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Local magnetic moments in bcc Co
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Recently developed density-functional methods are briefly reviewed and used to determine the
band structure and total energy for noncollinear magnetic configurations in Co assuming difI'erent

crystal structures. We thus examine configurations with continuously varying angles between the
magnetic moments and obtain results for the stability of the magnetic moment in bcc, fcc, and hcp
Co. We compare with Fe and Ni and find the moment to depend distinctly on the crystal structure,
a fact that is shown to be related with typical, structure-dependent features of the densities of states.

I. INTRODUCTION

The possibility to grow successfully single-crystal 6.lms
of bcc Co on different substrates has opened interest-
ing and new frontiers for experimental and theoretical
studies. Thus several band-structure calculations were
carried out for ferromagnetic bcc Co (e.g. , Refs. 3—7)
which showed that its band structure is similar to that of
bcc Fe, the differences being mainly due to the shifted
Fermi energy. This was supported experimentally by
angle- and spin-resolved photoemission which yields re-
sults that are in good agreement with the calculated band
structure.

In a recent paper, Singh focused attention on the ex-
perimentally determined fact&0, ii that Co atoms in bcc
Fe-Co alloys possess magnetic moments which stay nearly
unchanged regardless of the concentration of Co. Fur-
thermore, the fact that the experimental value for the
exchange stiffness constant of bcc-coordinated Co can be
estimated successfully using the local-moment picture~2
lends weight to the latter's validity. Therefore, Singh9
supposed that the magnetism of bcc Co should be de-
scribed within the local-moment picture. To test the
validity of this statement he carried out self-consistent
calculation for antiferromagnetic bcc Co and obtained
a substantial reduction of the moment in the antiferro-
magnetic state, leading him to conclude that the local-
moment picture is not likely to provide a good description
of the magnetism in bcc Co, after all.

However, modern theories of itinerant electron
magnetism suppose that the angles between adjacent
magnetic moments can assume arbitrary values, which
implies that the probability of con6.gurations with angles
close to 180 is small. Thus comparing magnetic mo-
ments for only two magnetic configurations (ferromag-
netic and antiferromagnetic) cannot give a valid picture
of the stability of the atomic moments.

The recently developed methods that allow a determi-
nation of the band structure and total energy for non-
collinear magnetic configurations enable us to ex.—

amine configurations with continuously varying angles
between moments. A number of calculations was car-
ried out to obtain the angular dependence of the atomic
moments in Fe (Refs. 14, 18 and 19) and Ni. ~ In re-

cent work2i devoted to the calculation of the non-uniform
magnetic susceptibility we reported data for fcc Co and
hcp Co. In the present paper we discuss bcc Co. A
comparison of results for different elements and crystal
structures is carried out to understand the effects that
influence the stability of the magnetic moments. We re-
late the angular dependence of the magnetic moments to
properties of the electron density of states (DOS). It is
shown that the similarity between band structures of bcc
Co and bcc Fe also holds for noncollinear spin configura-
tions.

II. CALCULATIONAL APPROACH

where

V+ (r) 0
0 V (r) (2)

is a potential in the local atomic frame of reference which
is defined by having the z axis parallel to the directions
of the atomic moments. We shall call this the local coor-
dinate system which may, in general, be different for each
atom and which must be distinguished from the single,
global coordinate system. The potentials V (o = +, —)
are unambiguously given in the local coordinate system
by means of functional derivatives 7 and the standard
spin- 2-rotation matrices U determine the transformation
between the global coordinate system and the atomic
systems.

To make this paper reasonably self-contained we give
a brief description of the main ideas underlying the
theoretical method, stressing those points that distin-
guish it from conventional band-structure theory. At
the basis is the local approximation to exchange and
correlation2 and the augmented spherical wave method
(ASW) to carry out the self-consistent band-structure
calculations. 3 This method was generalized by Uhl, San-
dratskii, and Kubler 7 to enable the treatment of spiral
spin configurations.

The effective single-particle Hamiltonian for spin-
polarized electrons forming a noncollinear magnetic
structure may be written as

H = —6+) UtV(ir —R„i) U„,
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A spiral magnetic structure is defined by

m„= m ( cos(q . R„)sin 8, sin(q R„) sin 8, cos 6),

where m„ is the magnetic moment of the n-th atom
and (q R„), 8 are polar coordinates. It may easily be
shown2s 2s that the Hamiltonian (1) commutes with the
operator (n„(q), R„)of a generalized translation defined
by

(a (q) R ) 0(r) =
(exp (—~ i q R„)

exp (2 i, q R„))
g(r —R.„)

The quantity g(r) is a bispinor function and the oper-
ators (a.„(q),R„) combine a space translation through
the vector H„with a spin rotation about the global axis
by the angle (q R„). These generalized translations
form an Abelian group isomorphic to the group of ordi-
nary space translations by vectors H„. Therefore, the
irreducible representations of both groups coincide, and
for the eigenfunctions of the Hamiltonian (1), there exists
a generalized Bloch theorem

(a.„(q),R„)gk(r) = exp ( i k —R„)gk(r), (5)

where the vectors k lie in the first Brillouin zone, which is
defined in the usual way by the vectors H . This means
that for the actual calculations one only needs the chem-
ical unit cell in contrast to a supercell.

The usual ansatz for a band-structure calculation is
the expansion of the Bloch bispinor function in the form

La

where, because of Eq. (5), CL, k may be written as a
lattice sum

C'r, ~k(r) = ) exp (i k R„) U„PL, (r —R„).

L denotes both angular momentum quantum numbers
l and m, and o = 1, 2, two possible bispinors PL, .

Within the ASW method the latter are constructed us-
ing augmented spherical waves essentially as described
before. ' Of course, other methods such as the linear
muffin-tin orbital (LMTO)is 2 may be used instead. A
standard Rayleigh-Ritz variational procedure now leads
to the secular equation for spiral magnetic structures.

At this point it is worthwhile to stress a basic differ-
ence between the band structure of a ferromagnet and
of a crystal with noncollinear magnetic order. In a
ferromagnet each electron state is specified by a definite
spin projection on the magnetization axis and calcula-
tions for electron states with opposite spin projections
can be carried out separately. For noncollinear magnetic
configurations the spin projection is no longer a good
quantum number, and the electron wave functions con-
tain contributions from both spin projections. This leads
to a doubling of the dimension of the secular matrix and
allows a description of the variation of the electron states
at the transition from the ferromagnetic to noncollinear
structures in terms of hybridization of states with oppo-

I

site spin projections.
To investigate the stability of magnetic moments we

are to take into account excited states of the system.
These can be obtained in basically two different ways.
First, different values of the angles between adjacent
magnetic moments are specified by different values of the
wave vector q and for different values of q the magnetic
moment, in general, is different. Thus, besides possibly
the ground state, we obtain excited states by carrying
out self-consistent calculations as a function of the wave
vector q. Second, the magnitude of the moment may be
varied keeping the value of q fixed. But since a routine
self-consistent calculation gives the state with lowest en-
ergy, the calculations must now be carried out for the
system in an external magnetic field which stabilizes the
state with higher energy. Applying to a magnetic state
of the form (3) an external field having the same config-
uration, we will obtain a new state of the form (3) but
with higher energy. The details of the corresponding cal-
culational technique may be found in Ref. 21. The total
energy of excited states characterized by the local rnag-
netic moment m may be represented in the approximated
form ~

E~(m) = E~ (mp(q)) + [m —mp(q)j, (8)
2x q

where mp(q) is the self-consistent magnetic moment in
the absence of the magnetic field, E~(mp(q)) is the total
energy of this state calculated with usual procedure24 of
local density functional theory, and y~ is the magnetic
susceptibility. The smaller the susceptibility, the steeper
is the energy minimum for this q and, correspondingly,
the weaker are fluctuations of the magnetic moment.

All calculations described in the next section were car-
ried out for spiral structures (3) with an angle 6 equal
to 90' and the wave vector q was varied along the (001)
axis. Parameters of the calculations and some selected
results are collected in Table I.

III. RESULTS AND DISCUSSION

We start with a discussion of the behavior of mp(q).
The calculational results for different crystal structures
of Co as well as a comparison with results for bcc Fe
and fcc Ni are given in Figs. 1—3 . In all cases we see a
tendency of the magnetic moment to decrease with in-
creasing q, i.e., increasing angles between the magnetic
moments of adjacent atoms. The rate of change is small
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TABLE I. Parameters and selected results of calculations for bcc, fcc, and hcp Co. Here mp(0)
is the atomic spin moment in the ferromagnetic configuration, g(0) is the spin susceptibility in the
ferromagnetic configuration, and D is the exchange stiffness. For comparison the parameters of
Singh (Ref. 9) and some experimental data are also given.

Lattice Lattice
parameters

mp(0)
(us)

x (o)
(us/Ry)

Dhcp
Dbcc

This study

Singh

bcc

bcc

2.82

2.76

1.72

1.73

8.0

8.4

Experiment bcc 2.82' 1.3—1.7'

This study

This study

fcc

hcp 2.51
4.07

10.6

7.2

This study 1.53

Experiment 1.55

Reference 9.
Reference 2.

' References 12, 28, and 29.
~ Reference 12.

for small q but rises for larger q. In particular, the mag-
netic moment of bcc Co at q=0.3, corresponding to an
average angle between adjacent atomic moments equal
to 54', remains at 90% of the ferromagnetic value. In a
comparison of the data for diferent crystal structures of
Co one should take into account that for the same value
of q the average angles between adjacent atomic mo-
ments for bcc, hcp, and fcc structures have the relation
2:1.5:1 . We conclude that the slowest decrease of the
magnetic moment with increasing angle is observed in
the case of the bcc structure and the fastest decrease in

the case of the fcc structure. For fcc Co the self-consistent
value of the magnetic moment is zero from q = 0.6 on-
wards, corresponding to an angle of 72' (and larger) be-
tween moments.

We extend the comparison over diferent elements and
give in Figs. 1 and 2 the mp(q) data for bcc Fe and fcc Ni,
respectively. These results con6rm our conclusion that
the crystal structure with the most stable magnetic mo-
ment is bcc. In view of the large difference between the
ferromagnetic moments of fcc Co and fcc Ni, it is quite
remarkable that the scaled mp(q) curves are so similarly
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FIG. l. q dependence of the local magnetic moment (A),
total energy (&), and susceptibility (Q) of bcc Co. For com-
parison the g dependence of the local magnetic moment of bcc
Fe (9') is also represented. Magnetic moments are given in
units of mp(0), susceptibility in units of y = 70.5p&/Ry.
The length of the q vector is given in units of 2~/a.

FIG. 2. q dependence of the local magnetic moment (D),
total energy (Cl), and susceptibility (Q) of fcc Co. For com-
parison the g dependence of the local magnetic moment of fcc
Ni (T) is also represented. Magnetic moments are given in
units of mp(0), susceptibility in units of y „=371.5ps/Ry.
The length of the q vector is given in units of 2vr/a.
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FIG. 3. q dependence of the local magnetic moment (E),
total energy ( ), and susceptibility (Q) of hcp Co. Magnetic
moments are given in units of mo(0), susceptibility in units
of y „=309.7pz/Ry. The length of the q vector is given in
units of 2n ja.
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FIG. 4. Density of states of bcc Co for configurations with
different angles between nearest atomic moments: (a) 0, (b)
36', and (c) 72'. The solid line shows the total DOS, the
dashed and dot-dashed lines, correspondingly, spin-up and
spin-down decomposed densities of states. The Fermi energy
is marked by a vertical line.

characterized by the fast decrease of the magnetic mo-
ments.

To provide an explanation of the observed relation be-
tween the angular behavior of the magnetic moment and
the crystal structure we now analyze the angular depen-
dence of the density of states and show in Fig. 4 the
DOS for bcc Co. The ferromagnetic DOS [Fig. 4(a)]
may be subdivided into three energy regions: Below 0.53
Ry (range I) there occur preferential states with a pos-
itive spin projection, between 0.53 and 0.69 Ry (range

II) there are states of both spin projections, and above
0.69 Ry (range III) there occur preferential states with a
negative spin projection. In all regions the state densities
form clear-cut peaks with deep minima between them.

When the atomic moments deviate from parallel align-
ment, the spin projection is no longer a good quantum
number (see Sec. II). Still, in the energy ranges I and III
the electron states continue to have mostly contributions
of the spin projection that is parallel to the local mag-
netic moments for range I and antiparallel for range III.
Cardinal changes occur in region II where hybridization
and "hybridization repulsion" of states, characterized by
a high-d contribution and opposite spin indices, cause
the total-DOS peak [Fig. 4(a)] to split into individual
peaks [Figs. 4(b) and (c)]. Therefore the most outstand-
ing feature that distinguishes the three DOS curves is the
splitting of the prominent peak at 0.61 Ry in Fig. 4(a)
into two peaks that become more distinct with increasing
angles [Figs. 4(b) and (c)].

As the Fermi energy belongs to the region III of the
DOS the remarkable changes in the region II do not in-
fluence the value of the atomic moments because they
do not change the number of occupied spin-up and spin-
down states. The decrease of the moment is connected
with an essentially weaker effect of the increasing ad-
mixture of the spin-up states to the spin-down states
of the region III, which is also a result of the interac-
tion of opposite spin states in a noncollinear structure.
However, because of the large energy distance and deep
minimum between the spin-down peak in range III and
spin-up peak in range II the admixture increases rather
slowly, leading to relative stability of the atomic magnetic
moment.

The angular variation of the DOS of bcc Co is very
similar to the variation of the DOS of bcc Fe obtained
earlier in Ref. 18 and applied to the explanation of the
experimental temperature dependence of the x-ray pho-
toemission spectrum in a recent paper. The higher sta-
bility of the local magnetic moment of bcc Fe in a wide
angular interval from 0 to 90' (Fig. 1) is connected with
the difference in the position of the Fermi level. Indeed,
in bcc Fe the Fermi level lies in the valley between en-

ergy regions II and III and the hybridizational changes
discussed above do not disturb the balance of the occu-
pied spin-up and spin-down states.

To understand the difference in angular dependence of
the magnetic moments for different crystal lattices we
consider in Fig. 5 the DOS of fcc Co for a number of
magnetic configurations. Both bcc and fcc modifications
of Co in the ferromagnetic phase have rather close values
of the atomic magnetic moment and, correspondingly,
rather close values of the exchange splitting, which may
be estimated as an energy difference between the corre-
sponding spin-up and spin-down peaks of the DOS. How-

ever, in contrast to the case of bcc Co, the DOS of fcc
Co cannot be subdivided into clear-cut separate peaks
with deep minima between them. As all spin-up d states
are occupied, the position of the Fermi level, for both
lattices, is determined by the upper part of spin-down d
states. In bcc Co these states form a separated peak at a
substantial energy distance away from the upper part of
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FIG. 5. Density of states of fcc Co for configurations with
different angles between nearest atomic moments: (a) 0, (b)
36', and (c) 72'. The solid line shows the total DOS, the
dashed and dot-dashed lines, correspondingly, spin-up and
spin-down decomposed densities of states. The Fermi energy
is marked by a vertical line.

FIG. 6. Density of states of hcp Co for configurations with
difFerent angles between nearest atomic moments: (a) 0, (b)
36', and (c) 72'. The solid line shows the total DOS, the
dashed and dot-dashed lines, correspondingly, spin-up and
spin-down decomposed densities of states. The Fermi energy
is marked by a vertical line.

spin-up states. As a result, the noncollinearity of mag-
netic moments does not lead to a fast increase of the
spin-up admixture to the empty spin-down states and,
therefore, to a fast decrease of magnetic moment.

In the case of fcc structure d states are distributed more
uniformly, resulting in essentially less distance between
the Fermi level and upper part of the occupied spin-up
states. Because of this small distance the noncollinearity
of magnetic moments leads to intensive mixing between
occupied spin-up states and empty spin-down states. An
increased contribution of spin-up states to the unoccu-
pied part of the DOS determines the decreasing of the
magnetic moment. This effect is clearly seen in Fig.
5. Indeed, in the ferromagnetic case [Fig. 5(a)] there
is a sharp peak of the spin-up DOS about 0.3 Ry below
the Fermi energy and very low spin-up DOS above E~.
With increasing angles between atomic moments [Figs.
5(b)—5(d)] we observe a "smearing" of the peak and, cor-
respondingly a substantial increase of the spin-up DOS
above E~.

The DOS of hcp Co (Fig. 6) has some properties of
both bcc and fcc Co, resulting in an intermediate level of
the stability of the magnetic moment in this case. The
peaks of the ferromagnetic DOS [Fig. 6(a)] are better de-
Bned than in the case of the fcc lattice: The peaks are
higher, with deeper minima between them. However, as
compared with bcc Co there are more peaks and the en-
ergy distance between them is less. In particular, the
Fermi level is much closer to spin-up states than in the
bcc structure. With increasing angles the peaks of the

DOS of the hcp structure lose their individuality and
form a more uniform d band. The spin-up admixture to
empty spin-down states is analogous to that discussed for
fcc Co and leads to decreasing magnetic moments. How-
ever, this process is slower here than for the fcc structure.
Note that the features of the DOS referred to here are
quite well known and are characteristics of the different
crystal structures.

To complete the picture we comment; on results for the
total energy, calculated with Eq. (8). We begin by noting
that by means of the E~ (mo(q)) function the exchange
stiffness constant D may be estimated. In Table I we
compare the theoretical and experimental ratios of the
exchange stiffness constants of hcp Co and bcc Co. The-
ory and experiment are in very good agreement. The
closeness of ~"" to the ratio 2 of the numbers of near-&hop

est neighbors in the hcp and bcc structures leads Singh
to the conclusion that magnetism of Co may probably
be described in terms of the nearest-neighbor Heisenberg
model of local moments. However, the closeness of &hop

&boo
to 2 seems to us accidental because for q parallel to the
z axis, used in our ca,lculations, all atoms belonging to
the same xy plane have parallel magnetic moments and
thus do not contribute to increase the total energy, within
the nearest-neighbor Heisenberg model. Because of this
property, in the case of hcp structure only 6 of 12 nearest
neighbors give a contribution to the increase of the total
energy in contrast to the bcc structure where all 8 near-
est neighbors of an atom contribute to change the total
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energy. Therefore in the case considered the ratio of the
"efFective" numbers of nearest neighbors in hcp and bcc
lattices is 6:8 but not 12:8, which is necessary to give the
simple interpretation of the value of

Obcc
'

For all crystal structures (Figs. 1—3) investigated here
the total energy Eq (mo(g)) shows the tendency to in-
crease with increasing q. However, for fcc Co (Fig. 2)
this increase is weaker and ends at q equal to 0.6 where
the magnetic moment mo(g) vanishes. We obtained the
E~ (mo(g)) function for Ni before and now state that
it is remarkably similar to the Ez (mp(g)) function for
Co in spite of the large difference of their ferromagnetic
moments, viz. 0.56@~ and 1.54@~. Because of this we
may safely suppose that Huctuations of the directions of
the local magnetic moments in fcc Co are much stronger
than in bcc and hcp Co.

Information on amplitude Huctuations of atomic mo-
ments may be obtained from the longitudinal suscepti-
bility. For all lattices considered (Figs. 1—3) the suscep-
tibility for the ferromagnetic configuration is small. This
means that for con6gurations with small angles longitudi-
nal Huctuations are weak. For example, using (8) we can
estimate the variation of the magnetic moment of bcc Co
corresponding to an energy change of the order of 1000
K as not exceeding O. lp, ~. However, with increasing q
there is a tendency for the longitudinal susceptibility to
increase. The susceptibility is especially large near the
points where the self-consistent moment mo(q) vanishes

(q = 0.6 for fcc Co and q = 1.0 for hcp Co). This means
that for these magnetic configurations the total energy
(8) depends weakly on the lengths of the magnetic mo-
ments and Huctuations of them are very strong.

ments in bcc Co by considering noncollinear magnetic
configurations; this allowed us to investigate the value of
the magnetic moment as a function of continuously vary-
ing angles between atomic moments. We summarize the
results of our calculations by stating that the character
of the angular variation of the local magnetic moments
depends distincly on the crystal structure. In the cases
considered the moment is most stable for the bcc struc-
ture and least stable for the fcc structure. We related this
behavior with typical, structure-dependent properties of
the ferromagnetic density of states.

Our extension of Singh's treatment is also of impor-
tance for the study of the principal role of fiuctuations of
the local magnetization in determining thermodynamic
properties of itinerant magnets. However, to describe
the stability of magnetic moments quantitatively a con-
sistent statistical mechanics theory must be used which
allows, on the basis of results of ab initio band-structure
calculations, a reliable estimate of the temperature de-
pendence of short-range magnetic order and therefore of
the average angles between atomic moments. Although
progress in the statistical mechanics theory of itinerant
electron magnets was achieved within the last years, this
topic is still controversial and different theories give es-
sentially different estimates of the main physical param-
eters, in particular, of the short-range magnetic order.
In the present paper we did not touch this very difficult
problem, but restricted ourselves to a qualitative discus-
sion.
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