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Measurement of random-exchange critical behavior in the mixed Ising system: Fe Co, „F2
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We report on an observation of random-exchange (RE) critical behavior in a mixed three-dimensional
Ising system. Using capacitance measurements, we have determined the critical-behavior universality
class and the Neel temperature, T&(x), as a function of concentration x of the mixed magnetic system
Fe„Co

& F&. The specific-heat critical exponent a = —0.09+0.06 and the amplitude ratio
3+/3 =1.6+0.4, are in agreement with previous experimental results on magnetically diluted (e.g.,
Fe„zn& F2) RE systems. A mean-field interpretation of T&(x) vs x yields an Fe-Co exchange interac-
tion Jc, F, =13.10+0.30 cm

INTRODUCTION

Random-exchange (RE) behavior in the critical region
has only been observed in magnetically diluted three-
dimensional (3D) Ising systems' (e.g., Fe, Zn, ,Fz).
The sole mixed magnetic 3D Ising system which has been
studied, in which both magnetic components exhibit 3D
Ising critical behavior, was Fe„Mn, F2. Unfortunately,
the effective Fe-Mn exchange interaction differs little
from the almost equal Fe-Fe and Mn-Mn interactions,
making the randomness very sma11 compared to the mean
exchange interaction. This being the case the critical be-
havior should be dominantly pure 3D Ising and, indeed,
that is what has been observed.

The system Fe Co, F2 affords one the opportunity of
studying a mixed system in which both pure components
(FeFz and CoFz) have certified 3D Ising critical behav-
ior, ' yet have very different ordering temperatures:
T~(FeF2) =2T~(CoFz). Hence, no matter what the Fe-
Co exchange interaction may be one would expect RE
critical behavior to be observable in the mixed system for
x not close to either 0 or 1. Moreover, the mixed system
would have the identical antiferromagnetic ordering to
that of FeF2 and CoF~.

Since this particular mixed system has not been previ-
ously investigated, we have determined both the critical
behavior universality class and the variation of T~(x)
with x. From the latter we are able to obtain an estimate
of the effective exchange interaction J„,c, . We used a
novel variation of the capacitance technique to measure
the critical behavior and T&(x) in single crystals of
Fe Co, F2 grown at the University of California at
Santa Barbara.

FeF2 is a uniaxial anisotropic antiferromagnet (AF)
with T& =78.4 K. Below T& the magnetization is
aligned along the c axis because of its large single-ion, ax-
ial anisotropy. Hence this S =2 system exhibits 3D Ising
critical exponent behavior. CoF2 possesses the same
magnetic ordering as FeF2 but with T& =38 K. It can be
described as an S=—,

' spin system with a large orbit-
lattice interaction or, alternatively, with an effective spinS'=

—,
' and anisotropic exchange. It also exhibits 3D Is-

ing critical behavior. FeF2 and CoF2 both have the same

rutile structure, with the c and a axis differing by only
3.9% and 0.03% respectively. Hence, the mixed system
Fe„Co] F2 easily forms alloys with the same structure.

EXPERIMENTAL METHODS AND RESULTS

The Fe, Co& Fz crystals were grown from the melt
along the c axis using the Bridgeman method, a pro-
cedure which unavoidably introduces an axial gradient of
concentration. Unfortunately, the boules which were of
most interest for this study, those with x =0.5, exhibited
the largest axial gradients: close to 10%/cm. This large
gradient even over a thin slab (0.03 cm) of sample cut
perpendicular to the growth axis would result in a round-
ing of the transition temperature, because of the axial
concentration variation, of 6T&=0.12 K. This corre-
sponds to a rounding of the transition for reduced tem-
peratures t & 2 X 10, enough to preclude asymptotic
critical behavior to be observed. We should also mention
that radial gradients, although generally an order of mag-
nitude smaller than the concentration variations along
the growth direction, are also present. They may con-
tribute to the rounding of the transition as would the axi-
al gradients, given the use of large enough areas.

To minimize the effects of the gradients on the round-
ing of the phase transition, we have made very thin re-
gions of crystals in the direction along the c axis. The
effects of axial as well as radial gradients were minimized
by optimizing a polishing technique to produce very
small capacitors of =2-mm diam and 50—100-pm thick-
ness. A very small "well" was ground in a larger slice of
the boule which provided the necessary mechanical sup-
port for the thinned well. Aluminum electrodes were
then deposited on both sides of the thinned well to make
the capacitor. The resulting capacitance of these samples
was about 10 pF. A schematic representation of the
structure is shown in Fig. 1. From a comparison of the
experimental data on a thinned and a "standard" capaci-
tor from the same boule, this technique was found to pro-
vide a reduction in the rounding of the phase transition
5T&, by a factor of 7. This limited the rounding of the
transition to reduced temperatures t (3 X 10

The concentration x of the resulting samples was deter-
mined by measuring the c-axis lattice parameter of each
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made from pure FeF2 mounted to the same heat sink as
the mixed sample under study. Because T~(FeFz) is ac-
curately known, this also provided a secondary tempera-
ture reference, enabling us to correct for the changes in
the readings of the carbon-glass thermometer from day to
day.

It has been shown '" that in the critical region the
magnetic specific heat C and the capacitance C are
linearly related by

50 pm 1 dC
m 1( dT 2C =k — +k (2)

FICz. 1. Schematic representation of the cross section of a
thinned capacitor of Fe Co& F2. The c axis is the mixed-
crystal growth direction and is the one along which the max-
imum concentration gradient (and hence variation of T& with
distance) is expected. The black lines on both sides of the
thinned well represent the Al electrodes. Care was taken to lim-

it the electrodes to the thinned we11. Electrical contacts were
attached with conducting paint to the edge of the well to reduce
strains.

sample by high-resolution x-ray Bragg diffraction. As-
suming Vegard's law to hold for the mixed crystal, the c-
axis lattice parameter will vary as

c(Fe„Co& „Fz)=xc(FeFz)+(1—x)c (CoF2),

from which we can indirectly determine the concentra-
tion x. In the samples measured, there was no evidence
in the diffraction pattern of multiple phases or crystal
structures other than rutile. In addition, there was a
smooth (nondiscrete) variation of the lattice parameters
in the samples investigated. The well-known scattering
condition is given by 2c sin(90O&)=1k, where c is the c-
axis lattice parameter, (00l) is the Miller index of the
Bragg plane, and k is the wavelength of the x-ray scat-
tered radiation. By taking the difference between the
measurements of t90O4 and Oooo, the value of c can be very
precisely measured. For single crystals of FeFz and CoF2
we have found, using this method, c=3.3096(2) and
3.17962(3) A respectively, in good accord, though more
precise, than the reported values in the literature. ' In
fact, the final precision with which x could be measured
using this technique was 6x =0.002 in the mixed crystals.

All critical behavior measurements were made using a
three-terminal capacitance technique which has been ex-
tensively used in our laboratory for critical behavior stud-
ies. For a well-defined reference capacitor, we used one

where k, and kz are constants, and where the critical be-
havior of C is given by

(3)

Here 3+ ( A ) is the amplitude above (below) the transi-
tion temperature, t =(T —T~)/T~ is the reduced tem-
perature, e is the specific heat exponent, and B is a con-
stant.

We chose a particular crystal (FeQ 62COQ 3sFQ) that
showed the least concentration gradient to probe the crit-
ical behavior of the mixed system. It satisfies the require-
ment that the concentration x be away from the extremes
x =1 or 0, where 3D Ising behavior is expected. The re-
sults for Fe062Coo 38F2 are shown in Fig. 2. The fit,
shown by the full line, corresponds to a nonlinear least-
square fit of the region 6X10 & ~t~ &1X10 to the
specific-heat form given by Eq. (3). We obtained an am-
plitude ratio A+ /3 =1.6+0.4 and a critical exponent
a= —0.09+0.06. The magnitude and sign of o. are con-
sistent with the RE universality class. ' This is the first
observation of RE behavior in a mixed 3D Ising system.

The above result is consistent with previously mea-
sured values' in the d = 3 RE system Fe Zn, „F2,where
it was found that 3+ /3 =1.6+0.3 and +=0.09+0.03
and later studies in which a= —0. 10+0.03. Using field
theory, Jug' calculated for a d =3 diluted Ising system
a = —0.034 while Newman and Riedel, ' using
renormalization-group methods, obtained a = —0.09.
These theoretical results show that the RE specific-heat
critical exponent is expected to be small and negative in
good agreement with all experimental results.

It is important to mention that in the fitting procedure
we also allowed for the rounding of the transition as
would be caused by a linear variation of the Neel temper-
ature from T, =T~ —5T~ to Tb=T~+5T~ according to
the expression'

k& [(Tb —T)' —(T, —T)' ]+8 for T& T, ,

C = . [kA (+T T, )' + A —(Tb —T)' ]+B for T, & T& Tb,
kA+[(T T, )' —(T Tb—)' ]+8 for —T~ Tb,

(4a)

(4b)

(4c)

where k =(Tz) /[25T&(1 —a)]. When fitting the data
of Fig. 2 to Eq. (4) we obtained a best-fit value
6T& =0.037+0.002 K. Note that this gradient-induced
rounding affects the data only for ~t~ & 6X 10, a region

of reduced temperature which was excluded in the deter-
mination of a and A+ /A in Fig. 2.

Though the amount of rounding is small for the data
taken on the Fe062Coo 38Fz crystal, as shown in Fig. 2,
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pie) in a boule characterized by large axial gradients
(=10%/cm). It was to avoid this problem that we
resorted to making very small capacitors to minimize the
effect of the concentration gradients. The results for
T&(x) for different concentrations are plotted in Fig. 4.

For a mixed magnetic system there is not a first-
principles theory to describe T&(x). In addition the new
exchange interaction, J~z is generally unknown. We
have used a mean-field analysis for determining J„,c,. In
mean field, the transition temperature of a mixed system
is given by'

T~(x) = [xT~ +(1 x)Ts—]/2

+ I 4 [xT„+( 1 x)Ts ]—
+x (1 —x )( T~~ —T„T~) ]

'~

FIG. 2. 1/CdC/dT vs log, o~t~, the reduced temperature, for
Fe062CoQ38F2. The open and closed symbols refer to T& T&
and T & T&, respectively. The full line corresponds to a best-fit
line with A /3 =1.6+0.4 and a= —0.09+0.06. The region
of the data where rounding due to concentration gradients
occurs (

~
t~ (6X 10 ) was excluded from the fit.

this was not the case for other samples studied. Since
Tz(x) does not coincide with the peak in dC /dT vs T un-
less the divergence is expected to be symmetric
(3+ = A ), it was important to include a variable 6T&
to account for the observed rounding of the phase transi-
tion and obtain a more precise value of the average tran-
sition temperature, Ttv (x).

In Fig. 3 we show a typical dC/dT temperature scan of
an Feo 54Coo 46F2 sample. A least-square fit of the data to
the expression in Eq. (4) in the critical region gives
T& =62.07+0.02 K and 6T& =0.08 K. The rounding of
the transition is consistent with a larger volume of the
capacitor ( =1.5 times as thick as the Feo 6zCoo 3sF2 sam-

where

T„s=16[S„(S„+1)Ss(Ss+I )]'~
/

j~" //3k~ .

In our case T~ and T~ are the Neel temperature of FeF2
and CoF2, respectively. In Eq. (5) we have assumed only
next-nearest-neighbor (NNN) interactions between all
spins, which leads to the expression of T~~ in terms of
the J„,c, NNN exchange interaction. This is a reason-
able assumption since the NN and NNN exchange in-
teractions measured in the pure systems are about an or-
der of magnitude smaller or more. ' The full line in Fig.
4 is the best fit of the data to T~(x) given by Eq. (5) with

T„,c,=59.61+1.35 K. Considering Co as represented
by an effective spin S'=

—,', and using Eq. (5), we obtain

J„,C, =13.10+0.30 cm '. This result deviates slightly
from a straight line connecting T~(FeF2) and Tz(CoF2),
which would have resulted if T„,c,
=QT&(FeFz)T&(CoF2)=54. 43 K.
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FIG. 3. 1/CdC/dT for Feo,4Coo 46F2. The solid line is a best
fit to a rounded RE transition (see the text) with
T& =62.07+0.02 K and 5T =0.08+0.01 K.

FIG. 4. Transition temperature T~(x) vs x, concentration x
in Fe, Co& F2. The solid line is a best fit of the data to Eq. (5)
with T&(Fe-Co) =59.61+1.35 K. The dotted line is a linear in-
terpolation between T&(CoF, ) and T~(FeF2).



5808 A. E. NASH, C. A. RAMOS, AND V. JACCARINO 47

DISCUSSION

We have shown that a novel variation of the capaci-
tance technique allowed us to study critical behavior in
samples with exceptionally large axial gradients. In addi-
tion we have demonstrated the feasibility of using x-ray
diffraction to do precise, nondestructive, in situ charac-
terization of the concentration of very small single crys-
tals of mixed constituents.

Using the advantages of the capacitance technique to
study very small samples we have been able to study the
critical behavior of a mixed Fe„Co, F2 system and ob-
serve RE behavior in a mixed magnetic 3D Ising system.
The value of the specific-heat critical exponent agrees
with previous experimental results for diluted Ising anti-
ferromagnets Fe„Zn& F2 and Fe Mg& „Fz,' which
are clear representatives of the RE universality class.

The measured variation of Tz(x) with x allowed us to
obtain J„«,using mean-field theory. Knowledge of
J„,c, is useful in studies of the magnetic properties of
magnetic superlattices' of FeFz/CoF2, because the ther-
modynamic and other physical properties depend strong-
ly on the interaction at the interface. In the limit of alter-
nating monolayers of FeF2 and CoF2, the only interaction
present would be the NNN Fe-Co interactions (to a first
approximation). Recent experimental measurements of
Tz vs n in (FeFz)„(CoF2)„superlattices indicate that the
extrapolated transition temperature T~ =60 K for n ~ 1,
which is consistent with our result of Tc,„,=59.61 K."

Perhaps the most intriguing property of a mixed mag-

netic system is that it would make possible a study of a
new kind of random-field (RF) problem. The RF prob-
lem originally considered by Imry and Ma ' was that of a
ferromagnet in a site random field. Unfortunately no
realization of this is experimentally possible. The only
experimental realization of the RF problem that has been
found is that of the diluted uniaxial antiferromagnets in a
uniform field, as first proposed by Fishman and Aharo-
ny. Here the randomness of the position of the magnet-
ic and nonmagnetic ions in the presence of a uniform
magnetic field is what gives rise to a random magnetic en-

ergy. However, there is another possibility for the gen-
eration of site random magnetic energy; namely having
the moments p~Wpii in a random A, B, Ising antifer-
romagnet. In this case the coupling with an applied uni-
form magnetic field would be identical to that of the
Imry-Ma problem of a ferromagnet in a site random mag-
netic field. Such is the case in our Fe Co, F2 system,
where pF, )pc, and hence we expect this latter mecha-
nism to be present and its consequences observable. A re-
port of the experimental studies of this system in a mag-
netic field will be published elsewhere.
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