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Dimensional crossover in the upper critical field of layered superconductors

T. Schneider* and A. Schmidt
IBM Research Diuision, Zurich Research Laboratory, 8803 Ruschlikon, Switzerland

(Received 9 July 1992)

Using the recently introduced g3 model for layered superconductors, we calculate the angular and
temperature dependence of the upper critical field H, 2. By lowering the temperature we find a crossover
from three-dimensional bulk behavior to decoupled two-dimensional layers in both the temperature and
angular dependence of H, 2. This behavior is remarkably consistent with recent experiments and the
comparison with the measured angular dependence provides an estimate for the interlayer coupling g3.

I. INTRODUCTION

Dimensional crossover from three-dimensional (3D) to
lower-dimensional behavior in layered superconductors
has been the subject of detailed studies for years. '

Layered superconductors include naturally occurring lay-
ered compounds, e.g. , intercalated transition-metal di-
chalcogenides, cuprate superconductors, and artificial su-
perlattices. An unavoidable consequence of layered su-
perconductors is the pronounced anisotropy, examples of
which include the penetration depth, the Ginzburg-
Landau (GL) correlation length, the upper critical field,
and the conductivity. Indeed, measuring a given proper-
ty parallel and perpendicular to the layers yields a ratio
markedly different from l. In particular, the amplitude
of the GL correlation length perpendicular to the sheets
turns out to be much smaller than the parallel one. In
view of this, a dimensional crossover from 3D to 2D be-
havior should occur at an intermediate temperature
above or below the transition temperature T, . This inter-
mediate temperature can be estimated by equating the
GL correlation length perpendicular to the layers,
g~(T)=g~(1 —T/T, ) ', to an appropriate spacing. In
YBCO, (~=3.36 A is less than the distance between the
closest Cu02 planes and considerably smaller than the

0
lattice constant D =12 A perpendicular to the sheets.
Thus, by lowering the temperature, crossover behavior is
expected to occur around the reduced temperaturet'=1 —T*/T, =0.08, where g~(t*)=P(jt*) ' =12 A.
Related phenomena occur in a film whose thickness be-
comes cotnparable to gz at some temperature below the
bulk transition temperature. Such a system will show its
finite extent in one direction and a crossover to nearly 2D
behavior. " ' Recently, it became possible to fabricate
and characterize artificial multilayers containing ul-
trathin slabs of YBCO, M unit cells thick and separated
by X unit cells PrBCO, which are supposed to be insulat-
ing. ' It has been shown that a YBCO sheet with nom-
inal thickness of one unit cell is superconducting. How-
ever the transition temperature of thin and decoupled
YBCO slabs decreased with reduced thickness, accom-
panied by a broadened resistive transition and a much
lower zero resistance temperature. ' Moreover, the
fall of the transition temperature for M YBCO unit cells
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where l labels the superconducting layers separated by in-
sulating sheets of thickness s. In the z direction, which is
perpendicular to the layers, the order parameter g& is
discrete and within the superconducting sheets it depends
continuously on r~~=(x,y). A=(A~~, A~) is the vector
potential and A~ is

(1+1)s
A = —f dzA

S I,
(3)

separated by N PrBCO units with N clearly reveals the
importance of an interlayer interaction leading to 3D
bulk behavior. In this context it is important to recog-
nize that the standard GL theory, which adopts an aniso-
tropic continuum description, is valid only as long as the
shortest correlation length is large compared to the ap-
propriate lattice spacing. Indeed, it is assumed that the
order parameter varies slowly on the scale of the lattice
spacing. In layered systems, however, where D ) g~, the
dimensional crossover occurs outside of the range of va-
lidity of the standard theory. Variations of the order pa-
rameter on the scale of the lattice spacing perpendicular
to the layers can be taken into account by adopting a
discrete description along this direction. However,
within the framework of the GL theory, the discretiza-
tion is not unique and also depends on the properties of
the intervening sheets which might be of normal metallic
or insulating nature. In what follows we assume insulat-
ing intervening layers. Moreover, the superconducting
slabs might be treated as infinitely thin or as having a
thickness d. For infinitely thin superconducting sheets,
there is the mode1 proposed by Lawrence and Doniach
(LD model), ' which has the free-energy density
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Thus, this interlayer interaction has a definite sign, and

The fourth term is a discrete version of the gradient term
along z, the direction perpendicular to the layers. Micro-
scopically it arises from electron single-particle tunneling
through the insulating sheets. Accordingly, the effective
mass M~ is related to the tunneling matrix element by

considering only phase Auctuations, is equivalent to
Josephson coupling. ' Moreover, the coupling has to be
small, otherwise the single-particle interlayer tunneling
must be incorporated in the band structure.

Based on a microscopic analysis of the interlayer in-
teractions, Schneider, Gedik, and Ciraci proposed a mod-
el (g3 model), " which differs on the GL level in the
discretization of the gradient term in the direction per-
pendicular to the layers. In this model the free-energy
density is given by
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Microscopically, g3 describes an electron interlayer in-
teraction. As a consequence, it can adopt either sign and
is not restricted to weak coupling. In the continuum lim-
it, this model leads to the standard GL form as well, with

(6)
2Mis

where u and in turn T, becomes renormalized. The re-
sulting enhancement of T, does not depend on the sign of
g3, which only affects the phase of the order parameter in

the direction perpendicular to the superconducting slabs.
In fact, the repulsive (g3 &0) and attractive case differ

only in the phase of the order parameter. For g3 (0 the
order parameter is staggered and the phase differs from
layer to layer by ~. These features open an interesting
scenario, including superconductivity mediated or
enhanced by a repulsive interlayer electron interaction
with an order parameter differing from layer to layer in
its phase. A weakness of both models is the assumption
of infinitely thin superconducting slabs. Indeed, this limit
leads to artificial results for the parallel upper critical
field. ' This unrealistic limit is readily removed by con-
sidering slabs of finite thickness d. In this case the free
energy of the g3 model [Eqs. (2) and (5)] reads

~ 2&

0

Q2

2M~

dg3
(r„,lD +d/2)g, +, [ri, (l+1)D d/2]e—

+P&*(r~~~, lD —d/2)gl, [r~~, (1 —1)D +d/2]e ' ' +c.c. I

The constant d denotes the thickness of the supercon-
ducting slabs separated by insulating material of thick-
ness s (compare Fig. 1). Thus D =d +s is the lattice con-
stant in the z direction and

(1+1)D—d/2Aq=- dzA j
S ID +d/2

II. CALCULATION OF THE UPPER CRITICAL FIELD

To calculate the upper critical field and its angular
dependence we adopt the gauge

A=H(0, x cos8, x sin8)

corresponding to

H =H (0, sin8, cos8) . (10)
A corresponding version of the LD model has been pro-
posed by Deutscher and Entin-Wohlman. '

In this paper we explore the temperature and angular
dependence of the upper critical orbital field for the g3
model as defined in Eq. (7).

We assume that d is small compared to the screening
length A, and d &g'~. The first limit assures that we can
neglect screening currents and hence we can treat the
magnetic field as uniform. For d &gz the magnitude of
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the order parameter is nearly constant within a supercon-
ducting slab. Following Deutscher and Entin-
Wohlman' we thus choose a solution of the form

iFI (x,z)
$1(x,y, z) =u (x,y)e

Substitution into Eq. (7) leads to the gradient term

B . 2~ . BI'r 2w . F,—i A, $1 =iu + Hx sin(8) e
Bz 40 ' Bz No

(12)

To avoid arbitrary growth in this term for large x, we
choose the phase in the form

2~
Fi = — Hx sin(8)(z —zi ),

0
(13)

FIG. 1. Schematic picture of the layered model system. Su-
perconducting slabs of thickness d, coupled by the g3 term, are
separated by insulating material.

where zI is chosen to minimize the free energy, yielding
zi =iD. By this Eq. (7) reduces to

fiF=dXf
2MII

2 2
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where we take the absolute value of g3 because of the possibility of a staggered order parameter as explained abo ve. As-
suming that u is independent of y, variation of Eq. (14) with respect to u leads to

T 2

H sin(v9) + Hx cos(8) u + a —2ig3 ~cos Hx sin(8)D u =0,2' 2"
2M

II
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with

d2
+a +2q cos(2x ) —px u =0—2

dx
(16)

x = HD sin(6)x,
0

where we have neglected the quartic term. This ordinary
difFerential equation corresponds to a generalized
Mathieu equation

III. RESULTS AND COMPARISON
WITH EXPERIMENTS

We first examine the upper critical field H, 2 parallel to
the layers as a function of temperature and then turn to
the angular dependence of H, 2.

If the magnetic field is parallel to the layers, Eq. (16)
reduces to the Mathieu equation. In the high- (q~O)
and low- (q —+ ~ ) field limit, the lowest eigenvalue ao is
given by

2@o cos(8)
~H D sin (8)

'2

or

a0 = —
—,'q 0

2MII
g

= 40
PHD sin(8)

'2 (17) ao= 2q +2+q
From this and Eq. (17) we obtain for high fields

(19)

d2

3D
2MI!
f2

+0
PHD sin(8)

2
o &12

2m
(20)

which reduces for magnetic field parallel to the layers
(8~~/2, p~0) to the normal Mathieu equation. Find-
ing the upper critical field H, 2 corresponds then to
evaluating the lowest eigenvalue ao(p, q) of Eq. (16).

with

2MII

(gs)2 f2 (21)
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From the latter definition we see that pI is the correlation
length for a single slab.

For low fields we get

(22)

with

Thus, below T* the system corresponds to nearly decou-
pled slabs.

In BiSCO (2212) the fit of the anisotropy and
g~~

to the
experimental angular dependence (see below) leads to

d =3.35 A, D =18.3S A,
(26)

Mi/MI =(54.5), gii
=145 A

1

g2

M~~

Mi

(23)

with Mi/MI very close to the value given in Ref. 17.
The resulting temperature dependence of H, 2 is shown in
Fig. 3(b). Due to the large anisotropy, the region where
the linear temperature dependence occurs, corresponding
to 3D behavior, is seen to be quite small. Indeed, Eq. (25)
yields in this case

Thus, as the magnetic Geld is increased, the temperature
dependence crosses over from linear to square-root be-
havior because g ~ (1—T/T, )

To obtain the full temperature dependence we solved
the Mathieu equation numerically. The result for ao(q) is
shown in Fig. 2 together with the limiting behavior for
high and low fields [Eqs. (18) and (19)].

To extract the temperature dependence of H, 2, the pa-
rameters d, D, (I, and Mi/M~~ must be fixed. Figure 3(a)
shows H,'~z(T) for parameters representative of YBCO,
namely'

t*= 1 —T*/T, =0.021 . (27)
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Next we turn to the angular dependence of H, 2. In the

d =3.3S A, D =12 A,
M, /MI 2

~OI 20 A .
(24) 1.0—

O

The crossover in the temperature dependence from linear
to square-root behavior is clearly seen and occurs around
t =1—T/T, =0.1. This is close to the temperature T*,
where gi reaches the lattice constant D,
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FIG. 2. The solid lines are solutions ao(p, q) of the general-
ized Mathieu equation (16) with Axed r =p/q (corresponding to
Axed angle 8). From bottom to top: r =0, 0.01, 0.1, 1, 5, and 10.
The limiting behavior for the Mathieu equation (p =r =0)
given in Eqs. (18) and (19) is shown as a dashed (dotted) line.

FIG. 3. Upper critical field H,I~& vs reduced temperature
t =1—T/T, for (a) YBCO: d =3.35 A, D =12 A,
M, /MI=(7. 9), and gj~=20 A; (b) BiSCO: d =3.35 A,
D = 18.35 A, M& /M I

= ( 54. 5 ) ', and g
~~

= 145 A.
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low- and high-field limits, Eq. (15) can be solved exactly.
Indeed, for low fields the cosine term can be expanded
and one regains the standard effective-mass expression
for the angular dependence, '

H, 2(8)sin (8)
(28)

1.0

0.8—

with H,"z of (22) and

H, 2 M
M

(29)

=~ 0.6

0.4

For sufticiently high fields, however, the cosine term
can be neglected. The resulting angular dependence is

H, z(8)sin 8 H, 2(8)lcosd~
(30)

(Hll )& H,',

where

@o v'12 i C'o 1

217 gd 2'' ( g )2
(31)

dHc =0
d8 a

while the 2D slab behavior Eq. (30) gives

dH„(HI', )

d 8 a ~/2 2Hc

(32)

(33)

so that H, 2(8) will have a cusp at 8 =~/2.
For intermediate field strength one has to solve Eq. (15)

or the generalized Mathieu equation (16). The numerical
solution turns out to be nontrivial, because for 6Am. /2
one has the term —pX and the solutions change from
periodic to bounded. Solutions ao(p, q) of the generalized
Mathieu equation (16) are plotted in Fig. 2 for various ra-
tios ofp and q corresponding via (17) to different fixed an-
gles 8. From these data the angular dependence of the
upper critical field can now be extracted. In Fig. 4 we de-
picted H,2(8)/H, 'I2 versus 6 for several reduced tempera-
tures t. For comparison we included the limiting behav-
ior for small and large reduced temperature. Apparently
there is excellent agreement in the appropriate limits. In
the crossover region from the limiting 3D to the 2D be-
havior the curves first develop a very sharp cusp on the
top of a broader peak (t =0.03,0.04, 0.05), followed by a
sharpening up to t =0.1. As t increases further, the peak
broadens and approaches the 2D cusp shape.

Measurements of the upper critical field are complicat-
ed by the following facts: The usual resistivity and ac
methods seem to measure a field H* determined by the

The absence of the interlayer coupling g3 reveals that
su%ciently strong fields decouple the superconducting
slabs. Indeed expression (31) is equivalent to that for an
isolated thin slab of thickness d. ' From Eqs. (28) and
(30) it is seen that the crossover from 3D bulk to 2D slab
behavior is most pronounced around 8=m/2, corre-
sponding to a magnetic field applied parallel to the layers.
In the 3D case, Eq. (28) yields
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FIG. 4. Angular dependence of the upper critical field H, 2.

Solutions of Eq. (15) with the parameters of BiSCO [as in Fig.
3(b)] for different reduced temperatures t. The angle 8 is given

in degrees. The dashed lines show the limiting 3D and 2D be-

havior of Eqs. (28) and (30), respectively.

TABLE I. Estimates for H,ll2/H, z from the onset of resistivi-
ty, magnetic torque, and magnetization measurements.

Experiment

Resistivity
Torque
Magnetization

YBCO

S.s (Ref. 20)
7.9 (Ref. 16)
6 (Ref. 19)

BiSCO (2212)

56 (Ref. 20)
55 (Ref. 17)

dissipation due to the onset of Aux motion. In natural
high-temperature superconductors, for which the crystal
structure is fixed, the crossover can be observed only by
changing the temperature. Due to the extremely high
value of the derivative dH, 2/dT just below T„an unam-
biguous investigation of the crossover is difticult. Thus,
in order to unravel the anisotropy and discreteness efFects
in the bulk, alternative methods have been used. Experi-
mental evidence for a magnetic-field-induced dimensional
crossover in bulk YBCO was found by Farrell et al. by
means of torque measurements, ' and in BiSCO (2212) in
terms of the angular dependence of H*. ' Moreover, the
anisotropy ratio H, z/H, 2 as determined from torque and
magnetization measurements agree reasonably well with
the estimates obtained from the field H*(8) for the onset
of dc resistivity. Some estimates are listed in Table I.

In view of this, the anisotropy of H* appears to be
close to that of the intrinsic H, 2. The angular depen-
dence of H* has been studied in bulk YBCO at 89 and
84.5 K with T, =91.2 K, yielding Hll /HJ 8 5.
Within the rather limited angular resolution, the data
agree well with the effective-mass formula (28). These
findings are consistent with our estimate in Eq. (25),
which yields T, =91.2 K, T*=79.3 K. In contrast to
these results, the data for BiSCO with T, =82 K were
found to agree much better with the thin-film formula
(30) at T =80.4 K. These results are consistent with
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FIG. 6. H. H„,/H, 2 vs reduced temperature t. The solution of
(15) with the parameters of BiSCO (26) iis s own as a solid line
and fits to the two experimental points of Ref. 6. Dashe . . as ed lines
s ow e imputing 3D and 2D behavior resulting from (29) and
(31), respectively.

The value of ~ is much larger than previous estimates,
but is close to our fitted value (26). In this context it
should be emphasized that g is th 1' de amp 1tu e of the
correlation length divergence close to the b lke o e u transition.

. 35 A is, however, of the expected order of magni-
tude. Thus the value of g sim 1 fi hp y re ects t e large
effective-mass anisotropy.

IV. SUMMARY
(34)

our estimate for T in (27) and imply nearly 2D behavior
rather close to T, . Recently, the angular and tempera-
ture dependence of H* in BiSCO has been studied with
much etter angular resolution. In one sam 1 thmp e wi

9. 1 K (sample I of Ref. 6), measurements of H*(8)
have been performed at 78 and 76 K. The results are de-

the appropriate solution of (15) correctly refiects the ex-
perimental ratios H, 2 /H, lz (Fig. 6) and the angular
dependence of the solutions is quite close to the data. We
find that for T =78 K (t =0.014) the solution is not very
different from the 3D bell shape, whereas for T =76 K
r =0.04) the 2D formula (30) is not yet applicable for

our parameters, because I /(g') = —2M /i'
' 'll

II II

1s s 1 eg
ative. Thus this temperature is too high and real 2D be-
havior cannot be observed, although the solution of (15)
exhibits a sharp cusp around 8=0. For intermediate
temperature (76(T (78 K) the measured H*(8) exhib-
its a sharp cusp on top of a broad peak. This finding is
very similar to the behavior shown in Fig. 4 for
t =0.3,0.4. The limited experimental resolution in 8,
however, does not allow a more quantitative comparison.

As discussed above [Eqs. (22) and (20)] and illustrated
in ig. 3, it is clear that the crossover in th 1'n e angu ar

H*(T from
ependence of H* is accompanied by a crossover in

H*T o
rom inear to square-root behavior Th d fe ata or

( ) of Ref. 6 confirm this behavior ualitativel b
more extendedtended and precise measurements are needed for
a detailed comparison.

Nevertheless, the parameters derived from the data of
sample I, namely T*=77.8 K, T, =79. 1 K, can be used
to estimate the amplitude of the GL 1

with E .
e corre ation length

wit Eq. (25). Together with H~~ /Ht =QMi/M
g

~I
/gi 54. 5, this yields

128 A, (at=2. 35 A
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FIG. 5. ComComparison of the solution to Eq. (15) with ex eri-
mental data (H*

q. wst expen-

T =79.1 K
a a of Ref. 6) for a sample of BiSCO th

[parameter as in Fig. 3(b)]. o at T=78 K
w1

T =76
at—76 K. The dashed line shows the 3D behavior (30).

On the basis of the g3 model [Eq. (14)] we derived an
ordinary differential equation from which the upper criti-
cal field H, 2(T, B) can be calculated. Close to T, and at
low temperature an exact solution is possible and one re-
gains the standard effective-mass expression and the thin
slab formula, respectively. ' In the intermediate temper-
ature regime we solved the equation numerically to ex-
plore t e crossover between these limitin b hing e avlors 1n

ot t e temperature (from linear to square root) and an-

This
gu ar dependence (from bell-shaped to cus 1 k ) f H, .

is corresponds to the crossover from a bulk supercon-
ductor to decoupled thin slabs as the temperature is
lowered. The temperature T* of th d 1'e ecoup cng is ap-
proximately reached when the perpendicular GL coher-
ence length g'i( T) is close to the distance of the supercon-
ducting sla s D. The remaining parameters (M /M d

gI) have been estimated from the measured temperature

tained for Mt/M~~=(54. 5), consistent with magnetic
torque measurements (Table I) and /~I

= 145 A. This rath-
er large value is consistent, however, with +=2 —3 A

. Using these estimates and M =3m,
we obtain g3 —0.05 meV for the interlayer coupling con-
stant, in agreement with the value we deduced from the
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crossover analysis of measured specific heat and conduc-
tivity. ' Finally we note that the agreement between our
mean-field results and experiments is quite remarkable in
view of our having neglected Auctuations.

ACKNOWLEDGMENTS

We thank R. Marcon for providing us with his experi-
mental data and D. Ariosa for stimulating discussions.

Author to whom correspondence may be sent: Bitnet address:
TSIZURLVM1

B.Y. Jin and J. B.Ketterson, Adv. Phys. 38, 189 (1989).
2C. S. L. Chun, G. Zheng, J. L. Vicent, and I. K. Schuller, Phys.

Rev. B 29, 4915 (1984).
3I. Banerjee, Q. S. Yang, C. M. Falco, and I. K. Schuller, Phys.

Rev. B 28, 5037 (1983).
4D. E. Farrell, J. P. Rice, D. M. Ginsberg, and J. Z. Liu, Phys.

Rev. Lett. 64, 1573 (1990).
5R. Fastampa, M. Giura, R. Marcon, and E. Silva, Phys. Rev.

Lett. 67, 1795 (1991).
R. Marcon, R. Fastampa, M. Girua, and E. Silva, Europhys.

Lett. 16, 757 (1991).
7R. Marcon, E. Silva, R. Fastampa, and M. Giura, Phys. Rev. B

46, 3612 (1992)~

8J. M. Triscone, g. Fischer, O. Brunner, L. Antognazza, A. D.
Kent, and M. G. Karkut, Phys. Rev. Lett. 64, 804 (1990).

9Q. Li, X. X. Xi, X. D. Wu, A. Inam, S. Vadlamannati, W. L.
McLean, T. Venkatesan, R. Ramesh, D. M. Hwang, J. A.
Martinez, and L. Nazar, Phys. Rev. Lett. 64, 3086 (1990).

~ D. H. Lowndes, D. P. Norton, and J. D. Budai, Phys. Rev.
Lett. 65, 1160 (1990).

T. Schneider, Z. Gedik, and S. Ciraci, Z. Phys. B 83, 313
(1991).
T. Schneider, Z. Phys. B 85, 187 {1991).
T. Schneider, Physica C 195, 82 (1992).

t4W. E. Lawrence and S. Doniach, in Proceedings of the 12th In
ternational Conference on Low Temperature Physics, edited by
E. Kanda (Academic, Kyoto, Japan, 1971),p. 361.

~5D. Deutscher and O. Entin-Wohlmann, Phys. Rev. B 17, 1249
(1978).
D. E. Farrell, C. M. Williams, S. A. Wolf, N. P. Bansal, and
V. G. Kogan, Phys. Rev. Lett. 61, 2805 (1988).

7D. E. Farrell, S. Bonham, J. Foster, Y. C. Chang, P. Z. Jiang,
K. G. Vandervoort, D. J. Lam, and V. G. Kogan, Phys. Rev.
Lett. 63, 782 (1989).

~8M. Tinkham, Introduction to Superconductivity (Krieger, Mal-

bar, FL, 1980).
U. Welp, W. K. Kwok, G. W. Crabtree, K. G. Vandervoort,
and J. Z. Liu, Phys. Rev. Lett. 62, 1908 (1989).
M. J. Naughton, R. C. Yu, P. K. Davies, J. E. Fischer, R. V.
Chamberlin, Z. Z. Wang, T. W. Jing, N. P. Ong, and P. M.
Chaikin, Phys. Rev. B 38, 9280 (1988).
D. Ariosa (private communication).


