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A theory of collective oscillations in a system of spin waves parametrically excited by homogeneous
parallel pumping in a finite-size ferromagnetic sample is developed. This theory is an extension of the
well-known S theory of spin-wave collective oscillations in an infinite ferromagnetic medium for the
case when the boundary conditions in a magnetic sample of finite size D are taken into account. The
unstable collective oscillations in the system of parametric spin waves manifest themselves as low-
frequency autooscillations of magnetization and demonstrate a variety of bifurcations and transition
to chaos. We show that by introducing boundary conditions and taking into account the finite size
of the sample it is possible to explain the following experimentally observed properties of spin-wave
autooscillations that were not explained by the existing models of this phenomenon: (i) the difFerence
between the threshold of parametric excitation of spin waves htl, and the threshold of autooscillations
h„,; (ii) the finite value of the autoosciilation frequency f „at the threshold of autooscillations; (iii)
the dependences of the threshold h „and the frequency f„,of the spin-wave autoosciilations on the
size of the ferromagnetic sample, The results of the theory are in good qualitative agreement with
the results of experiments in which the influence of sample size on the spin-wave autooscillations
was studied in yttrium iron garnet spheres.

I. INTRODUCTION

Strongly nonlinear systems that are far from ther-
modynamic equilibrium often demonstrate complicated
nonstationary behavior such as periodic and chaotic au-
tooscillations. It is well known that boundary conditions
can have a considerable influence on the development of
nonstationary nonlinear behavior in such systems even
in the case when the size of the system under consider-
ation is rather large. Autooscillations of magnetization
beyond the threshold of parametric instability of spin
waves in ferromagnets are a typical example of a non-
stationary behavior in a strongly nonequilibrium nonlin-
ear system where the influence of boundaries of the ex-
perimental sample can result in interesting qualitative
effects. The parametric excitation of spin waves in mag-
netic dielectrics (ferrites and antiferromagnets) is usually
performed by means of a high amplitude microwave elec-
tromagnetic field and has a threshold character (see, e.g. ,

Refs. 2—5). Beyond the parametric instability threshold
both stationary and nonstationary behavior can be ob-
served in the system of parametrically excited magnons
(or spin waves). The nonstationary behavior manifests
itself in a form of periodic and/or chaotic autooscillations
of magnetization having a characteristic frequency which
is several orders of magnitude lower than the microwave
frequency of parametric spin waves.

Theoretical and experimental investigations of the

properties of autooscillations of magnetization above the
spin-wave instability threshold have been carried out
for more than thirty years and considerable experimen-
tal experience is gained in this field. 2 The physical
mechanism of spin-wave autooscillations in the case of
parallel pump parametric instability was explained by
L'vov, Musher, and Starobinets. The authors of Ref.
21 demonstrated theoretically that the autooscillations
of magnetization observed in spin-wave experiments are
nothing else but the unstable collective oscillations in
the system of parametrically excited spin waves analo-
gous to the second sound in liquid helium. The idea
of unstable collective oscillations was further developed
in a series of subsequent theoretical papers. ~ The fre-
quency spectra of both spatially homogeneous2 and spa-
tially inhomogeneous 3 spin-wave collective oscillations
were calculated in the framework of this approach, and
the conditions for stability of these oscillations were de-
termined.

The spectrum of spatially homogeneous collective os-
cillations against the background of spatially homoge-
neous parametrically excited magnons has the form

0 =ip + v'4' —p' E' = 4S(2T+ S)N', (1)
where p is the equilibrium parameter of magnon dissipa-
tion (or the magnon relaxation frequency), S and T are
the amplitudes of nonlinear interaction between magnons
and K is the number of parametrically excited magnons.
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It is clear from the Eq. (1) that if the product S(2T+S)
is positive the collective oscillations dissipate and the sta-
tionary state of the system of parametric magnons is sta-
ble. In the opposite case when S(2T+S) & 0 the station-
ary state is unstable for arbitrary N and the amplitude of
collective oscillations increases exponentially with time.

It is worth noting, that the amplitudes S, T of non-
linear interaction between magnons demonstrate a very
strong dependence on the crystallographic orientation of
the sample even in almost isotropic cubic magnetic crys-
tals like yttrium iron garnet (YIG), where the magnon
spectrum is practically not infiuenced by the crystallo-
graphic anisotropy. 6 This property of the coefficients 5, T
explains the giant crystallographic anisotropy of spin-
wave autooscillations observed in Refs. 5, 6, and 26. The
expression (1) also explains such characteristic features
of spin-wave autooscillations as the resonant properties
of radio-frequency susceptibility and the dependence of
the autooscillation frequency on the input power.

However, the theory of autooscillations6 based on
expression (1) does not explain the following impor-
tant qualitative properties of autooscillations observed
in experiments.

(i) The difference between the thresholds of parametric
excitation of spin waves hih and the threshold of spin-
wave autooscillations h „.In experiment this difference
is about O.l—2.0 dB and depends on the wave number
of the parametrically excited spin waves, while in the
theorys these two thresholds coincide.

(ii) The finite frequency of autooscillations at the
threshold. In the experiment this frequency is about 10—
1000 kHz and it depends on the spin-wave wave number,
while in the theory this frequency is exactly zero at the
threshold of autooscillations.

(iii) The dependence of the autooscillation threshold
and the autooscillation frequency at the threshold on the
size of the experimental sample. Experiments have
demonstrated a sample size effect on both the autooscil-
lation threshold and frequency in yttrium iron garnet
(YIG) spheres of the orientation [ill] while the theorys
does not take into account the finite size of a sample.

An attempt to develop a general theory of spin-wave
autooscillations (for the cases of both parallel and per-
pendicular pumping ) was undertaken by Zhang and Suhl
in their paper. They considered a rough (compared to
S theory ) model for the spin-wave nonlinear dynam-
ics and obtained not only the autooscillation spectrum,
but also the stability condition for the periodic autooscil-
lations of finite amplitude. In the case of perpendicular
pumping the theory 4 gives the different threshold values
for the spin-wave excitation and spin-wave autooscilla-
tions (h~„/hqh = 10 dB) as well as the finite frequency
of autooscillations at the threshold (0 = 2p, where p
is the spin-wave relaxation parameter). In the case of
parallel pumping the theory24 gives an estimate for the
autooscillation frequency ~A] p when SN p. This
result agrees with formula (1). Once again, as in the
model2 6 the inHuence of the sample size was not taken
into account in the theory.

The pronounced size dependence of the autooscillation
frequency observed in Refs. 27 and 28 suggests, however,

that the above-mentioned differences between the exper-
imental results for autooscillations and the results of the
theories 4 can be explained by the inHuence of the sam-
ple boundaries.

The aim of our present paper is to develop a theory of
spin-wave autooscillations which takes into account the
inHuence of the sample boundaries and explains all the
above-mentioned peculiarities of spin-wave autooscilla-
tions observed in the experiments.

The outline of the paper is as follows. In Sec. II
we derive the system of equations for the amplitudes
of small spatially inhomogeneous perturbations on the
background of a stationary distribution of parametrically
excited spin waves (or magnons) and obtain the bound-
ary conditions for these perturbations. It is shown that
when the characteristic size of the sample D is much
greater than the magnon mean free path l the stationary
distribution of parametric magnons is spatially homoge-
neous everywhere in the sample with the exception of a
relatively small region (of the size I ) near the sample
boundaries. As a result, in this limiting case (D &) l)
we obtain a closed set of equations for the amplitudes
of collective oscillations in the system of parametrically
excited magnons.

In Sec. III we obtain the frequency spectrum of collec-
tive oscillations in a sample of a finite size using the sys-
tem of equations derived in Sec. II. We consider the case
when the distribution of parametrically excited magnons
is quasi-one-dimensional and the ferromagnetic sample
has a finite size D in the direction of propagation of para-
metric magnons. We study in detail the particular case
when the product S(2T + S) is negative. This condi-
tion can be fulfilled, for example, in a cubic ferromagnet
magnetized along the easy axis [ill]. In an infinite fer-
romagnetic medium the condition S(2T + S) & 0 leads
to the instability of spin-wave collective oscillations for
any arbitrary small number N of parametric magnons.
We show that contrary to that in a sample of a finite size
D the spin-wave collective oscillations become unstable
only when the number N of parametric magnons is large
enough to obey the condition

4~S(2T + S)~N & 2vr v /D (2)

where v is the group velocity of parametric magnons.
In the same section we find the frequency of spin-wave
collective oscillations at the threshold of their instability,
which turned out to be finite and dependent on the size
of the sample. In the samples of a relatively large size
(D )) l) this frequency is inversely proportional to the
square of the sample size

v2

D2
y

while in a relatively small samples (D « t) the frequency
of collective oscillations is inversely proportional to the
sample size itself.

v0
D

In Sec. IV we present the comparison of our theoreti-
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cal results with the results of experimental study of the
sample size influence on the spin-wave autooscillations in
YIG spheres.

Conclusions are given in Sec. V.

II. FORMULATION OF THE PROBLEM AND
BASIC EQUATIONS

Pi = h V + ) .~k, k Ak A-k ~

k'

wk = (uk+ 2) Tk k [Ak
~

(5)

(6)

Here pk and vk are the dissipation parameter and the
group velocity of parametric spin waves, ~k is the spec-
trum of spin waves in the sample when the pumping
field is absent, h(t) = h exp(a„t) is the magnetic field of
parametric pumping which is parallel to the bias rnag-
netic field Ho (h [~ Hp), Vi, is the coupling coefficient
of the parametric magnons with the pumping field, and
Sk k, Tk k are the amplitudes of four magnon interac-
tions calculated in Ref. 6.

This system of equations is, in a certain sense, anal-
ogous to the BCS equations in the theory of supercon-
ductivity. In particular, in a spatially homogeneous case
the threshold of parametric excitation of spin waves is
reached when [hVk~ = pk, which is equivalent to the con-
dition of the superconducting transition T = T, . In the
spatially homogeneous case the distribution of paramet-
ric magnons above the threshold of parametric excitation
has a form such that the renormalized pumping Pk (6) is
fixed at its threshold level [Pk[ = pk and the renormal-
ized spin-wave frequency ~k is equal to one-half of the
frequency of the pumping field ( i.e. , it stays in the exact
parametric resonance).

The boundary conditions for the spin-wave envelopes
Ak, A k are, strictly speaking, dependent on the form
and properties of the sample surface and can be derived
rigorously by means of the diagrammatic technique for
nonequilibrium processes. 9 However, in the case when
the. sample has a rough surface ( so that the roughness
is of the order of the wave length of a parametric spin
wave) and a spectrally narrow packet of spin waves is
excited in the sample the spin waves scattered from the
rough surface do not, as a rule, return back to the packet
and simply dissipate in the volume of the sample. In
such a case the boundary condition for the envelope of
the spin-wave packet is that the envelope amplitude of

In a ferromagnetic sample of a finite size D the dis-
tribution of parametric magnons above the threshold of
their excitation and collective oscillations in the system
of these parametric magnons can be spatially inhomo-
geneous. The equations for the distribution function of
parametric magnons in the spatially inhomogeneous case
were obtained in Ref. 23. These equations can be rewrit-
ten in the form of equations for the envelope Ak of the
packet of parametric spin waves in the form

0 0 ~ 4)p—+vk —+ /k+'i Mk — Ak+KPkA k = 0)
Bt OF 2

the spin-wave packet reflected from the sample surface
vanishes. We note, that the boundary conditions for the
individual spin waves forming a narrow wave packet can
be quite diKerent from the above formulated boundary
condition for the packet envelope Ak.

We consider in our present paper the simplest (but
important for experiments) case when the magnetic sam-
ple is a thin monocrystalline ferrite film of the width D.
The constant bias magnetic field Ho and the ac pumping
magnetic field h lie in the film plane, are parallel to each
other, and are both oriented along the crystallographic
axis [111]of the film. In this case the parametrically ex-
cited spin waves form a narrow packet with wave vectors
oriented perpendicularly to the axis [ill] (along which
the pumping field h is aligned). This experimental con-
figuration was used in the recent measurements.

The simple model described above should also give a
good qualitative description of the distribution of para-
metrically excited spin waves in spherical magnetic sam-
ples as in these samples above the threshold of paramet-
ric excitation this distribution is also highly anisotropic
and consists of several narrow packets of parametric spin
waves (see Refs. 31 and 32).

Our aim is to study the small spatially inhomogeneous
perturbations of the stationary solution of the system of
equations (5) for the envelope Ak of the spin-wave packet
in the case when we take into account the boundary con-
ditions of absence of reflections on the sample boundaries

Ak[x= —D/2 = 0, A —k
I x=a/2 ——0.

We give a detailed consideration of the situation when
the sample size D is much larger than the mean free
path of a spin wave in the sample l = vi, /pi, (D ))
l). This condition corresponds to a typical experimental
situation

To solve this problem we need to know the stationary
state of the system of parametric spin waves in the sam-
ple beyond the threshold of parametric excitation. This
stationary state was studied in Ref. 23. It was shown in
Ref. 23 that when the condition D &) L takes place the
stationary state in the volume of the sample is spatially
homogeneous and the same as in the case of unbounded
ferromagnetic medium. The deviations from the spatial
homogeneity of the stationary state appear only in a layer
of the thickness t near the boundaries of the sample.

At the same time the characteristic scale of spatial in-
homogeneity of the perturbation of spin-wave envelopes
in the sample is of the order of sample size D (the wave
number of spatially inhomogeneous autooscillations is
usually of the order of 1/D) It means .that for these
perturbations the deviations of the stationary state from
the spatially homogeneous "unbounded" case are negli-
gible.

In the case when two narrow spin-wave packets with
opposite directions (k and —k) of the spin-wave wave
vectors exist in the sample Eq. (5) and its conjugate can
be reduced to a system of four equations for the values
Ak, A k, Ak, A' k. The homogeneous stationary solution
of these equations has been studied in detail in Refs. 6
and 9 and it has the form
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) lA0l2 I kl h2 t 2
k

arg (hVkAk A k ) = arcsin(pk jlhVkl).

(9)

Here S = Sk k is the amplitude of four magnon interac-
tion, N is the number of parametrically excited magnons,
ht h is the threshold pumping Beld, and Vk is the coupling
coeKcient of magnons with the pumping field. I ineariz-
ing the dynamic equations (5) for small spatially inho-
mogeneous perturbations of the homogeneous stationary
solution

Here we introduced the notations

T+ =Tk, k) T =Tk, k) S = Sk,k = Sk,—k.

where

py = Ak ak+Aka„+A „n k+A „a „,pg 0 t 0~ 0

p2 = Ak*nk+ Akak —A *ka—k —A „n k,
0+ 0 t Os 0

$3 = Ak nk —Akak+ A kn k —A kn „,0+ 0 t 0~ 0

p4 = A„nk —A„n„—A '„a „+A „n „.
(12)

A~k ——A+k + nyk exp (—iAt + i rx),

Ask = A+k +n+kexp(iAt+ir*)

(10)

we get the following system of equations for the renor-
malized perturbations P„of the magnon distribution

for the spin-wave interaction coe%cients. We note that
in the chosen geometry of the problem T = S. The
coefficients T+, T, and S in Eq. (11) can be expressed
in terms of Fourier harmonics Sp, Tp, S~2, Tyq of the
coeKcients of the four-magnon Hamiltonian obtained in
Ref. 6 [see Eqs. (4.5)—(4.9) in Ref. 6]

+v +2iSNQ3 =0,
Bt Ox

v
~ + (—+ 2 /)p2 = 0)

Bgy c)

Ox Bt

T = —(T++T ) =T0+.T2+T 2,
1

2

S=Sp+S2+S 2.

(14)

2i(T + T + S)NP& + (—+ 2P)P3 + v = 0,
&44

Ot Bx

2i(T+ —T )N$2+v ' +Od&3 Od4

Bx Ot

Calculation of the determinant of the above derived
system of linear equations (11) leads to the following dis-
persion equation for the spatially inhomogeneous collec-
tive oscillations of the envelope of the spin-wave packet

A(A+2ip) = Op2

2
+ (vr)2

Ap~ + (vr) —(vr) [b —(vr) ], (15)

where

00 ——4S(2T+ S)N, 6 = 4S(T —S)N . (16)

III. SPECTRUM OF COLLECTIVE SPIN-WAVE
OSCILLATIONS IN A FINITE-SIZE

MAGNETIC SAMPLE
In accordance with the boundary conditions for the spin-
wave envelopes Ayk, A+k (8) the boundary conditions

for the small perturbations of the envelope n~k)
have the following form

The general solution of the linear system of equations
(11) for the amplitudes of spatially inhomogeneous per-
turbations in magnon distribution can be written as a
sum of exponentials

n —kl*=D/2 = 0,

n —k I*=D/2

klnx= D/2 = 0)—
nk I 2:=—D/2

(17)
(~) —@+e~~&+ + @ e ~&+ + @+e~~&+ + '@ e~~&~ (19)

In terms of the renormalized perturbations
P4 (12) the boundary conditions (17) can

be reduced to

where i = 1, 2, 3, 4 and xy and eq are the roots of Eq.
(15) corresponding to the same frequency 0

(4i+42)l.= D/2 =0, (4i —42)I*=D/2 = o, (vugg 2) = A (A+ 2ip) + —b

(P3 + P4) lz — D/2 —0 (g 3 g)4) lx—D/2 —0 ~

The linear equations (11) in combination with the bound-
ary conditions (18) form a closed system of equations
from which the spectrum of the collective spin-wave os-
cillations in a finite-size magnetic sample can be deter-
mined.

- 1/2
—tI + 0 (0 + 2iy) (00 + 6 )
j.

4
(20)

Substituting Eqs. (19) for the perturbation amplitudes P,
in the boundary conditions (18) we obtain the expression
for the spectrum of the spin-wave collective oscillations in
a finite-size magnetic sample as a condition of existence
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1 0
q12 ———K12D, 0 = —,

2 ' ' 27'
A' = in(1 —in), 2 ' = 6'/(2q)',

nzo 2T+ S v

P T —S' pD

(21)

we can rewrite the determinant of the First of these (2 x 2)
matrices in the form

det M„,~ = 0 (n„m = 1, 2),

Ml, m —(1 —in) cos qm,
—(q~ sill q~,

(22)

Mz~ = (A —( q~)ncosq~
—i(A —( qz + Az)(q~ sin q~.

of a nontrivial solution of the linear system (18). The
(4 x 4) matrix of boundary conditions (18) splits into
two (2 x 2) matrices in the variables (Pi + Pz, $3 + Q4)
and (Pi —Pz, Ps —P4). Introducing the dimensionless
variables

hz„1 S (m.v i
h,'„2 2T+S gpD) (27)

The frequency of the collective oscillations at the thresh-
old of their instability is equal to

oscillations become unstable only when the characteris-
tic energy of interaction between magnons bE exceeds
the energy splitting in the magnon spectrum caused by
the influenee of the sample boundaries bE & 57rv/D
The condition (26) also demonstrates that the thresh-
old of parametric excitation of spin waves hih and the
threshold of spin-wave autooscillations h„, do not coin-
cide in a finite sample and the difference between these
two thresholds depends both on the sample size D and
on the wave number of parametric magnons (through the
magnon group velocity v).

Using Eqs. (9) we can get from Eq. (26) the expres-
sion for the threshold amplitude of the pumping field
AQ$Q corresponding to the appearance of unstable spin-
wave collective oscillations, i.e. , the threshold pumping
amplitude for the spin-wave autooscillations

The second matrix difFers from the first one only by sub-
stitution

7t V

2 D2
1 + 2p

p2
(28)

cosq1 2 ~ slnq1 2, s1nq1, 2 ~ cosq1, 2. (23)

The problem of calculation of the threshold of spin-wave
autooscillations in a finite-size magnetic sample is thus
reduced to finding the minimum value of iL3,

i
(which is

proportional to the number N of parametrically excited
magnons) for which the imaginary part of the frequency
0 of spin-wave collective oscillations is positive

ImA&0. (24)

vr .v 2~
K1 —, K2D) 2D (25)

We note, that in the experimental situation which is most
interesting for us (YIG sample magnetized along the [111]
axis and pumped at the frequency cu„/2vr = 9.4 GHz) the
value of p2 = 0.78.

The threshold value of the number of parametric
magnons corresponding to the appearance of unstable
(undamped) perturbations is

v2
4 iS (2T + S) i

N „=2m (26)

The condition (26) means that the spin-wave collective

The fulFillment of the inequality (24) corresponds to the
appearance of the nondecaying spatially inhomogeneous
perturbations of the stationary distribution of parametric
magnons in the sample, i.e., to the appearance of the
autooscillations.

The general analytical solution of the transcendental
equation (22) is difficult to find, but in the case of rela-
tively small value of the coefficient ipiz ( 8 the solution
of Eq. (22) can be obtained in the closed form and the
maximum of iAiz is reached when

The calculation of the determinant of the second (2 x 2)
matrix [analogous to Eq. (22)] yields a higher value for
the magnon number N», corresponding to the thresh-
old of autooscillations. Thus, the most unstable are the
collective oscillations having the eigenvectors

(4'i + 4~), (4s + 44) (29)

and the instability threshold determined by Eq. (27).
The influence of the sample boundaries is the strongest

in the case when the size of a sample D is small com-
pared to the magnon mean free path t, so that the di-
mensionless parameter ( is large (( = t/D &) 1). Unfor-
tunately, in this case the stationary distribution of para-
metric magnons is not known. However, it is clear that
the characteristic spatial scale of this stationary distribu-
tion of magnons is of the order of D and the dissipation
of magnons is caused mainly by their scattering on the
sample boundaries. This means that only one parameter
having the dimension of frequency exists in the problem:

nD=—
D (30)

Thus, in the case ( )& 1 the threshold of instability of
spin-wave collective oscillations and their frequency at
the threshold can be estimated as follows:

4 IS(2T+ S) IN.',.= nzD,

0- AD.
(31)
(32)

It is easy to prove that in the intermediate case, when the
size of the sample D is comparable to the mean free path
of parametric magnons t (D t), the results of the exact
solution for the threshold and the frequency of spin-wave
collective oscillations Eqs. (26) and (28) and the results of
estimations Eqs. (31) and (32) are smoothly transformed
one into another.
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IV. DISCUSSION AND COMPARISON
WITH EXPERIMENTS

To make a detailed comparison of the theory with
the experiment it is necessary to carry out some addi-
tional measurements where the influence of the size of the
sample on the spin-wave autooscillations is methodically
studied in a wide range of sample sizes and relaxation
parameters of parametric magnons.

However, the experimental data available in the litera-
ture (see, e.g. , Refs. 5 and 6) and, especially, the results
of the recent measurements enable us to make some
preliminary estimations. The most detailed study of the
influence of the sample size on the spin-wave autooscilla-
tions was done by Rezende, de Aguiar, and Azevedo27 zs

in the case when the size of the experimental sample D is
of the order of the mean free path of parametric magnons
t. In this case our theoretical results obtained in the lim-
iting cases D && t and D &( t can give only qualitative
description of the experimental data. Nevertheless, the
estimations made using expressions (27), (28) for the con-
ditions of the experimentsz7 zs

( parallel pumping at the
frequency f„=9.4 GHz in the YIG spheres of the diam-
eter Dq ——1 mm and D2 ——0.52 mm magnetized by the
bias magnetic field Ho oriented along the crystallographic
axis [ill]) demonstrate that the field dependence of the
difference between the thresholds h „—hth obtained from
Eq. (27)

V2
(33)

is in a good agreement with the experimental results in
the region of relatively large spin-wave wave vectors A: )
10s cm ~ (see Fig. 1 in Ref. 27). It is in this region
H (H, that the significant size effect was experimentally
observed.

The numerical estimate made using Eq. (27) for the
sample size Di ——1 mm and A: = 2 x 10 cm gives
h», jhqh = 1.06 while the experimental value in this point
obtained from Fig. 1 in Ref. 27 is h „/hth = 1.09. The
theoretical estimate of h„,/hqh was done for the values of
the spin-wave interaction coeKcients T = To ———0.627|.g~
and S = So = 0.32vrgz ( g is the gyromagnetic ratio )
calculated for the YIG sphere magnetized along the [ill]
axis using the formulas presented in Ref. 6 [see Eqs. (4.5)—
(4.9) in Ref. 6].

We believe that such agreement between theory and
experiment should be considered reasonable especially in
the case when D is of the order of l and Eq. (27) is
suitable only for qualitative estimates.

The calculation of the frequency on autooscillations
at the threshold of their appearance for the spheres of
Di ——1 mm and D2 ——0.52 mm at the point A: = 2 10
cm ~ was made using Eq. (28) and gave the respective
values of autooscillation frequency wq /2vr = 100 kHz and
~q /2vr = 390 kHz. The corresponding experimental val-
ues obtained from Fig. 2 in Ref. 27 are fq ——95 kHz and
f2 ——290 kHz. In the region of relatively large spin-wave
wave vectors (k ) 10s cm ) Eq. (28) also gives the de-

pendencies of the autooscillation frequency on the wave
vector k and the sample size D that are close to those
experimentally obtained in Refs. 27 and 28 (see, e.g. , Fig.
8 in Ref. 28).

The small difference between the threshold of spin-
wave autooscillations and the threshold of parametric
excitation of spin waves as well as the small (but fi-

nite) autooscillation frequency experimentally observed
in the region of relatively small spin-wave wave vectors
k ( 10s cm are caused, in our opinion, by the ef-
fects that were neglected in the S theory of spin-wave
interaction. Among these effects we can name the scat-
tering of parametric magnons on one another34 and scat-
tering on magnetic impurities. The finite autooscilla-
tion frequency caused by these effects is proportional to
the negative power of the product (kv), and due to this
dependence these small efFects can play a dominant role
in the region of relatively low spin-wave wave vectors. It
was shown in Ref. 22 that the above-mentioned small ef-
fects of magnon scattering may result in appearance of
new modes of spin-wave collective oscillations with very
low eigenfrequencies.

V. CONCLUSION

It was pointed out in Refs. 6, 27, and 28 that one of
the principal questions in the theory of autooscillations
in a system of parametric spin waves was the question of
a physical nature of a finite frequency of spin-wave au-
tooscillations at the threshold of their appearance. This
frequency was measured experimentally to be 1 to 2 or-
ders of magnitude lower that the magnon relaxation fre-
quency p —the only characteristic frequency in the infi-
nite system. The autooscillation frequency also demon-
strated a pronounced dependence on the size of the ex-
perimental sample.

In the present paper we took into account the finite size
of a sample in the framework of the approximations of the
S theory of magnon interaction. s' 0 As a result we were
able to eliminate the main contradictions between the
existing theories of spin-wave autooscillations and the
experimental data on autooscillations obtained in finite-
size magnetic samples.

(i) The threshold of spin-wave autooscillations in a fi-
nite system h~„ turned out to be higher than the thresh-
old of excitation of parametric spin waves h~h. The differ-
ence between these two thresholds depends on the ratio
of the size of the experimental sample D to the mean free
path of parametric magnons t.

(ii) The frequency of spin-wave autooscillations at the
threshold of their appearance is finite and it is determined
by the size of the experimental sample.

(iii) The above theory of spin-wave autooscillations in
finite-size magnetic samples is a natural extension of the
S theory of spin-wave autooscillations. It preserves all
the positive features of the S theory such as explanation
of the giant crystallographic anisotropy of autooscilla-
tions and the correct description of the power dependence
of the autooscillation frequency.
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