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Vortex motion in Josephson-junction arrays near f=0 and f= 1/2
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We study vortex motion in two-dimensional Josephson arrays at magnetic fields near zero and one-
half fiux quanta per plaquette (f =0 and f = —'). The array is modeled as a network of resistively and

capacitively shunted Josephson junctions at temperature T=O. Calculations are carried out over a
range of the McCumber-Stewart junction damping parameter )33. Near both f=0 and f = —', the I V-
characteristics exhibit ttoo critical currents, I„(f)and I,z(f), representing the critical current for depin-
ning a single vortex, and for depinning the entire ground-state phase configuration. Near f =0, single
vortex motion just above I,&(0) leads to Josephson-like voltage oscillations. The motion of the vortex is
seemingly overdamped (i.e., nonhysteretic) even when the individual junction parameters are highly un-

derdamped, in agreement with experiments. At sufficiently large 13, and sufficiently high vortex velocity,
the vortex breaks up into a row of resistively switched junctions perpendicular to the current. Near

f = —', the vortex potential, and corresponding vortex trajectories, are more complicated than near f =0.
Nevertheless, the vortex is still "overdamped" even when the individual junctions are highly under-
damped, and there is still row-switching behavior at large values of P. A high-energy vortex in a very
underdamped array tends to generate resistively switched rows rather than to move ballistically. Some
possible explanations for this behavior are discussed.

I. INTRODUCTION

Superconducting arrays are comprised of supercon-
ducting (S) grains embedded in a normal (N) or insulat-
ing (I) host and linked together by Josephson or proximi-
ty effect coupling. ' Such arrays can be microfabricated
with unit cells as small as a few microns on each side in
one or two dimensions (d =1 or 2) with 1000 or more
junctions on a line. They have attracted much interest
because they exhibit diverse phase transitions and
dynamical properties with and without an applied mag-
netic field. They also serve as excellent model systems
for studying transport in systems, such as high-
temperature superconductors, which may contain natu-
rally occurring weak links.

The properties of superconducting arrays are often de-
scribed in terms of vortices. Such vortices are spatial ar-
rangements of the phase of the superconducting order pa-
rameter, which are thought to move through the array as
a unit, in response to forces generated, e.g. , by currents,
magnetic field gradients, or other vortices. Several
groups have proposed equations of motion for vortices in
arrays. These equations are formally similar to those
describing the time dependence of the phase in a single
Josephson junction. For example, Rzchowski et al.
have proposed that a single vortex moving through a
homogeneous square lattice of capacitively shunted
Josephson junctions satisfies the equation

d x 1 d x
2m —+ 27T—

a RC dt a

4e . x+ Id sin 2~——I =0,
AC a

where x is the vortex position along a line through the
plaquette centers and perpendicular to the external
current I, a is the lattice constant, R and C are the shunt
resistance and shunt capacitance of each junction, and Id
is the vortex depinning current.

Although coherent vortex motion is not necessarily ex-
cluded from overdamped arrays, such motion may be
easier to detect in underdamped systems. Experiments in
such arrays have been carried out by several groups.
These arrays are typically made from small grains in
which the charging energy' is non-negligible. They are
expected to exhibit a variety of phenomena not necessari-
ly found in proximity-coupled arrays, which are usually
overdamped" and have negligible capacitive charging en-
ergies. Several of these experiments ' have given
unambiguous evidence of vortex motion. Coherent vor-
tex motion is suggested, in particular, by the observation
of vortex depinning currents at low temperatures, and of
a resistivity proportional to the magnetic field with an ac-
tivated temperature dependence. Such a resistivity is ex-
pected when vortices are thermally excited out of a po-
tential well. ' In addition, evidence of quantum vortex
motion has been reported, ' consistent with expectations
for highly underdamped arrays at sufficiently low temper-
atures. "

In this paper, we show numerically, starting from the
relevant equations of motion for the Josephson phases,
that a vortex pattern in either an underdamped or an
overdamped Josephson-junction array can behave very
much like a coherent particle. In the overdamped limit,
the vortex acts as if it moves in a sinusoidal periodic
two-dimensional potential, ' ' exhibiting a time-
dependent voltage similar to that of a single Josephson
junction. In the underdamped regime, the vortex contin-
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ues to behave like a coherent object. However, even in an
array of strongly underdamped individual junctions, the
vortex is still overdamped in that it produces an I-V
characteristic with little hysteresis, in agreement with the
experimental observations of Refs. 5 and 6. Hysteretic
I-V characteristics may set in at extremely high values of
the junction McCumber-Stewart parameter )33,

' which is
a measure of the damping. At sufficiently large P, we see
evidence for "row switching, " in which an entire row of
junctions switches into a resistive state. This behavior
has been reported in previous calculations' and seen in
experiments.

Consistent with the coherent vortex picture, we find
that an ordered array near f =0 exhibits, in effect, two
critical currents, I„(0)and I,2(0), as suggested previous-
ly on the basis of static calculations. ' (f represents the
Aux per plaquette, measured in unit of a single Aux quan-
tum NO=bc/2e. ) The lower critical current represents
the depinning of individual vortices, while the upper cor-
responds to the depinning of the entire f =0 ground-state
phase configuration. When f =

—,'+5, where ~5~ && 1, we

again find two critical currents I,&( —,
'

) and I,z( —,
' ). In this

case, I„(—,
'

) is the current necessary to depin a single vor-
tex from the checkerboard f =

—,
' ground-state vortex

configuration. I,z( —,
'

) is the current required to depin the
entire f =

—,
' ground-state lattice. The time-dependent

voltage V(t) just above I„(—,
'

) is complicated and depends
both on P and on the initial phase configuration.

We turn now to the body of the paper. Section II de-
scribes our model equations, choice of gauge, and numer-
ical method. Our results are presented in Sec. III, fol-
lowed by a brief discussion in Sec. IV.

where C;;=gj&;C; and C,"=—
C;1 for i' Equa. tion

(6) can be rewritten in matrix form:

C V=S([ V, ], (P, ), t) (8)

and shunt capacitance for the (ij)th junction, which con-
nects grains i and j, and x; is the position of the center of
grain i. The first equation constitutes the RCSJ model:
the current I, thr"ough the (ij)th junction is expressed as
the sum of a capacitive charging current, an ohmic shunt
current, and a supercurrent. The second equation is the
Josephson relation between the phase difference and volt-
age difference across the (ij)th junction. The third equa-
tion is Kirchhoff's Law, which states that the total
current leaving grain i into the various neighboring
grains equals the total external current I;.,„, fed into that
grain. Finally, Eq. (5) is the extra factor required to keep
the phase difference gauge invariant in the presence of a
vector potential A. We use boundary conditions such
that a uniform current I, .„,—=I is fed into each grain
along one edge of an array of XXX square plaquettes,
and extracted from each grain on the opposite edge, with
periodic boundary conditions in the transverse directions.

Eqs. (2), (3),and (4) can be combined to give

V, —V.
y C,, „V,=I, ,„,—yt ' . R;q

—g I, .;J.sin(P, . P,
—2—

,
. )

J
=—S;,

2e

II. FORMALISM

A. Coupled RCSJ model

In the limit of weak screening, a Josephson junction ar-
ray is well described by the coupled RCSJ model (resis-
tively and capacitively shunted junction model). In this
model, the current through a Josephson junction consists
of four components: the capacitive charging current, the
resistive ohmic current, the Josephson supercurrent, and
the thermal noise current. In this paper, all calculations
are carried out at zero temperature, so that the thermal
noise current does not contribute. The coupled RCSJ
equations then take the form' ' '

where V and S are the column vectors corresponding to
the grain voltages V, (t) and the sums S, (t); C is the cou-
pling capacitance matrix. (Note that in these calcula-
tions, we are neglecting the capacitive coupling between
each grain and the ground. ) For an N XN square pla-
quette array, C is an (N +N) X(N +N) order matrix.
Hence, the matrix equation (8) consists of N +N equa-
tions in total. However, we can always set the phase of
any one grain equal to an arbitrary constant (this is
equivalent to grounding that grain), thereby reducing the
number of independent phases and equations to
X +Ã —1. If one equation is thus discarded from Eq.
(8), the remaining matrix equation can be inverted to give

I, =C, V, + +I. ..sin(P; —P,
—A;~),

d
"dt " R,,

(2) V=C S([ V, ), jP, ), t) . (9)

V, =V; —V= ((5; —P ),d
2e dt

X Ij~= Ii;ext ~

J
(4)

A dl .
0

Here P,. is the phase of the order parameter on grain i;
I, ,z is the critical current of the Josephson junction con-
necting grains i and j; R, - and C; are the shunt resistance

We solve the coupled equations (7) and (9) by a
straightforward Euler iteration, as described previously, '

with time step At. At is usually chosen as 0.02t, , but oc-
casionally as small as 0.01to —0.005to, where
to =A'/(2eRI, ) is a characteristic damping time. A
second-order Runge-Kutta method leads to little change
in the results. In the calculations, we always start the
iterations from zero applied external current. The initial
phase of each grain is independently chosen from a uni-
form distribution of random numbers on (0, 2~), but the



5908 WENBIN YU, K. H. LEE, AND D. STROUD 47

initial voltage of each grain is set to zero, consistent with
the likely experimental conditions. When increasing or
decreasing the applied bias current, we use the final phase
and voltage configurations of the array at the previous
bias as the initial conditions for the new bias. To obtain
time-average values, we usually discard results from the
first time interval of 400to, averaging over the next 800to
(but occasionally over as long as 1000tc—1200to). In all
the present calculations, we have taken the shunt capaci-
tances, shunt resistances and critical currents to be the
same for each junction, and equal to C, R, and I, (corre-
sponding to a homogeneous array). We characterize the
array by the (dimensionless) junction McCumber-Stewart
parameter, ' which is defined by the relation
P=2R I,C jA.

B. Choice of magnetic gauge

The effect of a transverse magnetic field 8 enters the
equations of motion through the vector potential A,
where

tt)iAdl= I J B dS,
S

S being the area of a plaquette of circumference l. In
most calculations of this kind, ' ' ' it is convenient to use
the Landau gauge, A =Bxy for a uniform magnetic field
B=Bz in the direction perpendicular to the array. But
for f=5 and f=

—,'+5, with ~5~ && 1, the Landau gauge is
not a convenient choice if one describes also to maintain
periodic boundary conditions in the transverse directions.
We therefore use a different gauge, previously employed
by Arovas and Haldane in a different context.

To define this gauge, we consider a square array a lat-
tice constant a, with the origin taken as the lower left-
hand corner of the array. Note that because of the
periodic boundary conditions in the x direction, x =Na is
equivalent to x =0. Then A; is given by

A,, =2vrfn

for bonds in they direction at x =na (0 & n & N 1—);

(10)

2'f—Nm (12)

for bonds in the x direction in that extreme right-hand
column, at y =ma. With this choice, the factors 3," sum
to 2' around each plaquette, as required. Transverse
periodicity will be satisfied as long as f is a multiple of
1/N . This requirement is much weaker than that im-
posed by periodicity when the Landau gauge is used,
which is that f be a multiple of I /N. Thus, the choice of
gauge given by Eqs. (10)—(12) permits study of a much
finer grid of Aux densities than in previous studies.

III. RESULTS

A. f=5
Figure 1 shows the calculated I-V characteristics of an

8 X 8 array at f =0 for two different values of P. In each
case, a random initial phase configuration and zero initial
voltage configuration were chosen, as described in Sec. II.
To generate the I-V characteristics, the applied current
was ramped up in units of 0.005I„starting from an ini-
tial value of zero. The time-averaged voltages were deter-
mined by averaging over a time interval of 800to after
discarding the first 400to of voltages. The curves show
that the array behaves much like a single junction, as has
been observed previously, ' with a sharp critical current
at I =I, . In the overdamped limit (/3=0), for currents
greater than the critical current I„the voltage rises pro-
portionally to QI I„consisten—t with analytical results

3,"=0

for all bonds in the x direction except for those in the ex-
treme right-hand column of plaquettes; and

1.5

1.2

=10

0.9

0.6

0.3

Flax. 1. I-( V ) characteristics of an 8 X 8 ar-
ray with periodic boundary conditions at f=0
and two values of the McCumber-Stewart pa-
rameter P. In this and subsequent figures, the
solid curves are obtained with increasing ap-
plied current, the dashed curves with decreas-
ing current. The origin of the P=10 curve is
offset to the right by 1.5 units.
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for a single overdamped Josephson junction. At larger
values of p, we find that the transition into the resistive
state at the critical current I, becomes steeper and
steeper, and at sufficiently large values of p, there is clear
hysteresis in the I-V characteristics, just as in single junc-
tions of similar p values. ' This hysteresis is clearly visi-
ble at P= 10.

In a single junction, this hysteresis is due to the mass of
a phase "particle" sliding down a washboard potential.
For a sufBciently underdamped particle, this sliding
motion (i.e., a finite voltage) is maintained even when the
slope of the washboard potential (i.e., the current) is de-
creased far below its critical value for onset of the
motion. The hysteresis seen in Fig. 1 is simply this same
behavior for a locked array of Josephson junctions.

Figure 2 is the analog of Fig. 1 at f =
—,', . The curves

are similar to those at f =0 except for a low-current volt-
age tail, corresponding to the motion of a single vortex.
In addition, the I-V characteristic has an apparent slope
discontinuity near I =I, . These curves reveal two critical
currents, I„(f=0) and I,2(f =0). I„(0)=0.11I, for
any value of p, and represents the current necessary to
depin a single vortex. This value agrees with the static
predictions of Ref. 3. I,2(0) is very nearly equal to I„the
critical current at f =0, and correspond to the depinning
of the ground-state phase configuration of the entire lat-
tice, as in Fig. 1.

At sufficiently large p, there are usually one or more
discontinuities in the I-V curve as the current is in-
creased. These are due to row switching. When the
vortex (depinned at a current of =0.11I,) acquires
sufficient kinetic energy, it loses that kinetic energy to a
row of junctions perpendicular to the direction of the
current (i.e., parallel to the direction of vortex motion;
see Fig. 3). All the junctions in that row are switched
into a resistive state, giving rise to the resistance step seen
in Fig. 2. This behavior has been seen experimentally, '

and also reported in previous simulations. ' Note that

(a) (b)

FIG. 3. schematic illustration of row-switching behavior in a
current-drive Josephson-junction array containing a single vor-
tex. (a) A single vortex (denoted by a circled + sign) moves per-
pendicular to the applied current. (b) At sufficiently high
current, the vortex breaks up into a row of resistively switched
junctions (dashed lines parallel to the current), leading to a step
increase in the array resistance.

the row switching occurs at lower values of current as p
is increased. This is presumably because, for a given
current, the moving vortex has a larger kinetic energy at
larger values of P and hence can more easily trigger the
row switching. When the current is increased above
I,z(f =

—,', ) and then reduced, the array shows conspicu-
ous hysteresis at large values of p, just as it does for
f =0.

Figure 4 shows the time-dependent voltage traces V(t)
at f =

—,', for two representative current levels at p=0.
Just above the critical current of about I„(0)=0.11I„
V(t) looks like that of a single Josephson junction: there
are a series of voltage spikes [Fig. 4(a)]. The frequency of
these spikes increases with increasing voltage. In general,
the period T:1/v of thes—e spikes is related to the time-
averaged voltage ( V) across the array by
( V) =(hvl2eN) in an N XN array. This corresponds to
the motion of a single vortex perpendicular to the

1..4 ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ g ~ ~ ~ ~ ~ f ~ ~ ~ ~ ~ ~ I ~ I ~ ~ 0 ~ g ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~

1.2

1.0 P=10
t

P=100

0.8
FIG. 2. Same as Fig. 1, but for f= —' and

four values of P. The origin of successive P
curves is off'set to the right by 1.5 units.
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+ Q+- ~+

f=1/64 f=33/64

FIG. 8. Schematic of the vortex pattern and the expected I-V
characteristics at f=5 and f=

—,'+5. The schematic corre-
sponds to 6= —,'4 in an 8X8 lattice. Plus signs denote positive
vortices, empty squares denote absence of positive vortices. The
circled vortex moves in the direction shown under an applied
current I (introduced from below) which exceeds the vortex de-
pinning current I„.

the 8 X 8 array (which has periodic transverse boundary
conditions), as can be inferred from the fact that V(t) is
periodic in time [Fig. 7(a)]. Every period has eight volt-
age peaks of unequal height, each peak corresponding to
a transverse motion of the vortex by one plaquette. With
increasing current, the vortex moves more and more rap-
idly through the background of the f=

—,
' ground state.

Just below I =I,z( —,')=0.35I„V(t) is a series of small
oscillations occasionally disturbed by a broad but intense
voltage pulse (not shown). We interpret the small oscilla-
tions as single vortex motions, the large aperiodic pulses
as translations of the entire underlying f =

—,
' lattice. At

still higher currents V(t) is a nearly periodic function
modulated, as at f =

—,'„by a slowly varying envelope
[Fig. 7(b)]. Each rapid oscillation of V(t) now corre-
sponds to a translation of the entire underlying f =

—,
'

ground-state phase configuration by one plaquette. This
interpretation can be verified by relating the voltage to
the period T of the modulated oscillations, as
shown in Fig. 7. To a good approximation,
( V) =(8 jT)2vr(fi/2e)( —,'). This corresponds to a phase
slip of 2m for each junction parallel to the current in
every interval 2T, as would be expected for an f =

—,
'

ground-state phase configuration moving perpendicular
to the current.

Figure 8 summarizes our qualitative picture of the I-V
characteristics at both f =5 and f =

—,'+5. In the former
case, there is a single isolated positive vortex (denoted by
a plus sign) moving in an otherwise empty periodic two-
dimensional lattice. There are correspondingly two criti-
cal currents, I, i(0) and I,z(0) representing the depinning
of the individual vortices and the entire array of phase
differences. At f =

—,'+5, there is an extra vortex in the
checkerboard f =

—,
' ground state. The I Vcharacteri-stic

again exhibits two critical currents, I, i( —,') and I,z( —,').
The first leads to motion of a single vortex through the
checkerboard background. Above I,z( —,'), the checker-
board background itself is depinned and moves perpen-
dicular to the current, giving rise to nearly periodic volt-
age spikes.

We have checked for hysteresis when a single vortex
moves in an f =

—,
' background. So long as the current is

never increased above I,z( —,'), the I V-characteristics are
apparently nonhysteretic, even for P ))10. In this
respect, the vortex motion at f =

—,'+5 is similar to that
at f =5.

IV. DISCUSSION

Our results regarding the coherent motion of vortices
have a number of implications for real experiments. One
striking result is the finite critical currents we find at
f =5 and at f =

—,'+5. These finite critical currents im-

ply a finite vortex depinning energy Ed(f) for a vortex in
a lattice at f =0 and f =

—,', as has already noted by a
number of workers. ' A finite depinning energy may
lead, in turn, to an activated low-temperature resistivi-
ty ' of the form ~5~exp[ Ed(f)lk—AT], in a regime
where the excited vortices behave as independent
diffusing particles.

We can also extrapolate our results to other values of
f. By extension from f =0 and f = —,', we may assume
that the defect vortices at other f's will move through a
still more complex "partially filled periodic two-
dimensional" potential formed by the underlying vortex
lattice. For example, at f =

—,', one-third of the possible
plaquettes are filled by vortices. On the basis of the
ground state proposed in Ref. 20 for this state, we might
expect that a vortex defect traveling parallel to one of the
axes of the square lattice would move through a potential
in which one-third of the plaquette centers correspond to
potential maxima, while the other two-thirds represent
minima. This potential, unlike that at f =

—,', would not
be symmetric with respect to 5=0, and should be charac-
terized by still more complex time-dependent vortex
motions.

A surprise in our calculations (as well as experiment) is
the absence of hysteresis in vortex motion even at large
values of P for both f =5 and f =

—,'+5. Seemingly, a
vortex behaves like an overdamped object even in an ar-
ray of highly underdamped junctions.

In an effort to further understand this overdamped be-
havior, we have ramped the current up to 0.25I, at
f =

—,', and various values of P, then abruptly turned oQ
the current. In all cases up to P=1000, the vortex oscil-
lates with exponentially decreasing amplitude about its
initial position at the time the current is turned off. This
behavior is indicated by exponentially decaying voltage
oscillations. Clearly, the initial kinetic energy reached at
I =0.25I, is too small to allow ballistic vortex motion
when the current is removed. Hence, in order to produce
ballistic motion at any P, one would need to inject vor-
tices initially with some large kinetic energy. When the
current is ramped up to 0.9I, at P=1000, then turned
off, one obtains the voltage trace shown in Fig. 9, which
looks like the signature of a moving vortex which gradu-
ally slows and is eventually trapped. This interpretation
is probably not correct, however. Instead, the trace
represents the time decay of the two switched rows which
are generated under these conditions. While ballistic vor-
tex motion doubtless exists under proper initial condi-
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FIG. 9. Voltage trace V(t) in an 8X8 array at f= —',
P= 1000, after the current is ratnped up to I =0.9I, and abrupt-

ly removed. The voltage trace represents, not the slowing down

and retrapping of a vortex, but the decay of the two switched
rows which already exist in this array at time t =0.

tions, we have not as yet seen it in our calculations.
On the basis of these simulations, we tentatively con-

clude that, in very underdamped arrays, vortices with
high kinetic energy tend to decay by row switching rather
than to move ballistically. Lower-energy vortices move
coherently but have insufficient kinetic energy to propa-
gate ballistically, i.e., to continue moving when the driv-
ing current is turned off, and hence, the corresponding
I-V characteristics do not show any hysteresis.

In Refs. 5 and 6, it is suggested that the vortices in an
underdamped array still move in an overdamped fashion
because they lose energy to single junctions oscillating in
their wakes at the Josephson plasma frequency. This pic-
ture is not inconsistent with our own results. However,
we have not investigated the voltage oscillations of single

junctions in the wakes of moving vortices, and so have
not explicitly confirmed this picture.

Note that all the calculations presented here are for an
8 X 8 array. We expect that some of our results may well
be size dependent (e.g. , the current at which a vortex de-
cays into a resistively switched row), but have not as yet
investigated this size dependence. Since our depinning
currents, at least for f =

—,', are close to those calculated
form much larger lattices, ' it seems likely that most size
effects will not be too severe.

To conclude, we have calculated single vortex motion
in both underdamped and overdamped Josephson-
junction arrays at fields f=5 and f =

—,'+5. In both
cases, we see clear evidence for coherent vortex motion
on the background of the ground-state phase
configuration, with characteristic activation energies. The
vortices tend to behave in an overdamped (i.e., nonhys-
teretic) fashion even if the junctions themselves are un-
derdamped, in agreement with experiment. The calcula-
tions also show that the vortices can generate resistance
steps at sufficiently large )33, once again in agreement with
measurements on underdamped arrays. We suggest some
possible explanations for the nonhysteretic vortex behav-
ior, and discuss how ballistic vortex motion might be pro-
duced.
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