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Order parameter near a superconductor-insulator interface

Branko P. Stojkovic and Oriol T. Valls
Center for the Science and Application ofSuperconductivity, School of Physics and Astronomy, University ofMinnesota,

Minneapolis, Minnesota 55455-0149
(Received 1 June 1992)

We examine the behavior of the superconducting order parameter near a superconductor-insulator in-

terface by self-consistently solving the Gor'kov equations in a slab geometry. We obtain results as a
function of temperature and the coherence length go. We find that even for small values of go there is no
significant depletion of the gap parameter near such an interface over any extended temperature range.
This is in agreement with experimental information and in contrast with results obtained from an extra-
polation of standard Ginzburg-Landau based results. We also find that quantum-size eft'ects, which are
present in the large go case, disappear as go decreases.

I. INTRODUCTION

The study of boundary effects in superconductors has a
long history. A great deal of work on the subject was
done over a quarter of a century ago. The results of that
work were eventually embodied in review articles' and
textbooks. The view that emerged at that time makes
heavy use of phenomenological descriptions of the order-
parameter behavior based on the Ginzburg-Landau (GL)
free energy functional. A basic assumption in GL
theory is that the superconducting coherence length go is
much larger than the Fermi wavelength A,~=2~/kF (kF
is the Fermi wave vector). This assumption certainly
holds in ordinary metallic superconductors, where the
methodologies of the textbook theory are certainly
justified. As a result the theory has proved very success-
ful over the years in describing a large variety of experi-
mental situations.

It is now well established, however, that there are low
carrier concentration superconductors (e.g. , high-
transition-temperature oxide superconductors) for which
the condition kFgo)) 1 is violated. This has disturbed
the harmony between theory and experiment. It has been
pointed out by several authors that the standard theory,
if straightforwardly extrapolated to the case where k~go
is not large, predicts a very considerable depletion of the
gap function (pair potential) near the interface between a
superconductor and an insulator (or the vacuum). Such a
depletion would occur over a very extended temperature
range, while for conventional superconductors it occurs
only at temperatures extremely close to the transition
temperature T, and is therefore often unimportant. This
depletion would entail, for short coherence length materi-
als, rather drastic experimental consequences.

The importance of understanding the behavior of the
gap function b, (z) (we denote by z the direction normal to
the surface) near a superconductor-insulator (SI) interface
is hard to underestimate. Information concerning the
presumed behavior of a superconductor in the bulk is
usually gathered through the use of experimental tech-
niques which often probe only properties quite near the
surface. Tunneling, for example, probes a sample within

a region of order of the coherence length from the sur-
face, while photoemission experiments, from which de-
tailed information about the gap structure can be extract-
ed, when the transition temperature is high enough, col-
lect electrons from within an escape depth which, in
practice, is also very small. Indeed the fact that super-
conducting properties are measured at all by such
probes ' provides a rather obvious argument against the
existence of any dramatic depletion in b, (z).

The question at issue, from a theoretical point of view,
can be described as the need to determine whether the re-
sults of a microscopic calculation would agree, at small
values of go, with those obtained from the usual phenom-
enology extrapolated to such values. Not much work has
been done on this point. A solution of the Bethe-Salpeter
equation above T, for a BCS-type jellium model' gave
support to the notion that a surface is not inimical to su-
perconductivity when go is small, since it was found that,
in that case, the transition temperature at the surface is
very slightly increased with respect to the bulk value, and
the eigenvalue profile at the superconducting instability
in enhanced, rather than depleted, at the interface as the
temperature T approaches T, from above. Other studies
have focused"' on the effect of a possible modification
of the pairing interaction very near the surface, rather
than on the purely geometric effects that we emphasize
here.

In this work we approach the problem from a simple,
but purely microscopic point of view. We write down the
Gor'kov equations for the standard BCS model and we
solve them, not for an infinite system, but for a thick slab,
half of which is a representation of a semi-infinite system.
We vary the relevant parameters in the problem to study
systems with shorter and longer coherence lengths, and
we obtain results as a function of temperature. The
method we use is rather similar to that previously
developed' within the context of He films, except that
certain important modifications (as will be seen in detail
later) are required to properly treat the problem when
kF('o is not large, and that we assume in this work s-wave
pairing. The use of a simple BCS model may be ques-
tioned on the grounds that since kF$=0. 36( TF /T, ), a
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decreasing value of kFgo indicates the approach of the
strong-coupling region. However, the results that we find
cover a region of moderate and large values of this pa-
rameter, and we find that they are determined largely by
the geometrical constraints inherent to the problem.
Therefore they should be robust with respect to changes
in the details of the treatment. We will return to this
point when recapitulating our conclusions in the Sec. IV.

Our main results can be summarized as follows: our
calculation, presented in this paper, shows that near a
superconductor-insulator interface there is no significant
depletion in the superconducting order parameter (gap
function) over any broad temperature range even in short
go superconductors. We show that the standard theory
can be quantitatively applied only to the cases when go is
large. Thus, surface probes can indeed yield direct infor-
mation on the bulk behavior of short coherence length
superconductors, a result which agrees with experiment.

This paper is organized in the following way: In the
next section we set up the Gor'kov equations for our
model, and discuss the methods required for their solu-
tion. Then, in Sec. III, we present results for the gap pa-
rameter as a function of z for a variety of values of the
relevant input quantities. We also present results for the
variation of quantum oscillation effects in the average or-
der parameter with go. We then discuss the significance
of our results in Sec. IV.

+6(z)F'(z, z', ki, co„)=6(z —z'),
( ice—„—@i+V, /2m +p)F*(z,z', ki, co„)

(2.3a)

—b*(z)G(z, z', ki, co„)=0 (2.3b)

with

e = k
1

1 2 1 (2.4)

and ki is the wave vector in the transverse (x,y plane)
direction. In order to consider the z dependence of the
order parameter we find it useful to expand the relevant
functions in terms of the complete set of eigenfunctions
u, (z) of a one-dimensional box:

G(z, z', ki, co„)=gu (z)u (z')g (ki, co„), (2.5a)

F(z, z', ki, co„)=gu (z)u„, (z')f, .(ki, co„), (2.5b)

a thickness d in the z direction. The superconductor is in
the region 0&z &d. In this geometry the above equa-
tions are clearly translationally invariant in the x,y plane
and it is convenient to perform a spatial Fourier trans-
form in this plane. One then obtains

(i co„—@i+V, /2m +p)G(z, z', ki, co„)

II. THEORY AND METHODS

+ b, (r)F*(r,r', co„)=6(r —r'),
( i co„+V /2m +p )F—*(r,r', co„)

—b, *(r)G (r, r', co„)=0,

(2.1a)

(2.1b)

where 6 and F are the standard single-particle Green's
functions, m„are the Matsubara frequencies given by
co„=(2n 1+)mT, and the order parameter (gap function
or pair potential) satisfies the self-consistency equation:

b, (r) =gTQF(r, r, co„) . (2.2)

In our model we shall assume that electrons with energy
within a range coo of the Fermi surface interact through
an attractive point contact interaction of strength g. The
physical origin of this interaction is left unspecified. In a
given gauge 6 can be taken to be real without loss of gen-
erality.

We consider these equations in a slab geometry, with
the slab being infinite in the x and y directions and having

In this section we introduce the model we use and the
methods we employ to solve it. Our method is based on
the self-consistent solution of the for'kov equations.
The solution of these equations leads us to results for
physical quantities such as the shape of the order param-
eter near the insulator-superconductor interface.

We begin with the Gor'kov equations in their standard
form for a system without translational invariance, in the
absence of a magnetic field ( A=0)

(ice„+V /2m+@)G(r, r', co„)

where

u (z)=v 2/d sin(k, z), k (2.6)

N

b, (z)=gu, (z)b, (2.7)

Since b, (z) should be symmetric with respect to a plane
bisecting the slab at z=d/2, it is sufticient to take only
odd v values in (2.7). In Eq. (2.7) the upper limit in the

These functions obviously satisfy the boundary condi-
tions u, (z=0)=u (z=d)=0, corresponding to an
infinite potential barrier at the surfaces. In fact, these
boundary conditions are not exactly correct, due to the
"leak" of electronic wave functions outside the metal
boundaries as shown by Sugiyama. ' More precisely, one
should assume that the electronic density vanishes at
z = —5 and z =d+5. Nevertheless, since the value of 6
is known to be kF6-1, our boundary conditions are
still appropriate for the thicknesses we will consider here
(kFd ))1). Note that we have assumed here s-wave pair-
ing. If we assumed pairing in a higher-order partial
wave, it would be necessary to take into account the
depairing effects of scattering by random surface inhomo-
geneities as was done in Ref. 17. In the s-wave case the
surface roughness enters the theory in the same way as
nonmagnetic bulk impurities' (see also remarks in Ref.
17) and therefore its effects can be neglected to a good ap-
proximation.

The order parameter is, of course, not a constant in
space, as it would be in the bulk geometry. However, it
varies only in the z direction. Then one can also expand
the order parameter as
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sum, N, is determined by

N = [(kFd lvr)+1+ coo/EF ] (2.8)

N d kj
hp=gTQJ„, p f gf (ki, co„) .

(2'�)
(2.13)

k
1 1

2m P 2m
(2.9)

Tnk & ~n &x ~p+P (2.10)

and making use of the orthogonality of the u 's, the
Gor'kov equations transform into a set of equations for
the matrix elements:

where the square brackets denote the integer part of the
expression they enclose and EF is the Fermi energy.
Physically, this corresponds to the degeneracy of the usu-
al Fermi sphere into a set of rings (Fig. 1), distinguished
by a quantized k, =k as in previous work. N corre-19

sponds to the maximum number of rings within a sphere
of radius EF +cop.

By defining
2

We have assumed that electron pairing occurs only for
electrons with wave vectors lying in a shell of thickness
2cop around the Fermi surface. Therefore, as cop /EF in-
creases, as in short go superconductors, the limits of in-
tegration in Eq. (2.13) depend increasingly on the indices
v and v', as well as on the parameter kFd. From Eq.
(2.12) we see that the indices in the sum in Eq. (2.13), v
and v', must be of the same parity, since, as mentioned
before, P is an odd integer.

At any finite thickness d, one has to solve the system
(2.11) together with the self-consistency condition (2.13).
This is done numerically, using an iterative procedure to
ensure that (2.13) is satisfied as explained in the next sec-
tion. These equations can be conveniently recast in ma-
trix form. One can define the following matrices (all of
order N XN):

y„k gp (k,co„)++5,f*. (ki, ~„)J, ,p=gp
VV

(y„/, )*f// (ki, co„)—gb~, (k„co„)J,./ =0

with
Cgj, &= dz u (z)u (z)u/i(z),

0

(2.11a)

(2.11b)

Cp, =X~A./3, r/3, =)'.ki~p,p

G/3 =g& (ki, co„), F& =
f/3 (k, , co„),

and (2.11) can be rewritten as matrix equations,

I G+CF*=1
CG —I F =0.

(2.14)

(2.15a)

(2.15b)

1
~vv'p ~ Jvv'p

m~ 2d
(2.12)

1 1+
v —v'+ P v+ v'+/3

J .
/i
= [1—( —1) —+~], +v+ v' —P —v+ v'+/3

One easily finds the forrnal solution for F:

F=[1 +(I 'CI*I 'C] '(I 'C)*I

In the 3 —d limit h(z) is a constant, and therefore

2&2d 1

p

(2.16)

(2.17)

and the self-consistency equation becomes

/
/

/
/

/
/

f
/m

/
I
I
I
I

I
I
i

\
'i

i

I

I

/
/

/

From Eq. (2.16) we see that the matrix F is, in that case,
diagonal, since C& =g b, P &

~b, b„&k6&~, where b,b„&k is
the temperature-dependent three-dimensional gap. Then
one can substitute f& (ki, co„) into (2.13) and obtain the
familiar equation' for 6„„&k in cylindrical coordinates.
In a slab, however, one finds F and G to have off-diagonal
matrix elements different from zero, which makes the
self-consistent calculation, in particular the matrix inver-
sion in (2.16), much harder. For finite thickness, and for
the parameter values that we will consider here, one can-
not neglect the off-diagonal elements. Nevertheless, the
off-diagonal elements of the matrices G and F are small
compared to the diagonal ones, which simplifies the cal-
culations somewhat.

One can then write F as

F=(D+e)-'(r-'c)*r-' (2.18)

FICx. 1. Momentum space in a slab geometry: the Fermi sur-
face degenerates into a set of circles represented by solid lines.
The dashed lines indicate the range EF+coo in momentum space
where the electron coupling occurs. The number of rings is
given by Eq. (2.8).

where D is the larger diagonal part, which is given by

Cpp
'

Dp —5p 1+

and 0 is the remaining, off-diagonal part. Then one can
use the expansion
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(D +8) ' = (1 +D '9) 'D

=D ' —D 'OD '+D 'OD 'OD '—

(2.19)

(2.12)], and I„,, (kFd, h ) is the result of performing the
sum and integral on the right-hand side of Eq. (2.13).

III. RESULTS

(kFd) (4m. EF/coo . (2.20)

The right-hand side of the last equation can be rewritten
in terms of the bulk coupling constant A, , related to the
zero-temperature bulk order parameter Ab„~& by
b,b„,k=coo/sinh(1/A, ), and go through the use of the BCS
r=lation

kF(0 (2/~)(+F/~bulk) (2.21)

We see that for long coherence length materials, and for
the purpose of the work in the references mentioned
above, the diagonal approximation is sufficiently accu-
rate. But in order to study the gap profile when kFgo is
not large the oF-diagonal terms must be taken into ac-
count.

To conclude this section, we point out that it is con-
venient to rewrite Eq. (2.13) as

~b lk+d

A, &2 QJ,pI, (kFd, h )
F vv'

(2.22)

where b,& and J, .
& are dimensionless [from Eqs. (2.7) and

to calculate F as accurately as desired. In our calcula-
tions we have required only the first two terms and es-
timated that the relative error incurred in neglecting the
remaining terms was at most of order 10

It is of interest here to discuss the range of applicabili-
ty of the approximation where one assumes that the ma-
trices 6 and F are diagonal. An equivalent assumption
was tacitly made in Refs. 13, 19, 20, and 21 to calculate
quantities such as the average gap parameter in films.
There are two cases where this approximation is justified.
The first is for the calculation of the average value of the
order parameter over a very thick slab, kFd ))1. We
have already mentioned that, as this quantity tends to
infinity, G and F are diagonal and hf3-1/P. One can
then show that off-diagonal corrections will affect the
quantities involving sums over v indices by an amount of
order 1/kFd.

The other case where the off-diagonal terms are negli-
gible is when kFd is very small. (Note, however, that oth-
er problems may arise in general with the method in that
limit. '

) Fermions with different values of the v and v' in-
dices are uncoupled when the transverse projections of
the corresponding rings in Fig. 1 do not overlap. This is
the case if 2coo/(A, —

A, ~ ) ( 1 which will hold for all values
of v and v', if

coo/EF (1
4(~/k~d )

or equivalently

In this section we present the results of our model and
their analysis. We show and discuss our results for the
order parameter b, (z) as a function of distance z from the
boundary at various temperatures. At temperatures close
to the transition temperature T, we compare our results
for the function b, (z) near the interface with the standard
Cxinzburg-Landau based theory. At T=O we also discuss
the average value of the gap function 6, as a function of
thickness d for moderate values of this quantity, em-
phasizing the dependence of the quantum-size effects for
this average quantity on gp.

We briefiy review the phenomenological' result for the
order-parameter profile, developed for conventional, long

go superconductors. One finds that, in the presence of an
interface, b, (z) is given by

z+zo
b, (z) = Ab„lk( T)tanh

g(T) 2
(3.1)

where g(t) is the GL temperature-dependent coherence
length, b,b„lk(T) is the gap parameter in the bulk, zo is
determined by

db, (z)
dz

1= —b, (z =0),
o b

(3.2)

and b is the extrapolation length, microscopically es-
timated, for a SI interface, as b =go/a, with a =sr/kF.
Straightforward application of this model to shorter g'o

superconductors gives a large depletion of the gap near
the surface over a broad temperature range.

Before presenting our results, it is necessary to intro-
duce a convenient choice of dimensionless parameters for
this problem. The physical parameters of our model are
the characteristic frequency ~0, the zero-temperature
bulk order parameter 6b„&&, the Fermi energy EF, the
thickness of the slab d, and the temperature T. The first
three parameters characterize the general, bulk proper-
ties of the superconductor. In a finite system, two of
these parameters are independent, as pointed out already
in Ref. 10. Therefore, recalling Eq. (2.21), we choose as
two of our dimensionless parameters b,„„,k/coo and kF)0.
The frequency coo is approximately the same in both short
and long go materials. In addition we take kFd as our
dimensionless measure of the slab thickness, and
t —= 1 —T /T, as the dimensionless temperature. Note
that this is different from the parameter T/T, often
denoted by t in superconductivity theory. The chemical
potential p is calculated as a function of d as indicated in
Ref. 13. We take p equal to EF in our calculations,
which is adequate at the temperatures we are considering.
Alternative choices for the bulk parameters are possible.
We could have for example, as in Ref. 10, used the bulk
transition temperature T, "'" instead of hb„&z. However,
these quantities are simply related to each other in the
BCS theory and therefore are equivalent.

In determining the parameter ranges to be explored,
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we have kept in mind the experimental results, ' which
show that both quantities, T, and A&„&k often take much
higher values in short go superconductors than in conven-
tional ones, while the Fermi energy is somewhat lower.
Therefore we have explored a wide range of parameter
values keeping hb„&k/coo smaller whenever kFgo is taken
to be larger. We vary kFgo in a range from several
thousands with Ab„&z/~o of order 0.01, values which are
of the order of those found in traditional superconductors
such as aluminum or tin, to values less than 10 (some-
what higher than those found in high-temperature super-
conductors) with b,„„,„/coo as high as 0.5. Our results for
the shape of b, (z) (normalized to its bulk value) depend
on kFgo and on the temperature, but hardly at all on
5b„&k/coo. We vary kFd from —50 up to many thousands
as necessary to attain the condition that our results for
b.(z) near the surface become independent of kFd. This
turns out to be the same as requiring that d be large
enough so that A(z) attains essentially its bulk value away
from the edges of the slab. We explore the temperature
range between 0 and T„with special emphasis on zero
temperature and on the region where t is small. As ex-
plained at the end of the previous section, the ratio
6b„&k/coo is a measure of the strength of the interaction,
while kF(o gives the length scale for the variation of the
relevant functions (F and 6) in the problem. Both param-
eters combined give us the domain in momentum space
where pairing occurs. Again, here we do not make any
assumptions as to the actual mechanism of the electron
coupling, but only as to its energy range and length scale.

We now turn to the results. We begin by considering
zero temperature. At T =0 one can solve Eqs. (2.13) and
(2.16) analytically to the specified accuracy and then one
must perform only the self-consistent gap calculation nu-
merically. At finite temperatures the integration i.n the
former equation must be done numerically. The self-
consistent calculation is performed by starting with some
reasonable guess for the gap [we usually set the initial
values for the coefficients 6& to their bulk values given in
Eq. (2.17)] and then iterating the set of equations until
self-consistency is achieved, as determined by the relative
change in the average b, (z) becoming less than 10 4. The
accuracy of the results, of course, does not depend on the
initial guess for the shape of the order parameter.

The results for b, (z) at zero temperature are shown in
Figs. 2 and 3. In these and subsequent figures for A(z) we
show results for the region 0(z (d/2 as necessary to
show detail. Figure 2 shows the shape of the order pa-
rameter in a superconducting slab with large
(77kFgp =20 000 6b ]k/ct)o= 0.0 1 ). The set of relevant pa-
rameter values employed in each figure is specified in the
captions. As expected, at zero temperature there is no
depletion of the pair potential near the surface. The wig-
gles in the h(z) function seen in this and many of the sub-
sequent figures reQect the Friedel oscillation behavior in
the density of states, due to the discontinuity in the occu-
pation of states at the Fermi energy, caused by geometric
reasons. Oscillations are more significant very near the
surface than farther in the interior of the slab, where they
eventually disappear as kFd~ ~. The same enhance-
ment effect was found in the eigenvalue profile in Ref. 10.
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FIG. 2. The normalized order parameter, defined as
A(z)/A»~k, vs Z =kFz, the distance from the SI interface mea-
sured in units of kF . The results shown in this figure are at
T=0 for mkF go

=2 X 10 as in an ordinary superconductor.
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FICx. 3. As in Fig. 2 (T=O) for a short go superconductor:
~kF go

=20

The number of oscillations is equal to [(N+ 1)/2], where
N is defined in Eq. (2.8). One can also observe the satura-
tion of the order parameter away from the boundary of a
slab to the bulk value, showing that our results have the
correct behavior in the 3 —d limit.

Zero-temperature results for a smaller value of kFgo
( 7TkFgp: 20 6b ]g/cdp =0. 5 ) are in Fig. 3. One can see
that for short go superconductors the shape of A(z) is
essentially the same, at zero temperature, as for standard
superconductors. The behavior of b.(z) at T=O is practi-
cally independent of the coherence length g'o. This is as
expected. For this reason, we have not included inter-
mediate values of go at zero temperature.

We now take a brief detour from our main topic to
consider the question of quantum-size effects in the gap,
in thick films, as a function of kFd. These effects have
been considered in the past in long coherence length ma-
terials. ' '' ' ' In the case of long go superconductors
quantum-size effects have been experimentally observed
(at very low temperatures). We show our results in Fig.
4 for three values of kzgo. The quantity plotted is the
value of the order parameter, averaged over the thickness
of the film, as a function of film thickness. It can be seen
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that the oscillations occur at large values of kFgo, in
agreement with the previous work mentioned above, but
that they become much less prominent as this quantity
decreases. This can be understood as follows: quantum
oscillations can occur any time N, defined in Eq. (2.8), in-
creases by one. This appears to be simply the usual con-
dition for having standing electron waves of wave vector
kF in an infinite potential well of width d. The correct
calculations, however, include higher-order corrections in
~o/Ez to the shape of the resonances which were neglect-
ed in previous work and must be included in the general
case. Physically, this corresponds to the fact that al-

I

FIG. 4. Disappearance of the quantum-size efFects as kFg'0

decreases. The quantity displayed is the zero-temperature arder
parameter, averaged over the film thickness d and normalized
with respect to Ab„&&. It is plotted vs D—:kFd. The solid line
corresponds to vrkF $0 =20, the dotted line corresponds to
~kF $0= 250, while the dashed line corresponds to
trkFg'0=2 X 104.

b,p= QIItph (3.3)

where

though k+ is a function of thickness d at fixed density,
in a correct treatment one must recall that the electronic
wave vectors are smeared in the region given by the con-
dition (EF—coo(k /2m &EF+coo). This region is rela-
tively larger when kF(c is smaller, which broadens, and
eventually Aattens out the resonances. This purely
geometrical effect is quite different, as pointed out in the
Introduction, from that explored in Ref. 12, where the
finite-size effects in the phonon interaction in very thin
films were considered. We have chosen to display in this
figure a range of values of kFd corresponding to relatively
small slab thicknesses ( kFd —50), since at larger
thicknesses the oscillations become washed out even for
large values of the coherence length, as kFd reaches
values comparable to kF('c. Mathematically, this is due
to the dependence on coo/EF of the limits of integration
in Eq. (2.13). The approximations used in previous works
hold only in the limit of long $0 superconductors where
coo/EF is a very small quantity. It is interesting to specu-
late on whether other resonance effects, which occur, e.g. ,
in layered structures, are similarly affected. This seems
likely, and it is a question we plan to address in future
work.

We now return to A(z) and proceed with the finite-
temperature case. We first calculate the transition tem-
perature T, (d). This function exhibits quantum oscilla-
tions, as a function of thickness, which for an s-wave su-
perconductor are similar to those found for the order pa-
rameter and shown in Fig. 4. To calculate T„we use the
fact that when T~ 7, one can expand F in terms of 6&'s,
and the self-consistent Eq. (2.13) transforms into

d ki tanh(E, /2T)+tanh(E /2T)
/2~ J JP g ~ VV'CX VV'P E ~ +E ~(2~) VV VV

(3.4)

(3.5)

This equation is only approximately correct at any tem-
perature other than T, where it becomes exact. One can
recognize an eigenvalue problem in Eq. (3.3) which must
have an eigenvalue equal to one at T= T, . It enables us
to obtain the critical temperature T, . This eigenvalue
procedure is similar to that used above T, .' As in that
case, Eq. (3.3) can be used for the determination of b, (z)
at T, up to an arbitrary multiplicative factor. We used
this method to double check the results of our self-
consistent calculation of the order parameter very close
to the transition temperature.

Once T, is calculated, we can specify the value of the
parameter t=—1 —T/T, and compute h(z) at different
temperatures. We expect that the gap function wiH show
some depletion near the boundary for su%ciently small t.

I

Physically, we might say that the coupling becomes
weaker, at higher temperatures, for electrons with higher
values of k, . One can see from Fig. 1 that, at constant t,
the effect will be smaller when kF gc is larger and
Q)0 &(EF ~ The important question however, is to find
quantitatively how important this effect is for reasonable
values of the temperature, for short or long coherence
length superconductors, and to elucidate whether or not
the depletion of the gap is strong enough and extends
over a wide enough temperature range to become an im-
portant factor in the planning or the analysis of experi-
ments. This is one of the main motivations of this work.

We begin by presenting our results at high temperature
(small t). Consider first the standard, large kFgo case
(~kF$0=20000 with t=0.01 in Fig. 5). We see that the
pair potential retai. ns its square wave zero-temperature
shape, the only difference being a decline in the bulk
value of A. For these parameters values, this is in agree-
ment with the standard theory, which predicts a change
only extremely close to T, (t S 10 ).
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FIG. 5. The order a
tor at t =

p rameter in a conventional su-e dpercon uc-
a t =(T, —T) /T, =0.01 [ttktj0=2X 10 and

k gF(t)=4. 7X10"]. The extrapolation len th b isg
T e solid line represents our result. Th

ine, which is nearly indistinguishable, shows the corre-
spon ing phenomenological theory result f Erom qs. (3.1) and

gO
gain, t e order parameter is normal' d 'thize wi respect to

bulk

wk

We next turn to the opposite case of sh ts or so
(tt Fgo=20) and very small t (t =10 ) which h
in ig. . e solid line in this figure represents the mi-

dashed line represents the curve obtained from E s. (3.1)
we can see a glaring discrepancy between

qs.

the microscopic results and those obtained from extrapo-
ation of the lar e ~&g ~&p phenomenology. It is obvious that,

although a depletion of the gap does occur thcur near t e
oun ary, even at these high temperatures it i 1

order 1010', much smaller then what the standard theory
predicts. Farther away from T the d 1e ep etion, although
it still exists bec'll ', comes completely inconsequential. Our
results show that the value f th do e or er parameter
reaches a level very close to its bulk value at distances

from the surface of order k '. MF . oreover, since the su-

perconducting energy gap in a slab
'

t dis, o a goo approxi-
mation, equal to the minimum value of the order parame-
ter along its cross section ' one sho ld b blu e a e to observe
a significant ener gy gap even at temperatures close to the
transition temperature, and certainly there should be no
pro lems at the temperatures typical tunneling and pho-
toemission experiments are performed. ' We have car-
ried out the calculations for this figure in an t 1an ex reme y

ic s ab, to ensure that the condition g(t)((d [where
e p enomological temperature-dependent coher-e(t) is the h

ence length] is satisfied and note that the dashed curve
reaches the correct bulk value in the center of the slab.

An additionalA
'

example, for the same parameter values
as in Fi . 6 but atig. , ut at a somewhat lower temperature (ap-
proximately the same as in Fig. 5, with which it should be
contrasted) is shown in Fig. 7. The disagreement between

~ ~ ~

the two results is again evident. Th d 1e ep etion is now
minimal in the microscopic calculation.

len t sisr
The discrepancy that we find t hn a s ort coherence

engt s is rather gratifying, since it confirms what is indi-
cated by many experiments: that th de or er parameter is
present near a boundary such as we

~ ~

we are consi ering.
4 ~

hile with the benefit of hindsight it is not really surpris-
ing that GL based theory does not work for shorter
coherence lengths, the magnitud f th d'e o e iscrepancy is
quite startling, particularly in the cas h

' F
rom the experimental point of view, it is worthwhile to

the breakdown of GL theory would lead to a larger, rath-
er t an to an even smaller, value of th f
t e sur ace.

e gap unction near

In order to investigate at wh t h d'a o t e iscrepancy
occurs we obtained the shape of th de or er parameter at

ence engt . s an exam-intermediate values of the coheren 1 th. A
p e, we show our computations for a value of ~k =250
in ig. , or a value of t of the same order as that used in

0 K F p-

Figs. 5 and 7. W
'

s. an . e obtain a much better agreement be-
tween the results of the two th . Th deories. e discrepancy
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FIG. 6. Th. 6. The same calculation as in Fi . 5 f hig. or a s orter go su-

perconductor (ttkF$0=20 as in Fi . 3) Thig. . e GL coherence
length is kFg(T)=410 and k b =20.3 H ere the temperature is
extremely close to T, ( t = 1 X 10 ). Th e microscopic and phe-
nomenological results are clearly diff'erent. Note the ver ex-
tended Z range shown.

o e t e very ex-

FIG. 7. Results for the normalized order parameter at
~kFgo= 20 (as in Figs. 3 and 6) and t =0.01

' F'
, as in ig. 5. Again,

e so i ine represents the microscopic result and the dashed
line the phenomenological result. This fiis gure should be com-
pared with Fig. 5.
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FICx. 8. The same calculation as in Fig. 6 for ~kF(=250 and
at t =2. 12 X 10 [kF(( T)= 1279 and kFb =3166]. This is an
intermediate case, where go is neither extremely long nor very
short.

5b, (T)
b, (T)

COp

E kFd

with a coefficient of proportionality g smaller than unity.
The typical value of cop/EF for a long coherence length
superconductor is of order 0.01 or smaller, while in short
go superconductors coo/EF takes values as large as 0.2. In
the former case 1/kFd is comparable to ~p!EF, which
suggests a zero depletion, while in the latter case the rela-
tive depletion must be obvious but should not exceed
10%, which is in agreement with our results plotted in
Fig. 6.

IV. CONCLUSIONS

We have studied boundary effects at a
superconductor-insulator interface by examining the
shape of the order parameter near such an interface. The
results obtained are a function of go. When go is very

still exists, but it is considerably smaller as can clearly be
seen in the figure. At this temperature, both theories
agree eventually at k~go —150. The value of kFgo we
used in Fig. 8 is still smaller than that typical of standard
BCS superconductors, but is nevertheless close to the
textbook values for some of the metallic superconductors
like niobium. Thus, we see that problems with the GL
approach to this problem develop unless the condition
kFgo)) 1 is very strictly satisfied.

It is nevertheless worthwhile to emphasize that some
depletion of the gap function does occur near the surface,
and we have investigated the temperature dependence of
this depletion. We find that the depletion increases with
temperature, but it is only at temperatures very close to
T, where a significant depletion occurs. A rough esti-
mate, up to first order in cop!EF and 1/kFd, which as-
sumes that 5&'s do not change too much from their bulk
values except for P close to N, shows that the relative de-
pletion 5b, /b, (averaged within one Fermi wavelength
from the surface), at T very close to T„should satisfy

long at any temperature except extremely close to T„ the
order parameter, averaged over distances of order kF ',
has always a trivial constant shape, independent of the
distance to the boundary. For smaller values of go, there
is some depletion of the order parameter near the inter-
face, physically due to the weaker coupling of high k,
electrons in this geometry. The depletion is, however,
quite small, and the value of the order parameter at the
surface remains very close to its bulk value. This is in-
consistent with predictions based on extrapolation of GL
theory which propose a dramatic depletion of the gap
function near the interface, even at temperatures far from
T, . Our results make sense physically since the relevant
lengths for short go superconductors are of order kF ' and
one cannot neglect all microscopic details as in standard
GL theory. We also find that quantum-size effects, quite
prominent in the large go case, disappear as go decreases.

Our results are consistent with recent experiments,
measuring the energy gap in high-T, oxides even at tern-
peratures close to the transition temperatures. ' ' This
means that the boundary imposed geometrical factors,
which we repeatedly emphasized, do not suppress super-
conductivity.

Although our method is not free of limitations, we be-
lieve that our conclusions apply to real materials with
small go such as oxide superconductors. There are two
qualms that one could raise concerning the application of
our procedures to real materials. The first is that, as g'o

decreases, the coupling becomes stronger and the simple
BCS-like formalism that we use should be replaced by
strong-coupling methods (e.g. , for phonon coupling the
Eliashberg theory). However, there are good reasons to
believe that this should not affect our qualitative con-
clusions because our results arise, in effect, from very
general physical and geometrical principles. Consider
first the weakening of the quantum oscillations: this is
largely a reAection of the uncertainty principle. As the
coupling increases, so does the range of wave vectors in-
volved in the pairing, and the resonances must broaden as
a result. Similarly, the behavior of b, (z) can be under-
stood (as remarked upon in Sec. III) from rather general
considerations concerning the range of longitudinal and
transverse wave vectors involved. Most important, our
results show that the gap depletion is considerably small-
er than predicted from GL even at moderate and relative-
ly long values of kFgo (see e.g. , Fig. 8). We have, in fact,
refrained from presenting here results for the very small
values of k~go (kFgo- I) that would better correspond to
high-temperature superconducting oxides. Thus, our
qualitative conclusions regarding b, (z) should hold.

The second consideration is that we have dealt only
with isotropic materials here. Many short go supercon-
ductors are highly anisotropic, layered structures consist-
ing of superconducting and insulating layers. The gen-
eral quantitative conclusions reached here as to the ex-
perimental observability of the gap should still apply.
There may be additional interference effects occurring in
such structures. One also cannot disregard the
difference in the energy dispersion relations for the
motion in the x-y plane, as opposed to the transverse one.
We plan to consider such effects elsewhere.
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