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A simple and physically intuitive proof for the sum rule relating the integral of the x-ray circular di-
chroism from a core shell to the value of the orbital magnetic moment in ferromagnets is described. It
provides a formalism in which further results of interest can be derived by elementary methods.

I. INTRODUCTION

A useful approximate sum rule, by which the integral
of the circular dichroism signal from the two spin-orbit
partners of a core edge can be related to the orbital mag-
netic moment in a ferromagnet, was recently derived by
Thole et al.! Their proof is based on elegant methods of
angular momentum theory but is rather complex and
lacks the appeal of intuitive physical concepts, such as
those introduced in the interpretation of x-ray dichroism
spectra by Imada and Jo.?

The purpose of the present paper is to show that the
sum rule can be derived by rather elementary and physi-
cally transparent methods, without any loss of generality.
The basic idea is to express the electronic states of the
system in a basis of one-electron wave functions (Slater
determinants) which are eigenstates of L,. The essence of
the argument is presented in the next section, while the
final section is devoted to concluding remarks.

II. DERIVATION OF THE SUM RULE

Consider an ion with an incomplete outer shell with
angular momentum [/, and let " be the ground-state
configuration. The ground state [0) can be expanded in a
set of Slater determinants {n,,,} labeled by the quantum
numbers of the 4 =2(2/ +1)—n missing electrons in the /
shell:

l0)= 2 C(O)({nma})l{nma}) ’
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where each of the n,,, is either O or 1, and they add up to
h. Obviously, we can express properties of the ground
J
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state in terms of the expansion coefficients ¢'({n,,,})
and, in particular, the z component of the angular
momentum is

OIL10)=—3 ¢ A{n, > S mn,,. @

{nma] m,o

Similarly, each final state |f) in the configuration
22+ D=1 n+1 yhere ¢ is a core shell with orbital angu-
lar momentum c¢, can be expanded in a basis of Slater
determinants {c,,o0.;n,,,} specifying the core-hole quan-
tum numbers, as well as those of the 2~ —1 holes of the /
shell, n,,.. The prime acknowledges the difference in ra-
dial one-electron wave functions between ground and ex-
cited states. Consider the integrated strength of dipole
transitions D, (¢ =—1,0,1) between the ground and ex-
cited configurations,

I,= 3 010D, /)], 3)
1f

under the following assumptions: (i) for all transitions,
the radial matrix element is the same, (ii) o, is replaced
by an average @. These are equivalent to the assumptions
of Thole et al.! and imply small errors if the spin-orbit
splitting of the ¢ shell and the multiplet splitting are
small compared to #i@, which is the case for x-ray transi-
tions. Then,

I,=a 3 [<0|D,|f)*=a(0lD, 3 |f){fID_,l0) . &
f S

Here 3,[f)(fl is a projection operator over the
¢ 22+ D=1 n+1 configuration, and it can be expressed as
Zf'lf'><f'| in terms of any complete basis f' for the
configuration. We choose the Slater determinants
{c,,0.;n,,,} and obtain

|C(0)( [nm,a} )I2I< {nm,a} qul{Czoc;nr/n,a} )|2 . ()
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Notice that selection rules on m prevent the appearance
of terms mixing different components of |0).

It is easily shown that the above D, matrix element is
proportional to

c 1 l

2
n
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(6)

via the radial matrix element and some overlap integrals
of one-electron wave functions which are the same for all
terms in the sum. These factors disappear when intensity
ratios are considered, e.g.,

Il'—I__l

I +I,+1_, 9

the quantity appearing in Eq. (5) of Ref. 1. Substituting
well-known expressions for three j symbols, namely,
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into Egs. (6) and (5), we find, for example, for / =c +1,
after some algebra,
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or, comparing with Eq. (2),

I4.=—<0|L,[0) /{I[2(2] +1)—n]}

in agreement with Eq. (5) of Thole et al.

III. CONCLUDING REMARKS

The sum rule of Thole et al.! is derived with elementa-
ry methods and without loss of generality. The use of
Slater determinants of one-electron l,,0, eigenfunctions
simplifies the algebra and provides a rigorous formulation
for the physically intuitive argument of Imada and Jo.?

Although deriving again a known result may appear as
an irrelevant achievement, it is perhaps worth noticing
that the proposed formalism may turn out to be helpful
in providing further results. It is, in fact, our conviction
that considerable information on magnetic systems is
contained in x-ray dichroism spectra but that more pro-
gress in the theory is necessary to extract it. As an exam-
ple one can mention the information about the mixing of
states with different [-shell occupations in the ground
state, for which the sum rule discussed here is not appl-
icable in a straightforward fashion.

Furthermore, the description in terms of Slater deter-
minants of one-electron wave functions with specified an-
gular momentum character is similar to that adopted in
band theory, and may therefore help to bridge the con-
ceptual gap between atomic and band description of sys-
tems with local correlations.
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