation of the cor-
relation function g(r) for N = 18,20, 26. In Fig. 2(a) we
present the g(r) values for N = 20 obtained within the
total basis, while the results for N = 18 are very similar
to those for N = 20. In Fig. 3, for ease of comparison,
we also show g(r) as a function of the distance r for a
few values of J/t characteristic of difFerent regimes. In
Fig. 2(b) the extrapolated values for N = 26 are shown.
Here we note that the scaling to Nt, t becomes unreli-
able for J/t & 0.2. The reason is twofold: There are
abrupt transitions appearing on varying N„, which in-
dicate on changes in the ground state character (bound
versus unbound pair) and prevent a meaningful extrap-
olation. Also at J/t ( 0.1 the spin correlations change
from AFM to ferromagnetic ones around each hole (al-
though the total spin remains S = 0) and our basic choice
of the hierarchy of basis states becomes questionable. We
should also mention that for the larger lattices, due to
the periodic boundary conditions, the distance between
far points is not uniquely defined, depending on the con-
necting path chosen. The hole correlations though are
not very sensitive to the chosen definition.

When comparing the N = 20 and N = 26 results, we
note the qualitative agreement in the variation of g(r)
with J/t The agreemen. t is even quantitative for the
largest correlations, in particular for r = v 2 and some-
what less for r = 1, this being an alternative sign of a
pronounced binding independent of the system size. Both
sizes confirm surprisingly small g (r = 2), while there are
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clear differences for the largest distances, e.g. , r = ~5,
where the influence of finite size effects is likely to be
more pronounced for the N = 20 system.

To interpret our results in terms of a transition from a
bound to an unbound hole pair, we should recall analo-
gous results for the 1D t-J-h model. There the binding-
unbinding transition at J,(h) is well characterized with
(a) g(r) having the maximum at rp = N/2 at J ( J„
while rp = (p « N/2 for J ) J„and (b) decaying g(r)
for r )) (p at J ) J,. Such a transition can be naively
simulated in 1D by a variable attractive potential of a
fixed range (p oc (t/h)i/s. If we would apply the same
idea directly to 2D, we should use h 0.6J.

Using criterion (a) also for the present 2D results,
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C4j
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0.6

0.12
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0.0
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0.08,—
FIG. 3. g(r) vs r for Nh, = 2, N = 20, and difFerent J/t
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we would establish the binding threshold at J, 0.2t,
which is also consistent with the value of the extrapola-
tion breakdown as well as with the convergence of values
of difFerent g(r) for N = 26. On the other hand it is still
surprising that g(r) curves for N = 20 in Fig. 2(a) vary
rather smoothly through J,/t down to J/t = 0.05, where
a more abrupt transition to predominant ferromagnetic
correlations happens. This smooth transition can be an
indication for possible more profound difFerences with the
1D t-J-h model.

IV. FOUR HOLES IN A SPIN BACKGROUND

0.08—

0.06—

0.04—

0.02—

(b)
N=26

r=ds
r=l]3

The ground state wave function of four holes in a suffi-
ciently large system should already contain the informa-
tion, which of the three main possibilities is realized at
low-doping in the regime where real space pairs are sta-
ble for two holes: (a) the phase separation where holes
should exhibit the tendency to form droplets, (b) the
pairing where two well separated pairs without a pro-
nounced interaction should be established, and (c) the
charge-density-wave instability where holes should ex-
hibit a tendency to form a periodic structure.

Again the comparison with the 1D t-J-h model is
instructive. ii At large J ) J, ) t the PS is found for
the Nh, = 4 ground state using two independent crite-
ria: (a) The hole-density correlations g(r) are falling ofF
monotonously with r, at least for large r, Nh « r ( N/2,
and (b) the clustering energy

4 = E4 —2Eg+ Ep,
0.0

0.2 0.3 0.4 0.5 0.6 0.7

FIG. 2. g(r) vs J/t for Nq = 2, difFerent r, and (a) N = 20
and (b) N = 26 lattice.

being proportional to the inverse compressibility, is neg-
ative. It is characteristic that both criteria for J„ i.e. ,
for the onset of the PS, do not coincide for small 1D
systems. ~ Generally 4 = 0 seems to give a lower bound
for J„while decaying g(r) yields an upper bound. This
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is not surprising in view of the strong perturbing eKect of
the finite doping concentration on the background spin

configuration, as appears in particular for Nh, = 4 for the
available small systems.

In view of above results for 1D we reinvestigate the
2D t Jm-odel. Since we are interested here in the ground
state with Nh, = 4 while increasing N as much as possible,
systems with N = 18, 20 seem to present a substantial
improvement over the most extensively studied N = 4 x 4
lattice. ~s ~o s Namely, in the latter system with periodic
boundary conditions the Nh = 4 ground state is again
triply degenerate in cl. Moreover at large J/t ) 1 these
degenerate states reveal quite diferent forms of hole clus-
ters, being an indication for a strong influence of Gnite
size and boundary effects.

We present here results for N = 18, 20 lattices, where
in both cases the ground state is S = 0 (for N = 20
we can establish this only approximately) and q = 0,
at least for the most interesting regime J/t ) 0.1. Re-
sults for N = 20 are again obtained by the extrapola-
tion of data from the restricted basis, where we reached
N„= 6 reversed spins relative to the Neel spin config-
uration. It should be mentioned that the extrapolation
is (compared to Nh = 2) somewhat more problematic in
certain regimes, as discussed later.

Let us first comment on the behavior of hole-density
correlations. In Fig. 4(a) we present g(r) as a function of
J/t for N = 18 and in Fig. 5 we present g(r) as a function
of r for different J/t regimes. In comparison with Nh, = 2
the values of g(r) are much more uniform, except in the
extreme PS regime at J/t ) 2. As a reference, in a
broad intermediate regime of J/t, one should consider
here the result for free electrons, where g(r) would be
rather uniform with a reduced value at r 1 due to the
Fermi hole effect. It should be, however, stressed that
the actual r dependence, i.e. , the hierarchy of g(r) values
in Fig. 4(a), is not reproduced by the free fermion g(r)
in any regime.

In Fig. 4(a) we can roughly distinguish three different
regimes: (a) For J/t & 0.2, g(r) increases monotonously
with r, and so it is close to the behavior of four spin-
less fermions, or even more to four hard-core bosons.
(b) At large J/t ) 2, the g(r) is falling off with r, be-
ing consistent with the clustering or the Ps. An abrupt
(crossover) transition to even stronger clustering is ap-
pearing at J/t ) 2.5. (c) In the intermediate regime
0.5 & J/t & 1.5, the largest correlations are for ro = ~2
and ro = Lo = 3. Since the maximum at g(r = v 2) is
characteristic for a single hole pair (Nh = 2), the behav-
ior in this regime is consistent with the pairing picture,
i.e. , with the existence of two independent hole pairs.
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FIG. 4. g(r) vs J/tfor Nh = 4, diff, erent r, and (a) N = 18
and (b) N = 20 lattice. FIG. 5. g(r) vs r for Nh, = 4, N = 18, and different J/t.
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The same picture is also supported by the extrapo-
lated results for N = 20, as presented in Fig. 4(b).
Several comments to Fig. 4(b) are in order. Values for
r = Lp = ~10 are probably underestimated in general,
being most sensitive to large N„& N„2, as is also the
case for Nh = 2 and N = 20 in Fig. 2(a). There are two
crossover transitions, one at J, 1.2 t and anot;her at
J; ~ 2.5 t Th. ese transitions appear in ~@p) also on in-
creasing N„and therefore prevent a reliable extrapolation
around these points. While the transition at J, indicates
the onset of some kind of hole clustering, the crossover
at J,* requires an essential change in the cluster form.
Still the intermediate pairinglike phase 0.4 ( J/t ( 1.2
is well pronounced for N = 20 in Fig. 4(b), moreover
taking into account that values for r = L0 are likely to
be underestimated.

It is still not straightforward to fix the value for the
instability J,/t (at small doping), which would limit
the presumable pairing regime. The N = 20 results in
Fig. 4(b) would indicate J, ) 1.5 t, as it follows from
decaying g(r) as well as from the discontinuous varia-
tion of g with N„. In the same regime J & J, corre-
lations for N = 18, as shown in Fig. 4(a), still do not
satisfy the hierarchy expected for clustering, in particu-
lar g(r = Lp) & g(r = 2), g(r = ~5). While this could
indicate an even larger J„ it can also be attributed to
finite size effects, but as well to specific hole configura-
tions discussed in the following paragraph. It should,
however, be noted that the application of the alternative
criterion 6 = 0, Eq. (7), gives for N = 18 much smaller

critical value J, 0.6t, s which is not supported by g(r)
presented here. It is, however, plausible that due to the
strong doping dependence of the AFM correlation of the
spin background, J,* represents only the lower bound as
found also in the 1D t- J-h model. In the same manner
our J, values are likely to be upper bounds, so that the
recently proposed marginal value J,/t 1.2 (Ref. 7) is
not necessarily inconsistent with our analysis.

V. DOMAIN WALLS VERSUS HOLE DROPLETS

It is important to establish the character of the insta-
bilities appearing at J, ) t and J; )) t. It should be
reminded that in contrast to the numerical results, all
simple estimatess of stable hole clusters (as relevant for
small doping) would yield much larger J, ) 2 t. We in-
vestigate this problem by calculating for Nh = 4 also the
four-point hole density correlations

G;~yt = N(@penh, (r, )ng(r~)nh, (rA,.)nh(r() ~ep), (8)

depending on the hole configuration (ijkt). The variation
of difFerent G with J/t has been already studied for N =
16, where the interpretation is more problematic due to
the ground state degeneracy. To present results for the
correlations G, corresponding to different configuration,
we present in Fig. 6 our enumeration of sites in the N =
18 and N = 20 lattices.

In Fig. 7(a) we present G for N = 18 and four charac-
teristic configurations, dominating difFerent regimes: (a)
configuration (3 5 9 12), holes being as far apart as pos-

FIG. 6. Enumeration of sites in N = 18 and N = 20
lattices.
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FIG. 7. Four-point hole-density correlations G vs J/t for
Nh, ——4 and four different configurations as presented in the
text: (a) for N = 18 and (b) for N = 20.
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sible in a N = 18 lattice, (b) (1 4 6 12), holes forming
two separate pairs, with the intrapair distance v2, (c)
(5 6 7 8) with holes forming a line (stripe) along the (1,0)
direction, and (d) (1 4 6 9) with three holes forming a do-
main wall (DW) along (1,1). For J/t & 0.3 the largest is
G~, being consistent with the absence of binding and the
character close to spinless fermions. In the intermediate
regime 0.4 & J/t & 1.2 pair contributions as, e.g. , Gb are
dominating. It should be, however, stressed that there
exists in both regimes a broad spectrum of other config-
urations with somewhat smaller G, consistent with the
quite extended nature of the wave function. Also surpris-
ingly large is the intermediate regime G&, which indicates
a quite stable diagonal DW. For J/t ) 1.2 the hole-line
configuration G, takes over steadily, with an increasing
gap to the other configurations.

Similar conclusions can be drawn from the results for
N = 20, as shown in Fig. 7(b). Again presented val-
ues are obtained by the extrapolation, so that they are
subject to small uncertainty . Also we expect that the
values for configurations with well separated holes or hole
pairs could be underestimated. We show G for four char-
acteristic and dominant configurations: (a) (3 7 13 17)
representing two separated hole pairs, (b) (2 8 13 19),
with holes forming a line along the (1, 1) direction, (c)
(3 8 12 17), with holes along the (1,0) line, and (d)
(1 2 3 6), holes representing a DW stretching over the
system with periodic boundary conditions

Conclusions could be similar to the N = 18 case,
with some differences clearly indicating on the size and
even more shape effects. While separate pairs and G
dominate for 0.2 & J/t & 0.5, a (1, 1) line forma-
tion Gb becomes even more pronounced in the regime
0.5 & J/t & 1.2. It is clear that for Nh = 4 such a
line configuration is first possible for N & 20. Again the
contribution G, of the ordering along (1,0) is steeply in-
creasing with J/t and takes over the former contributions
at J & 1.5 t. Nevertheless, Gg & G„whereby the en-
hancement of Gd can be attributed to a specific N = 20
shape effect, since the holes profit from closing the DW
due to lattice periodicity.

The configuration G, with holes forming a droplet,
e.g. , (2 3 6 7) for N = 18 and (2 3 7 8) for N = 20,
has a negligible contribution in the regime J/t & 2, both
for the N = 18 and N = 20 lattices. Since this would be
naively expected as the dominant configuration in the PS
regime, its absence is the sign of an essentially different
hole configuration in the regime 1.5 & J/t & 2.5. On
the other hand the abrupt transition at J = J,* 2.5 t,
as seen also in Fig. 4(a), is accompanied by a dramatic
change in the hole configuration. Namely, G, exhausts
for J & J,* to a large extent the whole weight of the wave
function, while other contributions become negligible.

Our results are thus not consistent with the usual
phase diagram with a single PS line, but rather with
two essentially different phases for J & J, . While for
J & J,* the instability is towards a hole-rich and a hole-
free phase, in the intermediate regime J, ( J ( J,* the
formation of hole DW's (stripes) is preferred. At finite
hole concentrations this phase represents a CDW, and
at the same time a spin-density-wave (incommensurate

~46= ——J+ ——+ —p ——67
4 3J 3 J J3 (10)

This should be compared to the cohesion energy of the
simple hole droplet 6 = 4/4, with 6 defined in Eq. (7),

4 S' 4 t' ~46= —-J+ ——+ -q——529
4 3J 3 J J3

It is evident that always 6 & b. The origin of larger DW
stability is in easy transverse fluctuations. Namely, pre-
dominantly 1D hole motion creates spin strings which are
weaker since the DW is a boundary of two AFM domains
with opposite staggered magnetization. For Nh )) 4 and
J/t )) 1 hole droplets become, however, more stable since

—
4 J. Such droplets are highly unfavorable with re-

spect to the kinetic energy, i,e., to the t/J corrections,
and hence a transition to the separation into a hole-rich
and a hole-free phase is expected only at J/t )) 1, as
found in our numerical studies.

Equation (10) can be used also to estimate J, for the
DW stability. From 6 = 0 it would follow that J, = 1.63t
for p = 0, while for p = 1, J, ) 2.5t is too high, indicat-
ing that the perturbation series are poorly convergent,
consistent with large quantum fluctuations of the DW.

VI. CONCLUSIONS

In this paper we investigated the possibility of pairing
and clustering in the 2D t Jmodel by -finding numeri-
cally the ground state of finite systems representing the
antiferromagnet doped with few mobile holes; in partic-
ular, results for Nh, ——2 and Nh ——4 were presented.
For Nh, = 2 the hole-density correlations g(r) in N = 20
and N = 26 lattices reconfirm the existence of real space
pairs in a broad range of parameters J & J, 0.2t. So
the proper understanding of the Nh ——4 system is crucial

AFM) structure.
Assuming that at finite doping the first instability is

towards the striped (CDW) phase, it would be helpful
to establish in an alternative way the stability of a sin-
gle line of holes, forming also a DW (soliton line) in an
AFM structure. It should be noted that such DW-like in-
homogeneous solutions have also been found within the
Hartree-Fock approximation to the Hubbard model, al-
though the stable direction was rather (1, 1) for large
fJ/t 15,16

A possible approach is via the perturbation expansion
in t/ J and in the exchange anisotropy p = J~/ J~~~. Since
we are interested in the regime J & t, the limit J )& t can
serve here as a valid starting point. In this regime bound
hole pairs are more stable than separate holes, and so we
need for comparison the hole pair energy 62 = E2 —Ec,
expressed to the lowest orders in t/J and p ass

7 16'' 8 g2 g4
e2 ———J —————p —+ 3.31

2 3 J 3 J J3 (9)

The energy of an infinite DW along the (1,0) direction
(per hole) ~ = e/Nh can be expressed in the same way.
For the DW surface energy (per hole) b = ~ —ze2 we
obtain
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to establish the phase diagram of the t J-model at Finite
but small doping. Since in systems N & 20 available
for the method of the (restricted) exact diagonalization
and studied in this paper, Nh ——4 represents already
a considerable doping concentration, results should be
interpreted and generalized with care. This becomes ev-
ident also for four-point G correlations when comparing
N = 18 and N = 20 results. Namely, N = 18 does not
allow for a formation of a Nh = 4 line of holes along
the (1,1) direction, so that the latter becomes more pro-
nounced in the N = 20 lattice. On the other hand, for
N = 20 the line of holes along (1,0) is too close to a DW
stretching through the system due to the specific lattice
shape and periodic boundary conditions, so that the lat-
ter configuration obtains too large weight and dominates
over the former for J/t & 1.

Taking into account the above finite lattice effects, our
results, both for the two-point correlations g(r) and four-
point hole correlations G, are consistent with the picture
of an instability towards the inhomogeneous hole distri-
bution appearing at J & J, 1.5t. In contrast to earlier
works where only the instability towards the PS into
a hole-rich and spin-rich phase has been considered for
the t-J model, we find clear evidence for the formation
of hole (soliton) lines along the (1,0) direction in this
regime, which in a macroscopic system with a finite but
low hole doping imposes the stability of hole DW and

consequently the existence of the striped phase, being an
incommensurate CDW and SDW structure. The transi-
tion to usual PS and clustering is very pronounced and
abrupt only at J,* 2.5t.

Quantum fluctuations due to hole hopping destroy the
stability of (1,0) hole DW's at J ( J, . The intermedi-
ate regime 0.4 t ( J & J, at low doping is an evident
candidate for the phase with paired (but separate) holes.
We Find the confirmation of the latter in g(r), exhibiting
two maxima, and in the dominant hole configurations as
revealed by G. It should, however, be acknowledged that
for larger lattices (JV = 20) configurations representing
(I, 1) hole DW's become also well pronounced, being con-
sistent with the Hartree-Fock results within the Hubbard
model at Ujt » l. is s The latter contributions are, how-
ever, only slightly above (for N = 20) a large number of
other pairing configurations. So the appropriate inter-
pretation would not be in terms of another stable CDW
structure, but rather in a (1, 1) DW structure destroyed
by quantum fluctuations and thus allowing for a possible
hole pairing.
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