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Layered superconductors. II. Melting of parallel-Aux lattice
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A system of superconducting layers with Josephson coupling J between neighboring layers is studied
in the presence of a magnetic field parallel to the layers. A sequence of "8 phases" is produced where
the induced Aux lines are 8 layers apart. An 8 phase is solved by an equivalent fermion problem and its
melting temperature T (8) is found. When Jis not too small, there is a range 8;„&8&8 „for which
two-dimensional phases are possible and 8;„=8—10. These results account for the current-voltage rela-
tion of the form V-I' ' as observed in many of the high-T, superconductors.

I. INTRODUCTION

The anisotropic properties of most of the high-
temperature oxide superconductors has led to increased
interest in the effects of two-dimensional (2D) fiuctua-
tions. In particular, data on thin films of a variety of
compounds' ' have shown typical behavior of a two-
dimensional superconductor. This behavior corresponds
to a Kosterlitz-Thouless' and Berezinskii-type' phase
transition where vortices are thermally excited above a
critical temperature T, . The presence of this transition is
observed in two ways (i) Resistivity p, of free vortices
at T) T„which has the form

p, —expI —2t'b(T, T)/(T —T, ) j'/ I—
T,') T) T, ,

where b is a constant and T, is the mean-field transition
temperature. (ii) Unbinding of vortices by the current at
T & T„ leading to current-(I) voltage ( V) relation of the
form

y-I&(» T & T

The exponent a ( T ) jumps from 1 to 3 at T, and increases
at lower temperatures; the extrapolation of a a( T) to 1

yields T, .
The relations (1) and (2) were observed in thin films of

Bi2SrzCaCu20„(Ref. 1), T12Ba2CaCuzOs (Ref. 2),
YBa2Cu30, and YBa2Cu, 07/PrBa~Cu307 superlat-
tices; in some cases, ' Eq. (1) was observed without the
behavior (2). Note that the critical temperature T„ is
usually considered as the superconducting transition tem-
perature T„strictly speaking, T, should be the onset of a

finite critical current, signaling a three-dimensional (3D)
superconductor and is therefore distinct from T, .

Of additional interest are reports on the observation of
Eq. (2) in magnetic fields perpendicular to the layers in
ErBa2Cu307 (Ref. 10) and Bi2Sr2CaCu20 (Ref. 11) as
well as with magnetic fields parallel to the layers in
Bi2SrzCaCu20 .' ' Of particular interest is the data"
which show a strong decrease of the exponent a ( T ) when
a perpendicular magnetic field is increased up to 15 G.
The other experiments' ' ' observe Eq. (2) at much
higher fields and at temperatures well below T, .

The values of T, and of T, as deduced from Eq. (2) can
determine the thickness of a Auctuating 2D supercon-
ducting layer. In the preceding companion paper, ' re-
ferred to as I below, it was shown that [Eq. (35) of I,
neglecting the fugacity term]

T, =(r/8)t', a,
where r=Pod/4' A,t„go is , the fiux quantum, X,b is the
magnetic penetration length, and d is the average spacing
between CuOz layers; E,z is the number of Cu02 layers
which fluctuate as one effective layer. Parametrizing
A,,b

=A, '(1 —T/T, )
'/ with A,

' known from @SR data, '

Eq. (3) determines t', a. from known data, as shown in
Table I. Thus 8,& is much less than the number of layers
in the samples, though it is larger than 1; i.e., a few Cu02
layers fluctuate coherently as a single effective layer. The
Cu02 layers form evenly spaced bilayers (i.e., a shorter
spacing within the bilayer); if one considers a bilayer as
the thinnest layer, Table I should have d larger by factor
2 and 8,& smaller by factor 2, the latter value is still
larger than 1.

The lower limit of the current, I;„,where Eq. (2) is

TABLE I. V-I' ' data analysis. Values of E&~ are determined by Eq. (3), r „from Eq. (4), and rJ from Eq. (5). The forms
A,,i, =k'(I —T/T, )

'~2 and go=15(1 —T/To) '~ A were assumed, where A.
' is fitted from the T, vs A,,b of Ref. 18. J is estimated

from anisotropy data (Sec. VI of I), and d is the average spacing of Cu02 layers.

Material

Bi2Sr2CaCuzO„
T12Ba2CaCu208
YBa2Cu307
YBa2Cu307

Ref. Z (K)

81.8
100.2
85.95
90.2

r. (K)

78.6
99.0
83.45
89.1

J (K)

0.1

0.01
10
10

d (A)

7.7
7.4
5.9
5.9

A,
' (A)

1700
—1100
—1100

900

8.4
14.5
6.2

10.8

r,„/go

104
10'
10
10

10
10

1

1
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observed defines a maximal scale r,„at which vortices
interact logarithmically and where the 2D type of vortex
unbinding is observed. This scale is given by'

r,„=gocL, /(16~ A,,bI;„), (4)

where L, is the sample length perpendicular to the
current (when the film thickness W is less than A,,b, a fac-
tor W/A, ,b is needed, though it is usually' close to 1).
On the other hand, when the Josephson coupling J be-
tween layers is finite, it sets a potential linear in the vor-
tex separation r. Hence, beyond some scale rJ, the
Josephson coupling dominates and Eq. (2) can hold
if r „&rJ. The linear potential is the energy of a
Aux line parallel to the layers, which per unit length is
H, &go/4m. Using the mean field result'9

H, &=(mJd/A, ,bgo)' ink, ,b/go and comparing it to the
vortex-vortex interaction (r/2) In(r /go) [Eq. (20a) of I],
where go is the (temperature-dependent) coherence
length, yields for T near T,

(rJ/go)ln '(r J/go)= 0. 4( T, /J)' ',
where A,,b /$0= 100 in the Ink, & /go factor of H, &

(Ref. 19)
was assumed. Note that the Josephson coupling is
defined per area go [Eq. (3) of I] so that for SIS-type junc-
tion J should be weakly temperature dependent. Using
then the estimates for J (Sec. VI of I) and the observed
I;„yields values of r,„)&rJ as shown in Table I, with
r „/r 1 as large as 10 . This is a remarkable
discrepancy —vortices interact logarithmically via Eq. (2)
at distances where the Josephson coupling should dom-
inate. In fact, Artemenko and Latyshev' noticed this
difficulty and argued that some type of thermal Auctua-
tions must reduce J.

Furthermore, data on superlattices such as
(YBa2Cu307) (PrBa2Cu307)„, as discussed in I, shows a
significant reduction in T, as n increases, indicating that
J is a significant factor in determining T„' the presence of
a 2D phenomena is therefore unexpected.

The objective of the present work is to find situations
in which a JAO system can have 2D phases in a strict
sense. In the preceding companion paper, ' the phase
transition in anisotropic layered superconductors is stud-
ied. It is shown there that the transition temperature T,
is in principle a 3D transition even if J is small. T, is
determined by a competition between Auctuations of two
types of topological excitations: +2~ phase singularities,
termed here vortices, and Josephson vortices, i.e., +2~
phase variations of the relative phase of neighboring lay-
ers, termed here Auxons.

Considerable insight on Auctuation phenomena is
gained by studying a layered superconductor in a mag-
netic field parallel to the layers. Fluctuations of Aux lines
in between layers may weaken the interlayer coupling and
lead to a 2D phase. In fact, Efetov' has proposed that
above some critical field ())H„) the fiux lattice melts,
loosing its 3D correlations and therefore allowing for a
2D phase.

Using a fermion representation, I have shown that

this melting temperature T"' is finite even in high fields.
In fact, T"'& T,"', where T,"' is the transition tempera-
ture of an isolated layer due to in-layer vortex Auctua-
tions. Thus Auxon melting cannot be separated from vor-
tex Auctuations as done in the derivation of T'"; a 2D
phase does not exist, and the phase transition is a 3D one,
in between T„"' and T'". This scenario is similar to that
in the absence of a magnetic field. ' Extending the
study to lower fields, where Auxon lines are 8 layers
apart, it is found that their melting temperature T' ' can
satisfy T,' '& T' ' for 8) 8, where T,' ' is the vortex
transition temperature for 8 coupled layers. In the latter
case, a strict 2D phase is possible and the I-V data may
be understood if some (unintentional) parallel magnetic
field is present in the experiment.

Melting of the parallel Auxon lattice was also studied
by Mikheev and Kolomeisky ' considering the Auxon po-
sition variables as fermions and concluding that 2D
phases are not possible for weak magnetic fields; this is
not inconsistent with the above mentioned intermediate
field result. Note also that the asssumption ' of weakly
interacting fermions is correct only if a finite J is main-
tained; however, eventually the approach ' uses a small-J
expansion, which seems inconsistent with weakly in-
teracting fermions. Furthermore, the use of Aux-line po-
sitions as fermion variables neglects Auxon-loop Auctua-
tions which contribute to layer decoupling. '

In a difFerent approach, Korshunov has used an
efFective free energy for Auxon coordinates claiming that
2D phases are not possible for any E. This approach
also neglects Auxon-loop Auctuations, which is probably
correct for high fields. In fact, Korshunov and Larkin
have used an asymptotic high-field expansion for the
original phase variables, avoiding an assumed Auxon
coordinate. They find that, for d «A, ,b, T'"/T,"'

3,
this confirms the absence of a 2D phase for 8= 1.

In the present work, a previous Letter is presented in
detail. In Sec. II the free energy of M superconducting
layers, excluding in-layer vortices, is transformed into a
quantum problem of fermions on M chains. These fer-
mions are a precise mapping of the superconducting
phases, and no assumption on the presence of Auxon
coordinates is necessary. The critical field 0, &

is found,
and a mean-field solution shows the existence of "8
phases, " i.e., a sequence of phases with Auxon lines 8 lay-
ers apart. The presence of these phases is expected on
general grounds in view of the discreteness of the layers.
The precise location of these phases is not essential for
the following section. Section III solves the fermion
problem in an 8 phase by first linearizing the fermion
spectrum around the Fermi points (as determined by the
magnetic field) and then deriving renormalization-group
(RG) equations to two loops for the interacting fermions.
Analytic arguments and numerical solutions determine
bounds on the melting temperatures T' '. Section IV
considers the vortex transition T,' ' in a system of 8 cou-
pled layers based on I and on comparison with Monte
Carlo data; the conditions for T' '& T,' ' and the re-
sulting 2D phases are discussed. Section V summarizes
the experimental data of Table I in view of the present
theory.
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II. FERMION REPRESENTATION

—(HP0/8m ) g BO„(r)/Bx, (6)

where Ok(r) is the Fourier transform of 0„(r) with
lk (vr/d and

A., /d
P(k)=

4~T 1+(4A, , /d ) sin —,
' kd

The notation is the same as in I; i.e., the length scales are
A, , the in-layer penetration length; d0, a layer thickness;
A,, =A, /d0, the effective penetration length; d, the layer
spacing; and g0, the in-layer coherence length; typically,
k, /d =10 —10 . The energy scale is set by r=p0/4~ 1,„'
note that the experimentally determined A,,b is
A.,b

=A(d/d0)'~ [see discussion below Eq. (27) of I].
The problem at hand is to evaluate the partition sum of

Eq. (6), i.e., integrate exp( F/T) over al—l configurations
of 0„(r). Except for the k dependence, this problem is
similar to that of the commensurate-incommensurate
transition in 2D. To solve this problem, I use a
method close to that of Schulz, a method which was
efficient for solving the critical behavior at the
commensurate-incommensurate transition.

The problem is first transformed into a quantum prob-
lem of a boson field by rewriting the x2 coordinate as
x2 =it, where t is the time variable in the quantum prob-
lem. E becomes then a Lagrangian L for a boson field.
Defining Ok(q) with q the Fourier transform variable of
x

&
(the t dependence is implicit) and its conjugate mo-

menta ark(q)=5K/5[80k(q)Idt] yields the equivalent
Hamiltonian for the first term of (6),

~0 Xp (k )[~k(q )~—k( 'q)+p0'q Ok('q)0 —k(
k, q

—(P0 P(k)]q Ok(q)0 „—( —q)] . (8)

Consider the problem of superconducting layers with
phases y„(r) on the nth layer at position r=(x&, x2) on
the layer. These phases are coupled by a Josephson cou-
pling J and an external magnetic field H is parallel to the
layers. The analysis assumes that the phases y„(r) are
nonsingular; i.e., there are no in-layer vortices; these
competing vortex excitations are considered in Sec. IV.
The problem thus involved Auctuations of both Auxon
loops and Auxon lines; the latter are induced by H.

The magnetization of fluxons in the direction parallel
to the magnetic field, say, the x2 direction, is
Mz=($0/2vr)Q„BO„(r)/Bxi [from summing Eq. (39) of
I], where 0„(r) is the gauge-invariant relative phase of
layers n and n —1 [Eq. (Sb) of I] and $0=bc/2e is the fiux
quantum. The effective free energy is obtained from Eq.
(15) of I by setting s„(r ) =0 (no vortices) and by adding
—

HM2 /4m,

9'= f d r g ,'TP(k)[—VOk(r)] —(J/g0) g cos0„(r)
k n

tion. Define now boson creation and annihilation opera-
tors ck(q) and ck(q) by

Ok(q) =i(2P0 q l ) '"[ck(q) —c k( —q) ],
(9)

~k(q)= —(P0lql I2)' [c„(q)+c „(—q)] .

where, with M as the number of layers,

P0+P (k)
V„=M ' g exp(iknd ),

k

—P0+P (k)
U„=M ' g exp(iknd ) .

k

Define now density operators in term of fermion an-
nihilation operators a„(q),b„(q),

p, „(q)= ga„(p+q)a„(p),

p, „(q)=g b„(p+q)b„(p),

with the well-known commutation relations

(12)

[p, „(—q),p; „(q')]=(—)' '(qL/2')5„„,5, (i =1,2),

(13)

where L is the length in the x, direction. Thus the densi-

ty operators can be related to the previous boson opera-
tors via

p, „(q)=( q L/2~)' c„(q), q)0,
(14)

pz, , (q)= (lqlL/2~)' c„(q), q (0,
and p, „(—q)=p; „(q) (i=1,2). Equation (10) then has
the form

H0=(2'/L) g g V„„.[p) „(q)p) „,( —q)
n, n' q&0

+ g U„'pi, (q)pz ( q) ' .

Returning now to the cosO„ term in Eq. (6), the
fermion-boson transformation is required,

Note that p0 is used in this definition, rather than the
original p(k); with a k-dependent p(k), the following
transformation into fermions is not feasible. In terms of
the Fourier transformed operators c„(q ),c„(q ), Eq. (8)
becomes (up to a constant term)

H0= g lql[v„„ct(q)c„(q)
In, n, q

—
—,
' U„„[c„(q)c„(—q )+c„(—q )c„(q ) ]],

(10)

The parameter P0 is, for now, arbitrary. The form of the
two last terms in (6) is not aS'ected by this transforma-

P, „(x,) =(2~a) ' exp[+/, „(x,)],
with the upper (lower) sign for i = 1 (i =2) and

(16)
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P, „(x,)=(2mlL) g q 'p; „(q)exp[ —
—,'a q~ i—qx, ]

q

(i =1,2) . (17)

B8„(x])/Bx] =(2m. /L ) g [p, „(q)+pz „(q)]exp( —iqx, ),
q

8„(x,)=i(4~PO) ' [P] „(x,)+])]~„(x])],
so that

g, „(x,)Pz n(x, )+H.c.

=(7ra) ' cos[(4~Po)' 8„(x,)] .

(18)

(19)

To recover the cos8„ term of (6), the value p]]=(4') ' is
determined.

The magnetic-field term in (6) involves, by using Eqs.
(17) and (18),

The parameter a in (16) is a momentum cutoff, i.e.,
a=go, and the representation (16) is valid in the limit
a —+0. The precise definition of a is not significant here
since the phase transition, as obtained in Sec. III, is in-
sensitive to a. Equations (9) and (17) imply

which after x, integration and n summation is just the to-
tal fermion density. Since Auxons correspond to 2~ vari-
ations in 8„(x), Eq. (20) shows that each fiuxon line at
the nth layer corresponds to one fermion on the nth
chain. The meandering of the Aux line along the x2
direction corresponds to the time evolution of the fer-
mion.

The term with Vo in (15) can be written as a free-
fermion term by using the equivalence

y [p] „(q)p] „(—q)+p, „(—q)pp „(q)]
q)0

~g q [a„(q )a„(q ) b„(q )b—„(q )],
q

which yields the final form of the fermion Hamiltonian,

&F= g I Voq[a„(q)a„(q) —b„(q)b„(q)] ho[at—(q)b„(q)+b„t(q)a„(q)]
n, q

—(HQOI4vrT)[a„(q )a„(q )+b„(q )b„(q )]+(2~/L ) Uop, „(q )pz „(—q) ]

+(AIL) g g V„„[p]„(q)+pz „(q)][p]„(—q)+pz „(—q)]

+(2n/L ) g g ( U] —V] )p] „+](q)pz „(—q ), (22)

= T
n 2+ &.,0

—&., +1
e

4g+ 1+
2T d

a/n/

2+ 6„0—5„+,
e

where bo=~JalgoT. The fermions a„(q) and b„(q) are
now identified from the first term of (22) as right- and
left-moving fermions with velocities +V0, respectively.
The A0 term couples the right- and left-moving fermions
and by itself would lead to a gap of 2b,0 in the spectrum.
The magnetic-field term is a chemical potential which can
create a finite fermion (or hole) density above (or below)
the gap leading to a Fermi surface. All the other terms
are density-density interactions, which from Eq. (11) and
pa=(4') ' are

for ~n ~
(((A,, ld)' is —(1,, Id )' r/4T, which is compa-

rable to the Fermi velocity Vo,' i.e., Eq. (21) describes
strongly interacting fermions. As shown in the next sec-
tion, the magnetic-field term leads to different effective
interactions between fermions near the Fermi surface for
which a RG solution is possible.

The study in I, for H =0, shows that the Auxon system
Eq. (6) has a phase transition at a temperature T= T&
[Eq. (45) of I]. When T(T&, the system has a finite
correlation length g&, which implies that the fermions in
Eq. (22) have a gap b, -g& ', i.e., b,o is renormalized by
the interactions into a finite A. Adding now the magnetic
field means that when the corresponding chemical poten-
tial exceeds 6, fermions start occupying states above the
gap. In terms of Auxons, this phase transition is the criti-
cal field H„when Auxons start penetrating into the sys-
tem, i.e., H„=4~Th Igo.

From the solution for gI near TI [Eq. (46) of I], H„
has the form

where H„—exp[ b(1 —
T IT& ) —' ], (24)

a=1+d/2A, , —(d/X )' (I+d/4A, )'

Since U„= V„ for all n %1,0, the only interchain interac-
tion in (22) which involves U„—V„ is that for neighbor-
ing chains with U] —V] = T le [the last term of (22)].

Note that for A,, /d )) 1 the interactions (23) decay as
exp[ —

~
n

~
(d /A. , )

'~ ], i.e., a decay which involves
(A,, /d)'~ ))1 layers. The magnitude of the interactions

where b is a constant, while not too close to T& [Eq. (47)
of I],

[2(1 T/7 )1

Hc1 (25)

The RG method of I is not e%cient for studying
H )H„since with a finite fiuxon density 8„(x) acquires
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a term linear in x& whose Fourier transform is singular
and its handling requires special care. The present fer-
mion approach is efficient for the range T (Tf and
H )H, &, as demonstrated in the related commensurate-
incommensurate problem.

A qualitative understanding of the H & H„case is ob-
tained by a mean-field solution of (22) in which the order
parameter is the fermion density nf, i.e.,
(p; „(q=0) ) =nf /2 Th. is neglects another order param-
eter which is a density modulation with wave vector
2rrnf. This modulation (whose onset is just the melting
transition studied below) is assumed to be small com-
pared with nf,' this is justified at least near the melting
temperature and not too close to H„.

Assume in general that Auxons penetrate only every
8th layer, where 8 decreases with H. An ordered Auxon
lattice has then periodicities dd and nf in the direc-
tions perpendicular and parallel to the layers, respective-
ly. Both nf and 8 are considered now as variational pa-
rameters. The on-chain terms of (22) correspond to fer-
mions with dispersion (hp+ Vpq )' on every 8th chain
with occupied states at ~q ~ (~nf The in. terchain interac-
tions are replaced by their q =0 terms and summed over
all intervals n —n' of occupied chains. The expectation
value of (22) becomes

&HF & f."f dq
ML "o

H p(g2+ V2 2)1/2
p p'q

4 T
2

ETd 1 —A 2

(26)

H/H„=4~Vpnf(A, , /d )' /bpZ, (27b)

10

Minimizing (26) with respect to nf and 8 yields, for
1 «8 «(A, , /d )'",

', j'(A., /d) '~ (nVpnf/bp) = In(2vrVpnfl&p) —
—,
'

(27a)

so that 8-H and nf -H' up to logarithmic terms.
Note that for A,, /d )) 1 the location of the minima of (26)
is T independent.

Numerical results for minimizing (26) are shown in
Fig. 1 for A,, /d=10 . The plateaus correspond to the
range where a given 8 has the lowest energy. Within a
plateau, as H increases, the Auxon density increases only
in the x t direction as shown by the increase in nf (dashed
curve). The centers of the plateaus are within 3%%uo of Eq.
(27) already for 8 )4; numerically fitted exponents are
8-H ' and nf -H

The presence of a plateau for each integer 8 is expect-
ed in general in view of the discreteness in 8; an 8 phase
is the stable phase for some range of fields. Similar con-
clusions were obtained by mean-field solutions of the
original fluxon problem.

III. MELTING TRANSITION

In this section, I derive the melting transition tempera-
ture T' ' of a Auxon lattice in an 8 phase. The precise
8-H relation, as estimated above, is not essential for the
following solution.

The melting transition is expected to be a second-order
transition with a diverging correlation length at T' ' so
that only low-lying excitations are relevant. In terms of
fermions, the on-chain terms lead to occupation of fer-
mion above a gap b, with wave vectors

~ q ~

(q„while the
interchain couplings may induce a gap at +q, . The low-

lying excitations are then electron-hole excitations near
+q, which justify linearization of the spectrum near +q,
with an appropriate new Fermi velocity; this procedure
was efficient in solving the commensurate-
incommensurate transition, a problem which corre-
sponds to the on-chain terms of (22).

The velocity term Vp in (22) can be shifted to
Vp+ Upf&, and the added kinetic term is balanced by
substracting a density-density interaction by using the
equivalence (21); f, is, for now, arbitrary. The spectrum
of the bilinear term is then +E where Eq =(E~+4p)'
and E =( Vp+ Upf, )q so that q, is given by
E =Hgp/4rrT. The velocity at the Fermi surface is

C

then

V, =(Vp+ Upf i) q, [(Vp+ Upf i) q +Aoj (28)

10

10

Qc

Note that renormalization of q, and V, by interactions
(e.g. , as in the mean field solution of Sec. II) modifies the
q, -H relation; the following RG solution is however not
sensitive to the precise values of these nonsingular correc-
tions.

The next step is to define a Bogoliubov transformation
to the fermion operators a„(q),p„(q) which diagonalize
the bilinear terms, i.e.,

10
10

I I I I I I

10(
I I I I I 1 I I

10
I I I I | I III

10'
I I I I I I I4

H/Hc

a„(q)=y a„(q)—5 /3„(q),

b„(q ) =5~a„(q )+y~p„(q ),
(29)

FICi. 1. Minima of the mean-field energy [Eq. (26)] for
X, /d = 10 . The solid line is 8, and the dashed line is

Q, =sr Vonf /ho, proportional to the fiuxon-lattice wave vector
parallel to the layers.

where y =[1+(E —E ) /hp] ' and ye+5&=1; for
H )H„, the band of the a„(q ) fermions is partially occu-
pied, while that of the p„(q) is full. Consider now an in-
teraction term with the substitution of Eqs. (12) and (29):
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pi, .(q)pi, .( —q)= X r, +,r, r, —,r, ~'. (p+q)~. (p)~'. (p' —q)~. (p')+ (30)

where terms with P„(q) operators are neglected. The
latter terms describe excitations from a full band below
the gap 6 and therefore do not contribute to low-energy
excitations; these terms may shift the overall energy or
even affect the dispersion of a„(q). In the following RG
solution, such interaction terms do not lead to logarith-
mic singularities and can therefore be neglected.

The next step is to focus on states near the Fermi sur-
face +q, with velocities +V„where the precise value of
q, or V, (being affected by the interactions) is not essen-
tial in the following. The interactions in Eq. (30) can be
classified into small-q ones (~q &&q, ) and large-q ones

I

y ~y =y„5 ~5 =5„p)0,
y y =5„5 5 =y„p (0, (31)

so that (30) can be written as

t

(q =+2q, ) which connect states a„(p)—:a„(p ) for p )0
and a„(p ) =b„(p ) for p &0. The new fermion operators
a„(p) and b„(p ) are relevant only near +q„respectively;
hence, they can be considered as independent fermions
for all p. The coefficients in (30) are replaced now by
their values at +q„ i.e.,

p, „(q)p, „(—q)~r, p, „(q)p, „(—q)+5,p2 „(q)pz „(—q)+2r, 5,p, „(q)p2 „(—q)

+2y, 5, g a„(p+q)b„(p' —q)a„(p')b„(p) . (32)

The first three terms are density-density interactions with p; „(q ) defined as in Eq. (12) in terms of a„(p ) and b„(p ), and
the last term is a backscattering interaction for the new fermions. Rewriting all the interaction terms of (22) in this
manner yields an effective Hamiltonian for the low-lying excitations of the form

&~= g V, q[a„(q)a„(q) b„(q)b„(—q)]+(1/L) g g, (n n') —g a„(p+q)b„(p' —q)a„(p')b„(p)
n, q n, n'

+(1/L) g g, (n —n') g p, „(q)p, „.( —q)+(1/2L) gg4(n —n') g [p, „(q)p, „,( —q)+p, „(q)p, „.( —q)],
n, n' n, n'

(33)

which has the conventional form of one-dimensional (1D)
fermions " except that here the three types of couplings
depend on chain indices. These couplings are

g, (n )/2m. =2r, 5, ( V„+U„),

g2(n )/2vr=2r, 5, V„+(y,+5, )U„,

g4(n )/2'=(r", +5, ) V„+2y,5, U„

—(y, +5, )( Vo+ Uof, )5„„..

(34)

Here g, (n ) is a backscattering interaction, g2(n) is a for-
ward scattering of right- from left-moving fermions, and
g4(n ) is a forward scattering between right- (or left-)
moving fermions.

The system (33) of electrons with interchain interac-
tions has been studied in the context of phase transitions
in one-dimensional chain systems where electrons
have interchain interactions. Of particular interest is the
possibility of having a phase transition into a charge-
density-wave (CDW) state; i.e., the fermion density be-
comes modulated with a wavelength of (2q„k, ) (k, de-
pends on the interactions) and a gap opens at the Fermi
surface. In terms of Auxons, a CDW corresponds to an
ordered Auxon lattice with wave vectors 2q, parallel to
the layers and k, perpendicular to them. The critical
temperature for the onset of a CDW corresponds to the
melting temperature of the fiuxon lattice.

The RG solution of these type of problems proceeds
by identifying lnE, /co terms in perturbation theory,

where I follow here the procedure in which co/V, and

E, /V, are low and high cutoffs, respectively, in the
momentum integrations. The relevant diagrams are
shown in Fig. 2; each diagram involves integrations on
internal Green's functions, as well as a dependence on

(c)

FIG. 2. Diagrams for the Hamiltonian (33). Solid and
dashed lines correspond to right- and left-moving fermions, re-
spectively. The value of each diagram is listed in Table II.
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TABLE II. Diagrams. The graph column gives the figure label in Fig. 2 and the result of the integration in terms of x = lnE, /co;
vortex column gives the type of vertex (I; ) or self-energy (X) being renormalized by the terms in the contribution column. Note that
two-loop terms lead to distinct diagrams when right- and left-moving fermions are interchanged so that an additional factor of 2
should be included.

graph Vertex Contributions

(a) x —2yi(n —n')yz(n n—') —g y|(n —m )y, (m n')—+2y|(n n')yz—(0)
m—yi(n —n')

(b) x/2 —4y, (n n—') g yz(n —m )yz(m n')+2y—,{n—n')y, (0)yz(n —n')
m

2y—', (n n')y, —(0)+2 gyf(n —m )yz(m —n') —4y, (0)y, (0)yz(n n—')
m

+2yz(n —n'} g yz(m)

(c) x/2 2y i(n —n')yz(n —n')y4(n —n')
2y )(0)y2(0)y4(n —n ') +y2(n —n')y4(0)

—g y~(n —m )yz(m —n')+ y f(n —n')y&(0) —g y, (n —m )y~(m —n')

(d) x/2 y~(n n') g y,—(n —m )y, (m n') —2y,—(n n')y—z(0)y&(n n')—
y~(n —n') g y, (m ) —2y, (0)yz(0)y&(n —n') yz(n——n')y~(0)

m

+ g y&(n —m )yz(m n')—
(e) —x /2 —2y, (n —n') g yz(n —m )y~(m —n')+2y, (n n') y( 0) y—( n—n')

m

+2y&(n —n')y2(n —n')y4(0)+2y &(n —n')y2(n —n')y4(n —n')
2yz(n——n') g y~(n —m )yz(m —n')+2y &(0)yz(n n')y~(n —n')—
—2y2(n —n')y4(0)+2y &(n

—n')y4(n —n')

(f) —x /2 2y, (n n') g y—z(m )y~(m )
—2y, (n —n')y, (0)y~(0) —2y, (n —n ')yz(0)y~(0)

m—2y, (n n')yz(—0)y~(n —n')+2 g y, (n —m )y~(n —m )y, (m n')—
m

2yz(n n') g y~—(n —m )yz(m n') —2y—, (0)yz(n n')y~(n n')— —
m

+2y (n —n')y4(0)

(g) x/2 2y&(n n') g yz(n —m—)yz(m n')+4y, (—0)yz(n —n')y~(n —n')
m

+2y,'(n —n') y, (n —n')

(h) x/2 I4 2y~(n —n'—) g yz(n —m )yz(m —n') —4y, (0)yz(n n')y~(n ——n')
m—2y, (n —n')y~(0)+2y~(n —n') g yz(m )

—4y&(0)yz(0)y~(n —n')

+2 g y', (n —m )y&(m n')—
(i) x/2 2y, (n n') g y,—(n —m )y, (m —n') —4y, (n —n')yz(0) —2y, (0)yzz(n —n')

m

+2y, (0)yz(n —n') 4y, (0}yz—(0)yz(n n')+2+—yz(n —m)yz{m —n')
m

(j) x/2 4y &(n
—n')y2(n —n')+4y&(0)y2(0)y&(n —n')+2y&(0)y&(n —n')

—2 g yz(n —m )yz(m —n')+2y, (0)y, (n —n') —2g yf(n —m )yz(m —n')

(k) x/2 —g y, (m ) —g yz(m )+2y, (0)y,(0)
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By, (n n'—,x )

BX
= —g y, (n —m, x )y, (m n—', x )

—2y, (n n', x—) [y2(n n', x )—
—y2(O, x )],

(35)
By2(n —n', x ) = —y, (n n', x) . —

BX

In terms of the Fourier-transformed y;(k, x)
=g„y;(n, x) exp(ikn) (i =1,2, 4), these equations be-
come

By, (k, x) = —y, (k, x)
BX

y y (k2')[yi(k —k' x) yi(k—x)]
k'

(36a)

By2(k, x )

BX g y, (k —k', x )y, (k', x ) .
k'

(36b)

g;(n n—') (i =1,2, 4). The integrations are fairly stan-
dard ' with the results collected in the first column of
Table II where x = lnE, /co. The dependence on

g; (n n')—is found by decomposing each vertex (with four
legs) in the diagram to all possible distinct diagrams with
pairs of two legs; each such decomposed diagram deter-
mines a particular product of the g, (n n—'). The result
of this decomposition is given in Table I, separating them
into the various renormalized vertices I";, corresponding
to y;(n n') =—g;(n n—')/2~V„and to a self-energy X.

The RG equations are generated by the lnE, /co
coefticients of I;X . Considering first the one-loop result,
the renormalized couplings satisfy

From Eqs. (11) and (34), the initial values become

y, (k, O) = (8vry, 5, /V, )[P(k )
—P(m )],

y~(k, O) =(I/V, ) [2nP(k )
—(y, —5, ) /[8vrP(k ) ]

—8vry,'5,'P(vr)] .

(37)

y2(m. , O)=[8~V,P(m. )] '(y, —5, ) [[4vrP(m)] 1] .. —(38)

The sign of (38) is negative for T &r/4, which remark-
ably is independent of H (the latter affecting y„5„and
V, ). Note that the RG expansion in y, is valid near
k =m and T= r since both y;( k =~,0) (i = 1,2) are small.
Thus the scenario for T &r/4 is consistent and the sys-
tem is unstable. For T) ~/4, y, (n.,x ) initially increases
so that y, (k, x) has a weaker k dependence and presum-
ably becomes k independent when x —+ ~, corresponding
to a gapless or disordered phase. The latter case, howev-
er, depends also on the behavior of y, (k, x) at kW~,
where it is not small and higher-order terms in y, can
affect the trajectories. Thus ~/4 is a lower bound for the
m.elting temperature T' ".

For an 8 phase, fermions are present only on every
8th chain so that the initial couplings are

For 1,, /d ))1, y, (k, O) is sharply peaked at k =0 and
then decreases slowly to y, (n., O)=0. The onset of a
CDW is signaled by an appearance of a negative y&(k, x )

at some k, which then diverges ' to —~. The most
susceptible k for this scenario is at the minimum of
y, (k, O), i.e., at k =m-, this would yield a triangular fiuxon
lattice. Thus, if the initial fiow of y, (k, x) is into a nega-
tive value, the —y&(k, x) term in (36a) will eventually
yield the divergence to —ao.

The initial flow of y, (m, x ) is dominated by k'=m. in
Eq. (36a), i.e., by the sign of y2(m. , O), where

Since y, (n =O, x ) is equivalent to —y2(n =O, x ) by inter-
changing the ordering of fermion operators, one can add
a k-independent term to both y, (k, x ) and yz(k, x )

without affecting the result. This feature can be used to
shift the initial y, (k, O) so that y, (k, O) )0 for all ~k

~

& n..

y; &(k, O) = g y; (n 8,0) exp(ikn 8)

8 —1

=(1/8) g y, (k+2~m/8, 0) .
m=0

(39)

Repeating the previous analysis yields now an instability when

T & —'r g sin [vr(2m + 1)/2l ]/ g sin [m(2m + 1)/21 ], (40)

which yields the lower bounds on the melting temperatures,

r"'=~/4, 8=1; T'~ '=ri/8/8, 8) 2 . (41)

Note that for large H, H »H, &, the mixing in (29) should be small, e.g. , in mean field 5, =(H, &/H) ~ &&1. Thus the
backscattering coupling yi(k, O) of Eq. (37) is small for H ))H,

&
even near k =0; yz(k =0,0) is however of order l. It

turns out that yi(k, x) appears in first order in both one and two loop levels (see Table II) but only in second order in
three loop level. Thus for H ))H,

&
it is necessary and su%cient to consider RG with two loops. Note that H ))H„

corresponds to a fairly large range of 8 values, e.g., 8 (60 in Fig. 1 for H/H„) 10.
I proceed now to the two-loop equations and their numerical solution. The two-loop terms in Table II (which now

involve y4) in terms of y, (k ) (x is implicit for brevity) lead to the following RG equations:
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ay, (k) = —y, (k, x )
— g y~(k')[y, (k —k') —y, (k )][1+y, +y4]

BX k'

—yi(k) g [yi(k')+yq(k')+2yq(k')y4(k')]
M k,

+ g [y, (k')y~(k —k')+2y, (k')y~(k —k')y4(k —k')+y4(k')y, (k —k')]
k'

2 2y yi(k')y4(k —k')yi —y, (k) y y, (k')y4(k —k')+2y, (k)y iy4,M k, M k,
(42a)

ay, (k)
BX

1
X y i(k') y i(k —k') [ I+y i

—y4]— 2

k'
g y, (k')y, (k")y4(k —k' —k")

k', k"

—[y~(k) —y4(k)] g y, (k')[y, (k') —y, (k —k')],
k'

(42b)

ay4(k )

BX

ay~(k )

BX g y, (k')y, (k —k')[I+2@~]
k'

+ g y, (k')y, (k")[2y~(k —k' —k")—y4(k —k' —k")]+ g y, (k')y, (k —k') .
k', k" k'

(42c)

These results extend those of Ref. 37 to include the y4
terms [note a misprint in the sign of the last term in Eq.
(16) of Ref. 37].

In the following I choose f, in Eq. (28) so that
g4(n =0)=0 [Eq. (34)]; this choice eliminates the ambi-
guity in cutoA' procedures ' associated with two identical
fermions at short range. Thus

f, =2y, 5, /(y, +5, ) =(1—a, )/(1+a, ),
where a, = 1 —4y, 6, . Equation (28) then becomes

V, = [ Vo+ Uo( 1 —a, ) /( 1+a, ) ]+a, .

(43)

(44)

The parameters involved in Eq. (42) are T/r, A,, /d,
and a„with the latter one depending on H. For example,
from the mean-field estimate Eq. (27b) for 8 (&(A,, /d )'r
(i.e., H is not too close to H„)

1 —a =48(d/A, )' —(H /H) (&1 .

The initial values can be written in the form

yi(k, O) =(2ir/V, )(1—a, )P(k ),
y~(k, O) =( I/8~V, )[16'P(k ) —a, /P(k)],

y4(k, O) =( I/8ir V, )[16~r P(k)+a, /P(k )

—4~r(1+a, )( Vo+ Uof, )] .

(45)

For an 8 phase, the forms (45) are substituted in Eq. (39)
and then used as initial conditions. [Note that in Eq.
(37), y, (ir, O) was subtracted. ]

In view of the sharp structure in y, (k ), numerical solu-
tions for large A,, /d involve many chains, i.e., a large
number of coupled differential equations. Since the insta-
bility occurs in yi(k), the RG equation for y4(k) [Eq.
(42c)] can be neglected as it yields higher-order correc-
tions for the other equations. [In fact, the numerical
solution shows that y4(k) is hardly affected by the RG.]

I

Thus y4(k, O) is used in Eqs. (42a) and (42b).
Some examples are presented in Figs. 3—6 for

A,, /d=10; the number of chains required for conver-
gence was M=960 for 8=1 and M=240 for 8=15; the
8 =15 case was also studied for A,, /d = 10 with M =960.
The numerical solutions show in general that the initial
sharp structure of y, (k, O) is fiattened rapidly; the weak
structure that remains eventually produces an instability
at low T/~. The instability wave vector approaches m

with increasing T/z and equals m in some interval until a
critical temperature T"' '. Above T" ', the initial Aat-
tening of y i(k, x ) is somewhat more rapid and, at large x,
yi(k, x) becomes completely fiat. These features are il-
lustrated in Fig. 3 for 8=5 and in Fig. 4 for 8=15. The
values of a, are chosen to correspond to the plateaus in
the mean-field calculation (Fig. 1); however, T"' ' was
found to be insensitive to the choice of a„ i.e., to varia-
tions in K. The dependence on H is indirect via the
dependence of 8 on K. For example, for 8=15 varia-
tions in the parameter (1 —a, )

' from 1.5 to 3 change
T"' ' by 6%, while a further increase to 10 (keeping for-
mally 8=15) did not affect T"' ' within the numerical
resolution of l%%uo,

' this corresponds roughly to K/H„
varying from —3 to 30 and then to 10 . Thus the precise
location of an 8 phase in terms of K is not significant for
determining the critical temperature. Furthermore,
T" ' is insensitive to the value of A,, /d as long as
8 «(A, , /d)'~ . For example, T"" ' varies by —1%
when A, , /d varies from 10 to 10 . Note also that the
coupling yz(k ) is weakly affected by the RG, as illustrat-
ed in Fig. 5.

Table III summarizes the numerical data for T" ', as
expected, these are higher than the lower bounds of Eq.
(41). It is reasonable to expect that T" ' is an upper
bound on the exact T' ', at T) T" ', yi(k, x) becomes
Oat and the weak-coupling scheme becomes valid. In
fact, the one-loop calculations give higher values of T"
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1

2
3
4
5
6
7
8

9
10
11
12
13

14
15

0.12
0.25
0.37
0.5
0.62
0.75
0.87
1.0
1.12
1.25
1.37
1.5
1.62

1.75
1.87

0.25
0.5
0.61
0.71
0.79
0.87
0.94
1.0
1.06
1.12
1.17
1.22
1.27

1.32
1.37

0.36
0.55
0.69
0.80
0.89
0.98
1.06
1.13
1.20
1.27
1.33
1.39
1.44

1.50
1.55

so that results from a higher-loop calculation approach
T' ' from above.

It is interesting to compare the 8 =1 result with the
asymptotic high-field limit of Korshunov and Larkin,
T'"/T„"'= ', . Since T—,"'=r/8, the data from Table III
yield T"'/T,"'=2.88, i.e., an 8%%uo difference. Thus
indeed T""is an upper bound and is fairly close to the
exact high-field result.

The upper and lower bounds are summarized in Table
III and plotted in Fig. 6. The closeness of T"' ' and
T' ' suggests that the exact T' ' varies as &8, as in Eq.
(41). The full phase digram is shown in Fig. 7, assuming
the mean-field results in Fig. 1 for the magnetic-field
range of an 8 phase.

TABLE III. Critical temperatures. The vortex transition
temperature T,' ', the lower bound on the melting temperature
T'~' [Eq. (411], and the numerical results of the RG equations
TJJ(P)

m

T ( )/&

10 20

FIG. 6. Critical temperatures for T„' '/~ (straight line) and
for the upper and lower bounds on the melting temperature
T' '/~ (curved lines).

I!'Ogio {HJ'H ~)

3.6

3.2--

the melting temperature. In an 8 phase, Auxons
penetrate only between groups of 8 neighboring layers;
the layers in each group are phase correlated both above
and below T' ' and can be considered as an effective lay-
er. For T (T' ' Auxons have positional long-range order
and all layers are correlated, while for T& T' ' Auxon

IV. VORTEX-FLUXON COMPETITION 3.0--

In this section the full problem of Eq. (15) of I is con-
sidered, i.e., the effect of in-layer vortex fluctuations on

2.8--

2. 6

15.0—

12.0-

2.4

2.2 —:
10

12
13

9.0— 2.0--

6.0—
0.

A A
A A A A A A A A A

A A A A t I*
A A

I I I I I I I I I I I
I I t J I I 1 J I I

I I I I I I I
1 J & & 1 J I

3.0—

0.0—

-3.0
0.0 0.2 0.1 0.6 0.8

(15/Jt)k
1.0

FIG. 5. RG behavior of y~(k, x ) corresponding to the case of
Fig. 4(b). The solid line is the initial value at x=0, and the
dashed line is at x =47 near which y&(k, x ) becomes unstable.

02 04 06 08 10 12 14 16' 18

FIG. 7. Phase diagram of the 8 phases. The H/H,
&

values
use the plateaus of Fig. 1. Solid vertical lines are the melting
temperatures T' '/~ (taking here the numerical results
T" '/~); dotted vertical lines are for T„' '/r which satisfy
T„' )/~(T' )/~, i.e., no 2D phases. Dashed vertical lines are
for T,' '/~which satisfy T„' '/~& T' '/~and are therefore strict
2D transitions. The shaded areas are 2D phases. The 2D 8
phases continue into the patterned area until T' ' approaches
T'
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0.7 0.8 0.9

FIG. 8. H-T phase diagram by allowing ~(T) dependence
and H, &(T) from Eq. (24). Vertical phase boundaries are 3D
transitions for 8=1—4. The inset shows the region closer to T,
with two transitions when T,' '/~) T' '/~; the shaded areas are
2D phases for 8=9, 10. The temperature scale corresponds to
T, /~o=0. 1 and T, /~=1. 23. T, /T, =0.925 is marked by a
solid circle. The field scale can be estimated from Fig. 1.

fluctuations decouple the effective layers.
This scenario leads to the problem of the phase transi-

tion in a system with a finite number of layers. This was
studied by Monte Carlo simulations in the limit of an
X-Y model, i.e., k, /d —+~,' the results show that for
small 8 the vortex transition T,' ' increases rapidly and
then saturates at the 3D critical temperature T, . If T,'
is not too close to T„ the dominant fluctuations are those
of vertical vortex lines; i.e., vortex points on different lay-
ers are position correlated to form a line. This implies
that 8 layers act as an effective single layer so that
T,' '=(r/8)P [Eq. (3)]. As 8 increases, (r/8)P becomes
too close to T, in the sense that the 3D correlation length

(T) at T=(r/8)8 is shorter than the thickness dg of
the layer. In the latter case, the dominant critical fluc-
tuations are vortex loops.

For the conventional X-Y model, T, /T,'"=2.4 so that,
already for 8=2, ~/4 is fairly close to T„' even so, the
simulations show that T,' '/T, '"=1.6; i.e., the initial
rise with 8 is steep. In the companion paper, I have
shown that T, is a sensitive function of the vortex-core
energy E, . When E, is moderately large, so that
exp( E, /r) ((J/T, 5 1, T, /r—) 1 is possible so that the
variation in T,' ' as 8 increases can be larger than 8.

It is therefore possible, at least in principle, that
T,' '=(r/8)P for 8) 8. In fact experimental data on
well separated YBa2Cu307 layers show that T„ in-
creases from 71 K for 3 bilayers (8 =6) to 80 K for 8=8
and to 87 K for 8 =16. More recent data show that T,

increases with thickness up to 60 A (8 = 10) with T, fair-
ly constant. Since r( T) decreases as T approaches T, , the
ratio T, /r(T, ) can be linear with 8 (as discussed in Sec.
VI of I) even at 8=16. The values (r/8)E are included
in Table III and in Fig. 6.

As shown in Table III and Fig. 6, T,' ') T' ' for
8 )8;„,where 8;„is between 8 and 10, corresponding
to the lower and upper bounds on T' '. The possibility
T,' ') T' ' allows for 2D phases; i.e., in the range
T' '& T & T,' ' vortices are not thermally excited while
the fluxon lattice has melted. Thus the effective layers in
an 8 phase are decoupled from each other by thermal
fluctuations and exhibit 2D behavior in a strict sense.
This scenario was also proposed in analogy with disloca-
tion theory, though the condition T,' ') T' ' was as-
sumed with no proof.

As 8 increases, T' ' must saturate at T, and then 2D
phases are not possible. Thus, for 8 )8,„,where T' ' is
too near to T„2D phases do not exist. As discussed
above, P,„depends sensitively on the model parameters
E, and J. The full phase diagram in the H-T plane is
shown in Fig. 7.

Finally, note that ~ is itself temperature dependent in a
superconductor; assuming A,,b

=1,'( 1 —T /T, )
'~ yields

r=ro(1 —T/T, ) with ro typically 10 —10" K. Assuming
a critical temperature of T, / (Tr, )=1.23 (see Fig. 6 of I)
and allowing for H„(T) as in Eq. (24) yields the phase di-
agram of Fig. 8, assuming 8;„=8.The shaded areas are
2D phases with 8 =9, 10. An increase in T, /~ due to ei-
ther higher J or higher core energy E, (Fig. 6 of I) gen-
erates additional 2D phases with 8 & 10.

V. DISCUSSION

The data in Table I show that r „)&rJ,i.e., the exper-
imentally observed relation (2) corresponds to unbinding
of vortices at distances where the Josephson coupling
should dominate. The limit on r,„ is the experimental
resolution and sample size; depending on the sample and
temperature, r,„/rJ varies between 10 and 10 . To ac-
count for such data, one must assume that the value of J,
as extrapolated from low-temperature data, must be
strongly renormalized by thermal fluctuations.

A second remarkable experimental result are the values
6—14 of F,z, this can be related to the 8 phases of the
present work. A third relevant observation is the large
variation of T, in superlattices when J is reduced by in-
troducing nonsuperconducting material (see Sec. VI of I).
The latter effect indicates that J is not small, which seems
inconsistent with the presence of 2D phenomena.

All three pieces of this puzzle hang together if in the
experiment there is some (unintentional or unspecified)
magnetic field parallel to the layers. In fact, data with
weak magnetic fields perpendicular to the layers" show a
significant reduction in the exponent a(T) [Eq. (2)]. This
can be understood if the magnetic field has a small com-
ponent parallel to layers; as this component increases, 8
is decreased and therefore a ( T ) —8 is reduced. From the
mean-field estimate, a(T) —H , which is consistent'
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with the data.
The presence of Eq. (2) for high fields and well below

T, (Refs. 10, 12, and 13) seems outside the range of strict
2D phases. It is possible that J is reduced by thermal
fiuctuations, but remains finite, so that Eq. (2) can be val-
id for not too small currents.

In conclusion, the present work has studied the melting
transition of an 8 phase. The solution is of interest for
the general phenomena of melting transitions as well as
for understanding a number of puzzling experiments.
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