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Critical behavior at the extraordinary transition: Temperature singularity
of surface magnetization and order-parameter profile to one-loop order
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The surface critical behavior of semi-infinite systems belonging to the Ising universality class with
short-range interactions is investigated for supercritical surface enhancement —c & 0 and vanishing
surface field h&, Renormalization-group improved perturbation theory is applied to the standard
semi-infinite scalar P model in d = 4 —e dimensions to compute the order-parameter profile to one-
loop order both for temperatures T with r = (T —T,q)/T, b & 0 and 7 ( 0. The associated scaling
functions are found to cross smoothly over from their short-distance behavior for distances z (( (b
(= bulk correlation length) to their long-distance behavior for z » (b without showing the peculiar
nonmonotonic behavior asserted by Peliti and Leibler [J. Phys. C 16, 2635 (1983)j. Furthermore, the
short-distance behavior of the profiles is shown to be fully consistent with a ~r~ singularity of the
surface magnetization ml plus a regular background term; that is, in contrast to results published
recently by other authors, the amplitudes A+ and A of the contributions Ag~ to m~ linear in
w & 0 or v ( 0 agree to one-loop order. Finally, we confirm that the universal profiles for the critical
adsorption of fluids (governed by the critical-adsorption fixed point at c = +oo and hi = oo) agree
with the previous ones pertaining to the extraordinary-transition fixed point at c = —oo and hi ——0.

I. INTRODUCTION

It has been known for more than 15 years that sev-
eral classes of surface transitions can be distinguished
for macroscopic systems undergoing a continuous phase
transition. For surface transitions taking place at the
bulk critical point of a semi-infinite Ising ferromagnet
with short-range interactions, there are three distinct
transitions. Which one of these surface transitions oc-
curs at the bulk critical temperature T = T,b (and in the
absence of bulk and surface magnetic fields) depends on
the value of a surface interaction constant c, called sur-
face enhancement, whose negative is a measure of how
much the surface bonds have been enhanced beyond a
certain critical value above which the surface orders spon-
taneously at a higher temperature than the bulk. The or-
dinary, special, and extraordinary transitions correspond
to the cases of subcritical (c & 0), critical (c = 0), and
supercritical surface enhancement (c ( 0), respectively.

These surface transitions have been studied theoreti-
cally in great detail in the past years. Experimental re-
sults are still scarce. However, the recent experimental
work by Mailander et aL, who investigated the surface
critical behavior of FesA1 using scattering of synchrotron
produced x rays under conditions of grazing incidence,
gave surface exponents in excellent agreement with the
theoretically predicted exponent values for the positive-c
transition of the three-dimensional Ising model and indi-
cates that this technique may be a very promising tool
for future experimental work (cf. Ref. 6).

From a theoretical point of view, the ordinary and
special transitions are fairly well understood. By con-
trast, the extraordinary transition has been investigated
to a much lesser degree. As far as analytical approaches

such as the field-theoretical renormalization-group (RG)
approach are concerned, this is partly due to technical
difficulties: In the space of even thermodynamic fields
7 = (T —T b)/T, b and c, the extraordinary transitions
are located on a line r = 0, c & 0, separating a surface-
ordered, bulk-disordered phase from a surface-ordered,
bulk-ordered phase. The symmetry P ~ —P of the or-
der parameter P is spontaneously broken in both surface
phases. Thus, irrespective of whether the transition is
approached from the high-temperature (r & 0) or low-
temperature side (r ( 0), one has to deal with a spa-
tially varying order-parameter profile my(z)—:(P(x)),
a fact which makes RG-improved perturbative calcula-
tions rather cumbersome. Here a standard semi-infinite
geometry was adopted, for which the volume V of the
system extends throughout the d-dimensional half-space
K+ —(x = (x~~, z)[x~~ C R, z & 0) bounded by the
z = 0 plane, its surface BV. The subscripts + and —on
m~ refer to the cases ~ & 0 and r & 0, respectively.

Using simple scaling considerations, Bray and Moore7
suggested that the surface shift exponent Ai of the ex-
traordinary transition should vanish, so that the surface
magnetization mi y = my(z = 0) should have a temper-
ature singularity ~w~~' with Pi = 2 —ct —Ai = 2 —a,
up to terms analytic in w. In other words, m~ should
behave for ~ ~ 0+ as

where mi, is the value of mi at T = T,b. As usual,
the nonuniversal amplitudes B+ and B of the singular
term need not be equal, but their ratio B+/B should
be a universal number. On the other hand, the ampli-
tudes A and A' necessarily must be independent of the
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sign of r, if the terms linear and quadratic in r are to
be analytic. This prediction was recently challenged by
Ohno and Okabe, who presented a one-loop calculation
of m~(z) for distances z (( (b, from which they inferred
that A takes difFerent values A~ and A on the high and
low-temperature side of the transition. If this were true,
mi would have a cusplike temperature singularity —in
marked contrast to the much weaker singularities of both
mean-field theory, where the leading singularity occurs in
the curvature, as well as the Bray and Moore prediction
(1). Furthermore, following Ohno and Okabe, one would
be led to conclude that the surface exponent Pi would be
1 up to corrections of order e = 4 —d.

The purpose of the present paper is, in part, a re-
analysis of the results of Ohno and Okabe. s We shall
present a RG-improved one-loop calculation of the pro-
files m~ (z, r), with the enhancement c set to its RG fixed-
point value c,*„=—oo describing the extraordinary tran-
sition. From the short-distance behavior of these profiles
and their scaling form we can extract the asymptotic
behavior of the surface magnetization mi. In contrast
to Ohno and Okabe, we find this to be in complete ac-
cord with the Bray and Moore prediction (1), obtaining
A+ ——A —= A and A+ ——A':—A' to the order of
our calculation. This is also in conformity with a recent
Monte Carlo simulation, which gave no detectable dif-
ference between A+ and A

Our analytic results yield the profiles m~ (z) in terms of
integrals that can be computed numerically. Evaluating
these we obtained the scaling functions of m~ shown in
Figs. 1 and 2 below. These show a smooth crossover from
the behavior at short distance z (( (b to the long-distance
behavior (z )) (b).

Let us emphasize that our results for rn+(z, r) also
apply to the problem of critical adsorption. ip is As dis-
cussed by a number of authors, s i4 is this phenomenon
can be described by the same kind of semi-infinite P
model utilized in our analysis of the extraordinary tran-
sition, with the surface enhancement taken to be sub-
critical (c & 0) and an additional surface magnetic field
hi included. The asymptotic behavior for 7. —+ 0 is de-
scribed by a B.G fixed point with hi ——oo and c —+ +oo,
which we term critical adsorption fixed point P, , to dis-
tinguish it from the (hi = 0, c = —oo) fixed point 'P,"„
pertaining to the extraordinary transition. Central to
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FIG. 2. Scaling function P ((), with e set to 1, for re-
duced temperature ~ ( 0.

the phenomenological picture of the extraordinary tran-
sition developed by Bray and Moore7 is the idea that
the order at the surface need not be due to a spon-
taneous symmetry breaking but could alternatively be
generated by a symmetry-breaking surface field hi. Ac-
cordingly they argued that the surface critical behavior
observed for c ) 0 and hi (and described by 'P,*~ ) should
asymptotically be the same as at the extraordinary tran-
sition. In conformity with this we find that the corre-
sponding fixed-point profiles m~(z, r; c = —oo, hi ——0)
and my(z, r; c ~ +oo, hi = oo) agree, indeed. In a pre-
vious investigation of critical adsorption by Peliti and
Leibler s the profile m+(z, r; c —+ +oo, hi ——oo), calcu-
lated to one-loop order in 4 —e dimensions, was claimed
to have a strange and unphysical nonmonotonous depen-
dence on z/(b. Figure 1 shows that this is not the case.

In the next section we explain the calculation of the
profiles. In Sec. III the short-distance behavior of these
profiles is analyzed in order to determine the tempera-
ture singularity of m(z (( (b). Our conclusions are briefiy
summarized in Sec. IV. There are three appendixes de-
scribing technical details.

II. CALCULATION OF ORDER-PARAMETER
PROFILES

We consider a semi-infinite scalar P4 model described
by the Hamiltonian

12-

10-

d xi' dz -(t7$) + -rod + —,up/

+ 6(z) (-cp P —hi p P)

6-

FIG. l. Scaling function P+((), with e set to 1, for reduced
temperature ~ ) 0.

where the z integral over 6(z) is understood to capture
the entire 6 peak, so that the volume integral J& 6(z) [

.
]

over V = K+ reduces to an integral J&v [ ] over thed

surface OV. For background on this model and its RG
analysis the reader is referred to Ref. 2, whose conven-
tions and notation we shall adopt as far as possible and
convenient. In particular, we shall utilize its method of
dimensional regularization and minimal subtraction of
poles in e = 4 —d in our RG calculation. Thus the bare
interaction constants of the Hamiltonian (2) are related
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to their renormalized counterparts via

«= 1+ —+O(u ) p (3a)

'p,", respectively. In both cases z+ vanishes, i.e. ,

z~(cp = —oo, hi, p = 0) = z~(cp ~ +oo, hi, p = oo) = 0 .

upsy = 1+ —+O(u ) p, u

cp = 1+ —", +O(u ) pc,

sg ——(2~vr )

(3b)

(3c)

m~'~(z) = —~~2 dz'G(0; z, z') m~PI(z')

The one-loop contribution is given by

G(p; z', z') .

(12)
and

hip = 1 ——,+O(u ) p+ hi, (3d)
Here p is a (d —1)-dimensional parallel momentum, fP
jd" '(p/2vr), and

where p is an arbitrary momentum scale. At the order
of one loop, to which we will restrict ourselves, no wave-
function renormalization of P is needed, so that no dis-
tinction between the bare field P with z ) 0 and its renor-
malized counterpart is needed. (We shall not consider
the renormalization of the surface operator P, —= Pl —p,
which would need a renormalization factor even at one-
loop order. z)

Let us start with the loop expansion

m(z) = m~ ~(z) + mt'~(z) + O(two loops) (4)

that satisfies the boundary condition

(a, —cp) m~'~(z) I, p = —h, p (6)

together with the requirement that the appropriate bulk
quantity is approached in the limit z ~ oo, i.e. ,

for the bare profile. The zero-loop term m~PI(z) is the
solution to

(-~.'+-.) ~'j( )+-.'-. -~'~( )'=0

G(p;z, z') = G(x, x')e '~'d 'r, (i3)

with the boundary condition

0, —cp G(p; z = 0, z' ) 0) = 0,
aside from the requirement that the appropriate bulk
limit is attained for z —+ oo. The solution can be found
by standard techniques (described, e.g. , in Ref. 3). I et
us introduce the scaled variables

@=~HZ (16)

with x = (x[~, z), x' = (x~~, z'), and r = x[[ —
xI~, is the

Fourier transform of the zero-loop correlation function
G(x, x'). In the equation for G, the profile may be re-

placed by its zero-loop approximation. Hence 6 satisfies
the equation

—0,'+ p'+«+ ~z m~'j(z)' G(p;z, z') = b(z —z')

(14)

lim m (z) = mb[pj [pj

tbp

if') 0.
if' &0. (7) and

P = p/:-y, (17)
The well-known results for rp ) 0 and ~p ( 0 are

m~ (z) =[pj '2 ' csch:-+ (z+ z+)
where as before the subscript + (—) refers to the case«) 0 («( 0). Then the solution can be written in the
form

m~ ~(z) = ~ '~ coth:" (z+ z ) (9)

G(p;z, z') = =', &~(y) ~~(y')e(y' —y)+(y y')

+=M«) =-- —= V'I«I/2

where =~ is defined by

(10)

where 8(y) means the usual step function. For the values
of cp and hi p corresponding to the fixed points P;„a dn
'P,*,we have

while z~ is a complicated function of cp and hi p, which
is determined by Eq. (6). In our calculation we can (and
will) choose values of cp and hi p corresponding to the ex-
traordinary and critical-adsorption fixed points 'Pe„and

Wi (y) = e ~" (cu& —1+3~i cothy+ 3 coth y)

(19a)

Up(y) =
z 2 [sinh(spy) (wi, —1+ 3cui coth y) —3cui cosh(wi»y) cothyj

(ui (~~~ —1)(~~~ —4)
(19b)
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with

cd/ =y/P + 1

w~ ——QP2+ 4
if' &0.
if' &0. (2o)

and

D+(y) = 1 3 csch y
$24JP 2 ldP(Ld ~ 1)) (28)

and

~o+(y) = 3e "cothy(l+ cothy), (21b)

Up (y) = —i (24cosh2y cothy —sinh2y —
z y csch y),

(22a)

~o (y) = 3 e " (1 + 2 cothy + coth y), (22b)

for 7p ) 0 and 7p ( 0, respectively.
The self-energy integral in Eq. (12) can be decomposed

This result agrees with Eqs. (13a) and (13b) of Ref. 8 up
to what appear to be misprints.

For the p = 0 propagator appearing in the one-loop
expression (12), we also need the P —+ 0 limits of these
functions. These limits exist and are given by

t'Ip+(y) = —i sinhy + 2 (cothy —y csch y) coshy,
(21a)

D-(y) = 1 3 csch y
2m~ 2 cu~(a~~ —4) ) (29)

These expressions are consistent with Eqs. (17)—(19b)
of Ref. 8 provided we suppose the parameter ap in these
latter equations stands for u~ p: 2, irrespective of
whether rp ) 0 or 7p ( 0. (The choice ~p = a&+ p

——1
for ~p ) 0 would imply inconsistencies. ) No confusion
should arise from the fact that our above formulas for
~p are not identical to Eqs. (17)—(19b) of Ref. 8: Both
sets of equations correspond to different, but equivalent,
decompositions into divergent and convergent parts D
and C . Our choice with I1 = 1 (rather than ~o = 2)
has the advantage that the resulting D is somewhat
easier to calculate and that the contribution to J(y) pro-
portional to 02 —1 drops out. Otherwise, it is a matter
of taste.

The integrals D~ can be computed in a straightforward
manner with the results

G'(p z z) = =-" '!D+(y)+ C+(y)), (23)

where C~ is uv convergent (regular in e), while D~ has
a pole in e. Explicitly we have and

D+(y)/sd, = I'(2 —1) —i, I'(2) csch y

(1 + 6 csch y) —1 + C@
—6(2 —CE) csch y + O(e) (3Oa)

I(y) = e—24)~ jj
—2Bg—e

(25)

and

J(y) =

in which

(~2 1) e 24lf y (p—2 1) e 2ny—
~~ (u) ~ —1)(~~ —4)

(26)

Cy(y) = —2[ 4
J"—J —3J'cothy+ (15J+ 9I) coth y

—9 I' coth y + 9Icot h y] (24)

with

D—(y)/sz =2 ' 2I'(-' —1) — I'(-') csch y

= = (2+ 3csch y) —4(1 —C@ —21n2)
—6(2 —C@ —21n2) csch y + O(e),

(30b)

where C@ means Euler's constant.
We now substitute the self-energy integral (23) into

the one-loop contribution (12). Using the above results
for D~, the z' integration over the contribution oc D~
can be performed analytically. Denoting the mean-field
profiles by

for 7() +0)
for ~p (0.

The divergent parts D~ are given by

(27)
0+ = cschg

let us define the functions

for 7.p ~ 0,
fol 'Tp Q 0, (31)

P+(y) —= dy' C+(y') tIp+(y') ~o+(y) ~(y —y') + (y' y) ~~(y') .

Then the results can be written as

[~Im+ (z) =
2 up s& '

—, + 2
—Cz —in' cschy —

2
——C@+1 —in' ycsch'y —s& E+(y) + O(e)

y=z ~o

and
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m~ ~(z) =
&

uosd „' ([-, —C~+1 —ln2~r()~]cothy

—
2 [- —C@+ 4 —1n2~ r() ~] y coth'y —s„'E (y) + O(e) ) (33b)

In expanding the term =+ (x iro~
') in powers of e,

we assumed that 7 p is measured in units of the reference
scale pz introduced in Eqs. (3a)—(3d). For notational
simplicity, we have set p = 1 and will do so below.

When these results are substituted into Eq. (4) and the
bare variables u() and r() are expressed in terms of their
renormalized analogs using Eqs. (3b) and (3a), the poles
are found to cancel. The resulting renormalized profiles
are

and

m (oo;u', —1) = 6sg 1 —C~ —ln21+
2

+O(e )

Combining the above results, we finally obtain

(41)

rn(z; u, r) = m~ ~ (z; u() = u/ss, 7.() = r)
+»( ~'~(;-. =-/", -.=-))
+ O(us~2), (34)

Pe (() = ~2 ( 1+u (-', + '",'j cechC —e"., Pe(C) )
(42a)

where FP means finite (regular) part.
In order to improve these perturbative results by

means of the RG, we recall that the RG equation sat-
isfied by m(z) yields the asymptotic scaling form

and

P (() = coth —+ —u'(csch —— I'z(,
"

2 2ss )2

m(z; u, r) = M ~r ~~ Py (z/(g), (35) (42b)

m~ = m (z = oo) = M

for the bulk order parameter, while

(36)

in which M is the same nonuniversal metric factor that
appears in the equation

In Figs. 1 and 2 we have plotted these functions for
e = 1 (d = 3). As already mentioned in the Introduction,
both P+ and P cross over from the short distance to
the long-distance behavior in a monotonic and physically
reasonable manner. This refutes the contradictory results
for P+ by Peliti and Leibler. is

(+ = (0+ lrl (37)

are the bulk correlation lengths for 7 0. All nonuniver-
sality in Eq. (35) is contained in the two nonuniversal
amplitudes M and (z+. The amplitude ratio2c

III. ASYMPTOTIC BEHAVIOR OF PROFILES
AND TEMPERATURE SINGULARITY OF

SURFACE MAGNETIZATION

(c+/(c = 2' 1 + zs4 e + O(e ) (38) According to Eqs. (35) and (36), P is normalized such
that

is a well-known universal quantity.
Using Eqs. (35) and (36) in conjunction with standard

RG arguments, we can express the scaling functions as

Pg(() = gm(((+; ur = +1)/m (oo; u', —1), (39)

(+ ——1+—", (1 —C&) + O(~') (40)

where u* = e/3+ O(c~) is the value of u at the infrared-
stable fixed point, while Q = gy(u", r = +1) is the
appropriate value of g() for our renormalized theory with
u = u". By a straightforward calculation one finds that
the two nonuniversal amplitudes involved in Eq. (39) are
given by2~

P (oo) = 1, (43)

whereas P+(oo) = 0, of course. Since we have scaled the
distance z from the surface by the true bulk correlation
length (defined via the exponential decay of the bulk cor-
relation function z), P~ should behave asymptotically
as

Py (() —Py (oo) e (44)

in the limit ( —4 oo. In Appendix B we determine the
asymptotic behavior of both P+ and E . Exploiting the
results in Eqs. (42a) and (42b), one easily deduces the
asymptotic forms

P (g) — 2ve2 1+u' —+ '" + — 1 —2v2+ ~le ~+ ) e4 2 4 2~3—3 (45a)

and

P (e) 1+ (2+u' q' c —
e (v2 6+4 —1/WB) ) e (45b)
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in conformity with our expectations.
We proceed by analyzing the short-distance behavior

of P~, in order to determine the temperature singularity
of the surface magnetization mi (or near-surface mag-
netization). In order for Py to be compatible with the
asymptotic behavior of mi in Eq. (1), it must have the
limiting form

(() (—p/~( + ( i/P+ I (2/v+b (ct+ Is t)
g —+0

(46)

where 1.s.t. means less singular terms. Since the scaling
functions P~ are universal, so are the constants a~, a+,
b~, and c~, which evidently can be expressed as universal
ratios of nonuniversal amplitudes related to m~, mb, and
(~. Comparison with Eq. (1) yields the relations

(47a)

and

(49a)

A' = A' = A' . (49b)

IV. SUMMARY AND CONCLUSIONS

Since these latter findings are at variance with those
of Ohno and Okabe, we have verified that their method
of calculation (which uses a cutoff regularization) leads
to equivalent results. The source of the discrepancy with
Ref. 8 is discussed in Appendix C.

Let us also note that the e expansions of the univer-
sal amplitude ratios c~ given in Eqs. (48g) and (48h)
were obtained previously through a completely indepen-
dent calculation by Ciach and one of the authors. ~ The
result for c+ has been used in a recent analysis 3 of exper-
imental data on critical adsorption. This analysis found
the theoretical values for c+ in fair agreement with the
experimental ones.

(1 P)/v
(47b)

(2 P)/v
(47c)

and

~b H+ ~g+ (47d)

a+ ——~2 —
s + 2is (1 —6C@ —6 ln2) + O(ez),

(48a)

&- = s+ s's (&~ —iz)+O(&') (48b)

(48c)

a' = —~'~ + O(e), (48d)

b+ ———,2ii + O(e),~2 (48e)

b = —s'o + O(e), (48f)

In Appendix A we determine the asymptotic expan-
sions of the functions Fy and the renormalized profiles
m~(z). These results confirm that P~ has the antici-
pated limiting form (46), with the coefficients having the
t. expansions

Using the field-theoretic RG approach in 4 —e di-
mensions, we were able to compute the universal order-
pararneter profiles P~(g) to first order in e both for the
extraordinary transition in the semi-infinite P model and
for critical adsorption. Our principal findings and con-
clusions may be summarized as follows.

First, to the order of our calculation we find complete
agreement with the scaling picture for the extraordinary
transition suggested by Bray and Moore. 7 In particular,
the universal profiles P~ pertaining to the extraordinary
transition fixed point P,*„at hi ——0 and c = —oo and
to the critical-adsorption fixed point 'P,* at h~ ——oo and
c = +oo agree.

Second, the short-distance behavior of P~ is fully con-
sistent with Bray and Moore's prediction that the surface
magnetization mi has a ~w~ singularity plus regular
background terms. This refutes claims that 0 mi at
order e has a jump singularity at T,b.

Third, the profiles P~((; e = 1) obtained by naive
extrapolation to three dimensions display a smooth
monotonous crossover from the behavior at short dis-
tances ( « 1 to the behavior at long distances ( » 1, just
as expected on physical grounds. The results of Peliti and
Leibler, yielding a nonmonotonous profile P+ in three
dimensions, are incorrect.

Finally, it seems worthwhile to point out that our re-
sults for P~ may be utilized in the analysis of experimen-
tal data on the critical adsorption of fluids. An example
of such an analysis is provided by Ref. 13, in which the
universal amplitude ratio c+, whose ~ expansion is given
in Eq. (48g), is extracted from experimental data.

c+ = v 2 1 + —,'2 (6 C@ + 2 ln2 —13) + O(e~), (48g) ACKNOW LEDC MENTS
and

c =2+a (Ca —4)+O(~ ) . (48h)

As immediate consequences, Eqs. (47a)—(47d) are found
to hold with

We would like to thank T. W. Burkhardt for discus-
sions and correspondence, as well as S. Dietrich and G.
Floter for keeping us informed about the work described
in Ref. 13 and discussions related to it. K. Ohno kindly
rechecked his and Y. Okabe's calculation and confirmed
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that their deviating results were due to the omission of
the terms oc Aoyo in Eqs. (Cl) and (C2). We would like
to express our deepest appreciation to him and Y. Okabe
for their uncompromising determination to uncover the
truth and cooperative attitude.

APPENDIX A: SHORT-DISTANCE BEHAVIOR
OF PROFILES

we find

I(y) = —(2y + 3y + 309y ) (C&+ lny)

+ (3y2 + 37 y4 + 292 y6 )

+ 1(0) (4 + 32 3+ 128 5+ 1024 7)2n & 3& is& 3is &

+ O(y', y' lny) (A5a)

I"(y) —4~ I(y) =4K~-1 Ko
I

—
I

(4y l
gory

(A1)

for the initial values I(0) = 0 and I'(0) as implied by
Eq. (25). IThe latter initial value can be determined by
numerical integration of the expression for I'(0) resulting
from Eq. (25), but will not be needed in the following. ]
Here

In order to determine the asymptotic behavior of P~ (()
for ( ~ 0, we need information about how Fy (y) behaves
for small values of y. This can be gained by expanding
the integrand in Eq. (32) and integrating termwise. To
expand C~(y) we use the fact that I(y) is the solution of
the differential equation

for rp ) 0 and

I(y) = —(2y +2y + 5y ) (C@+ln2y)

+ I'(0)
(2 + 4y3+ 4 5+ 8 7)

+ O(y, y lny) (A5b)

I"(y) —4 I(y) = 4 ~(y) . (A6)

The resulting expansions for F~ are

for rp ( 0. The corresponding expansion of J(y) can be
obtained upon substitution of these results into

K, , —= 2 (4~) &'-"1~'jr("-,'), (A2)

and 0 means the quantity defined in Eq. (27). Further,
Kp(x) is a modified Bessel function whose asymptotic
expansion for small x reads

2k 2k
Ko(x) = in 2 ) 2zr*(i t12 + ) 2ia(A, t&~ @(k + 1) &

k=0 k=0

yF+(y) = 1—S 2 421 4
144~ 10800

3 1 2 1 4
(s + 4s y + 2sso y ) lny

(s + 48y + i44oy ) C&

+O(y, y lny) (A7a)

(A3)

where Q(x)—:dlnr(x)/dx is the usual @ (digamma)
function.

Using the ansatz

I(y) =-1 ( ) ) y"+) 4y'"
n=l A=i

+ 2~~1 sinh(20y)

8 „yF—(y) = (1 isy 54ooy )

+O(y', y' lny) . (A7b)

Utilizing these results one Ands that the renormalized
profiles behave as

m+(z) =
z—+0

1 —
2 u + 4 Cz u + 2 u lnz —(6 + 3~6 + 24 C@ + p~ 1nz) rz

7 1789 323 u u X 2 4
(360 + 10800 7200 + + 240 720 Z) (A8a)

and

m (z) =
z —+0

+-', C~u+-', 1 —(,'+,, +,", C&+ —,", 1 )

43 S9 13 5 2 4
180 + 1350u 3600 c« —

so '"lrl + soo ln2 —360u lnz) r z (A8b)

respectively. From these expressions the equality of p+
and A as well as of A+ and A' can be read off di-
rectly. The results for the asymptotic behavior of P~
given in Eqs. (46)—(48h) can be deduced in a straight-
forward fashion using the well-known e expansions of the
bulk exponents.

APPENDIX B: LONG-DISTANCE BEHAVIOR
OF Eg

In order to derive from Eqs. (42a) and (42b) for the
profiles P~(() their asymptotic long-distance forms given
in Eqs. (45a) and (45b), we must determine how the func-
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I(y) e
—2'g

tions F~(y) behave in the limit y —+ oo.
Using a steepest descent approximation we End

(B1)

and D& to be defined by the cutoff-regularized right-hand
sides of our Eqs. (28) and (29) for Dy, with our choice
(27) of A. Expanding all functions we arrive at the same
expressions as Ohno and Okabe but

for w & 0 and
—2ye (B2)

D((y) = Ks z
—s, (3+y + sy ) ln s + O(y ),

(Cl)

for 7. ( 0.
Inserting this into Eq. (32) we arrive at

2v 3 + 2vs ln2v3+s+ 2~3—3
g —+oo

and

((/2) ='msg (%3 j + 4 —1/WB) e

(B3)

(B4)

( ) It ~1
i (3 1 2+ 1 4)1 A +g( 4)

(C2)

instead of their results. [The term proportional to I'(0)
in Eqs. (A5a) and (A5b) cancels and thus does not affect
the result. ] Integrating termwise we find m+ and m[~j pl

to have the same expansion

APPENDIX C: COMPARISON WITH
OHNO AND OKABE'S WORK

In order to resolve the discrepancy with Ref. 8 we fol-
low their line of calculation but take their integrals D&

2+ ssrz + (—~4 + 24~z ) lnAz (C3)

up to second order in the temperature, where A is the
momentum cutoff. Thus the statement that the coefB-
cients of the terms linear in w differ is refuted.
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