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Chiral optical resonance of vortex core states in type-II superconductors
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The dynamic conductivity of vortex cores in type-II superconductors is calculated. We show that
there is a chiral optical resonance well below the superconducting gap, corresponding to creating a pair
of quasiparticles inside the vortex core. The chirality is the same as cyclotron resonance. The frequency
and intensity of the resonance are estimated by numerically solving the Bogoliubov —de rennes equa-
tions self-consistently.

There has been considerable interest in electronic prop-
erties of the vortex lines in type-II superconductors. It
was predicted a few decades ago' that a spectrum of
quantized low-energy excitations exists in vortex lines.
Recent scanning-tunneling-microscopy experiments
have given a new insight into the detailed structure of
vortex cores. Motivated by these experiments, several
groups have advanced theoretical techniques to study
the electronic structure of a vortex line, which agrees well
with the experiments.

In this paper, we study the optical response of the vor-
tex cores in an s-wave superconductor. We calculate the
dynamic conductivity of the pinned vortices and show
that there is an optical resonance well below the super-
conducting gap Ap, corresponding to the quasiparticle
pair creation process inside the vortex core. The reso-
nance has right-handed chirality for electron carriers,
and left-handed chirality for hole carriers. This chiral
resonance may be used to probe the charge of carriers in
superconducting states, similar to the Hall effect in the
metallic state. The frequency and intensity of the reso-
nance and the depolarization effect are estimated by nu-
merically solving the Bogoliubov —de Gennes (BdG) equa-
tions self-consistently. Some experimental relevance and
consequences will be discussed.

I.et us consider a pinned single vortex line along the z
axis in a pure type-II superconductor. We assume that
the background superconductor is described by a simple
s-wave BCS theory, and that the system is in the clean
limit and has a cylindrical symmetry about the vortex
line. Before we go to detailed formalism, we would like
to 6rst provide a qualitative explanation of our results.
At zero field, a conventional superconductor has a gap
ip so that the optical transition occurs only at frequency
Aco 2hp. In the presence of vortices, there exist bound
states with energies of order of b,o/Ez «b, o (EF is the
Fermi energy), due to the "normal state" core of the vor-
tex. Each of these bound states can be described by a
half-integer angular momentum quantum number p. For
electron-type carriers, the bound states with p &0 have
negative energies relative to EF, and are occupied at low
temperatures. The bound states with p & 0 have positive

energies, and are unoccupied. These are quasiparticle
states of mainly hole (p & 0) or electron (p & 0) character.
Now let us consider a photon with right-handed chirality,
a = + I (counterclockwise), propagating along the z direc-
tion. As a consequence of the angular momentum con-
servation, the only allowed optical process within the gap
is the transition from p= —

—,
' to p=+ —,

' bound state. If
the incident photon has left-handed chirality, a= —1

(clockwise), then no transition between the bound states
is allowed. The chirality of the optical transition is a re-
sult of the time-reversal symmetry breaking of the vortex
states. If the carriers are hole type, then the resonance is
only active for photons with left-handed chirality. This is
because the system is CT invariant (reverse the charge
and time simultaneously). In what follows, we shall con-
sider electron systems (e &0), and make the above discus-
sions more concrete and quantitative.

Our starting point is to use the Kubo formula to evalu-
ate the dynamic conductivity of the vortices whose states
are described by the BdG equations. ' The conductivity
transverse to the z axis of N, vortices can be written as,
in the dilute density limit, cr„=N,cr' ', with cr' ' the con-
ductivity of a single vortex. 0' ' is related to the retarded
current-current correlation function m"', o' '.(q, co)
=(i/co)n" (q, co), tr'" can be obtained from the corre-
sponding Matsubara function by changing i co~co+i 5,

,(q, ico) = —V ' f dec'"'& T,ja(q, r)j (q, 0) &,
0

where q is the wave vector along the z axis, j(q, r) is the
current operator in q space, and j+ =(j„+ij~)/v2. The
correlation function will be evaluated in terms of quasi-
particle amplitudes f (r)=(u(r), v(r)), in the presence of
a single vortex. f(r) are the solutions of the BdG equa-
tions. We work in the cylindrical coordinate, and choose
a gauge' where the order parameter h(r)=e ' h(r), with
h(r) real. We can write

where g(r) is a normalized two-component spinor. The
BdG equations then take the form
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where the sum runs over all the states with positive c„
and e„andQ is the matrix element given by

Q„„.=5„+q 5k +k q(ehkF/im, V 8)C„„.,

where kz is the Fermi wave vector, and C„„.=fdr F(r)
is a dimensionless numerical factor, whose integrand

F(r) kF (g„.M—„.„g„+g„M„„g„),
M„.„=ir(rd„+ap)=[(erAs/Pic)+a/2jr„.

The function 5„,+ in (4} describes the angular rnomen-
tum conservation whose consequence will be discussed
below.

Schematically shown in Fig. 1 are the solutions of Eq.
(2). The scattering states have continuous spectrum,
whose energy s & —b,o, or ) b,o. For each set of (p, k, ),
there is one and only one bound state, whose c is within
the gap. c. &Oif p&0, and c&Oif p&0. The relative sign
between c. and p can be best understood as the following.
The occupied bound states (e &0) generate a counter-
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FICs. 1. Schematic plot of the energy spectra of the vortex
states. The states of c &0 are all occupied at T=O. The solid
arrows indicate the allowed optical dipole transitions between
two bound states, resulting in a resonance below the gap. (a)

p = —
2 to p = +

2
for electron carriers and for photon chirality

a= + 1; (b) p= +
2

to p = —
~

for hole carriers and for a= —1.
The dashed arrows represent the transitions (not all shown) in-
ducing an edge in absorption at ~=DO+ c, &/&.

Xg(r)+~„b(r)g(r)=eg(r), (2)

where ~'s are Pauli matrices, A & is the vector potential in
0 direction, m, and m, are the effective mass in
the x-y plane and along the z direction, respectively,
and k is the radial wave number, given by
k =2m, E~/I k, m—, lm, T.he h(r} and A(r) are to be
determined self-consistently. Using (1) and (2), we find
at low T,

clockwise paramagnetic current, hence the electrons
move clockwise, thus p &0. Therefore, the transition be-
tween the two bound states is only possible for a =+ 1,
and from a state p= —

—,
' to p=+ —,'. Note that in the su-

perconducting phase the ground state is considered as a
vacuum, an operator which destroys a state of e & 0 with
p= —

—,
' and spin up (down) should be regarded as a

creation operator for an excitation of c, & 0 with p = +—,
'

and spin down (up). Hence the transition from p = —
—,
' to

p=+ —,
' should be regarded as in (4) to create a pair of

spin-up and -down quasiparticles both with p=+ —,'. This
transition corresponds to the frequency of 2c.»2&60,
where c.»2 is the bound-state energy of p= —,'. The other
transitions conserving the angular momentum necessarily
involve at least one scattering state. In particular, we
predict an edge of absorption at cu=ho+c. »2, instead of
26O occurring at B=0 in dirty superconductors. This
absorption is not polarized.

The real part of conductivity of vortices with density
n„is then, in the limit, q ~0, for co & 50 and a = + 1,

Reer, (co)=N(co)n„e FACE~/4. m, co,

where N(co) =L, 'gk 5(co 2e&&—2) is the density of state

associated with the z axis degree of freedom. In the limit
m, »m„the above expression leads to

Reer, (co ) = ri(co~ /4)5(co —2e
& &2), (6)

where co& is the plasma frequency, and co& =4mn, e /m.
„

and n, is the electron density, n, =
kz /(2~c o), with co

the interplane distance, g =n, g m C /16K is dirnension-
less; g is the coherence length. In the derivation, a BCS
relation kF$=2EF/carbo has been used. K is a numerical
factor, given by ze2Kb /E0FWe have solved (2) self-
consistently at T =0 in a finite disk geometry following
Aygi and Schluter for parameter E~/ho= ,

' and found-
C =1.9 and X =0.75. Results for spatial dependences of
g, and F (r) are shown in Fig. 2. The intensity of the res-
onance can be estimated by integrating out Eq. (6) around
the resonant frequency, J

+ "dao Rea, (co)= rico~ /4.
Since co /4 is the Drude conductivity weight of the me-
tallic state, we see that g is the ratio of the vortex reso-
nance strength relative to the Drude conductivity. Using
H,2=@0/(2ng), n„=H/@.0 with @0=bc/2e, we have
ri=(HC l32K)h with h =H/H, 2. ri=1.6h for the pa-
rameters suitable for Y-Ba-Cu-O. Note that the above es-
timate applies only to h « 1. If m, /m, is finite, the reso-
nance will have a dispersion, primarily determined by
N(co). As studied in Ref. 1, E,&2(k, ) ~ 1/k,
N(co) ~ [co—2e, &z(k, =0)] ' . A relative sharp reso-
nance is also expected.

In comparison to the cyclotron resonance, the vortex
core resonance has the same chirality for electrons (or for
holes). However, the underlying physics is very different.
The frequency of the cyclotron resonance is proportional
to H, while the frequency of the vortex core resonance is
determined by the quasiparticle pair energy, . and is in-
dependent of H.

Very recently, Karrai et al. have reported the
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transmission measurements in the presence of high mag-
netic field on superconducting Y-Ba-Cu-0 thin film and
identified a vortex core resonance. The frequency and
field-dependent intensity observed are consistent with the
theory. The chirality predicted in the present theory
needs further experimental test. The preliminary experi-
mental results were inconclusive. Accompanying the
vortex core resonance, there is also a cyclotron resonance
in the mixed superconducting state, ' which complicates
the detection. We believe that optical absorption experi-
ments should distinguish the two, and would be desirable.

It will also be interesting to study the vortex resonance
for unconventional superconductors, such as the d-wave
state. We notice that the optical transition for a free vor-
tex line has been recently studied by Hsu. " Since the res-
onance frequency is order of b,o/EF, which is low for the
superconductors with lower T, and longer coherence
length, the microwave technique would be necessary to
observe the resonance in these materials. The optical ab-
sorption edge at 60+a&&2, however, should be relatively
easy to observe.

Finally, we estimate the effect of the inhomogeneity in
the conductivity. Since the vortices are embedded in the
host superconductor, the conductivity is spatially depen-
dent. This effect was qualitatively discussed in Ref. 9.
Here we give more quantitative analyses. Similar to the
technique applied to semiconductors, ' we treat the single
vortex as a cylinder of radius r,fr=yg and of dielectric
function e„embedded in the host superconductor of
dielectric function e, . y is a parameter, and may be es-
timated from the spatial dependence of the oscillator
strength F(r) in (5). We choose to estimate y from a
mean-square value r,ff= fF(r)r dr/C. Then the single
vortex conductivity is defined within the cylinder of a ra-
dius of yg, and can be written as, in the limit m, /m, ))1,

o'„'(co)=i a(2s, )2/co)(co~ /4m)/(co 2E,.~2+i5—),
with sc =m. C 16Ky, a dimensionless constant. The
internal electric field E, transverse to the z axis inside the
vortex is then related to the external field E,„,by
E„=2E,„,/(1+@„/e,). The effective conductivity in the
vortex is o'„=2o','

(/1 +a'„' o/, ). The main effect of
the depolarization is to redshift the resonant frequency
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FIG. 2. Self-consistent numerical solutions of the
Bogoliubov —de Gennes equations for (a) p =—' bound state
quasiparticle amptitudes, arbitrary units; (b) the spatial depen-
dence of the integrand of the matrix element F(r) of Eq. (5), in
units of g '; (c) the gap function b,(r). The calculations were
done in a finite disk with a radius R =370kF, and for parame-
ters 40/E~ = ~.

from co=2e&&z to co=2(1—a. )e, &2. From the numerical
solutions of the BdG equations, we estimate y=2. 6 and
~=0.43. A more accurate estimate on the resonant fre-
quency requires a more sophisticated treatment of the in-
homogeneous medium.
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