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Vr'e examine the inAuence of homogeneous and inhomogeneous frustration on the ground-state order-

ing of the spin-
~ J, -J& Heisenberg antiferromagnet on a square lattice with X = 16 and X =20 sites. For

a critical value of frustration J~"' =0.4J& the conventional collinear antiferromagnetic long-range order
is expected to break down in the homogeneously frustrated system. This critical frustration is drastically
decreased by inhomogeneities simulating doping; we find J&"' =O. I5J, , which is quite realistic for the
situation in slightly doped cuprate superconductors. En the region of strong frustration a quantum spin-

liquid state is realized without conventional collinear ordering. The properties of this quantum spin

liquid are stilI under controversial discussion. Three diFerent possibilities of a noncollinear ordering in

the strongly frustrated region C, J2 =0.5J, ) are discussed: A dimerized (or spin-Peierls) state, a state with

scalar chiral ordering, and a state with enhanced vector chiral correlations. In particular, owing to the

possibility of excitations with fractional statistics and owing to experimental investigations of broken
reAection symmetry and parity the symmetry properties of the chiral order parameters are of interest.
The scalar chirality is odd under time reversal and two-dimensional reAection, whereas the vector chiral-

ity conserves the time-reversal symmetry. %'e find evidence for a vector chiral ordering as well as for a
spin-Peierls state. These vector chiral correlations can be enhanced by locaI inhomogeneities (holes),
whereas the spin-Peierls state is suppressed.

I. INTRDDUCTIVN

In recent times the two-dimensional (2D) quantum spin
Heisenberg antiferromagnet (AFM) has attracted a great
deal of attention in connection with the antiferromagnet-
ic properties of materials with high-temperature super-
conductivity. In the Cu-Q planes being responsible for
the superconductivity in high-T, materials, the Cu spin is
1/2, the in-plane exchange is strong [more than 1000 K
in La2CuQ4 (Ref. I)] and exceeds the off'-plane exchange
substantially. The anisotropy in the spin space is smaH.
Hence, in the insulating phase the interacting Cu spins
should be well described by an S = 1/2 Heisenberg AFM
on the square lattice. For example, La2CuQ& shows anti-
ferromagnetic long-range order (LRQ) in the undoped in-
sulating case with a Neel temperature of about 300 K.
Doping the material with a sma11 amount of Ba or Sr, the
system remains insulating but ihe magnetic LRQ van-
ishes, suggesting a great sensitivity of LRQ to defects in
quasi-2D AFM.

Although according to Mermin and %'agner's
theorem magnetic LRQ at 6nite temperatures is exclud-
ed for the isotropic Heisenberg magnet in 2D, numerous
theoretical ground-state (CsS) investigations of 2D
Heisenberg AFM confirm the existence of LRQ at T =0
(e.g., Refs. 5—15 and the review in Ref. 16). However, a
proof for antiferromagnetic LRQ in the GS of the
Heisenberg AFM is available at present only for S ~ l
(Refs. 17,18) in the isotropic case or for an anisotropic ex-
change in the extreme quantum case S = 1/2 (Ref. 19 and
references therein).

Hence the anomalously fast disappearance of antiferro-
magnetic LRQ by doping (e.g. , for La2Cu04) is certainly

related to the quasi-20 character of the spin system and
can be forced by diS'erent mechanisms.

(i) There is a certain degree of antiferromagnetic next-
nearest-neighbor (NNN) exchange Jz between the Cu
spins of about 5 —20% of the nearest-neighbor (NN) ex-
change J, (Refs. 20—23) which creates frustration. As ar-
gued in Ref. 24 this frustration could increase with dop-
ing.

(ii) Doping creates holes in the Cu-Q plane which
mainly occupy oxygen sites. ' Since the exchange in-
tegral between neighbor Cu spins is dominated by a su-
perexchange mechanism, the holes locally modify the
bonds. According to Aharony and co-workers, a local
change from an antiferromagnetic to a strong ferromag-
netic bond due to a hole is suggested (Aharony madel),
which introduces a plaquette frustration. ' Alterna-
tively, it was argued by Zhang and Rice that a static
hole is distributed over aH four oxygen sites surrounding
a certain copper site. The distributed hole and the
copper spin form a local singlet state. This Zhang-Rice
singlet cauld be simulated by cutting the oxygen mediat-
ed NN exchange coupling of thai copper spin.

(iii) The holes are not fully localized at a definite oxy-
gen site. The hopping processes of the hole create addi-
tional spin Auctuations.

We address our attention in this paper to (i) and (ii),
and describe the AFM within the localized spin Heisen-
berg model. To discuss (iii) Hubbard-like models or the
t-J model, taking into account electronic hopping, have
to be used.

It is well known from spin glasses ' that frustration
inAuences magnetic LRQ. For quantum spin systems
this can be convincingly demonstrated by use of exactly
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solvable quantum spin chains. In the CxS of the one-
dimensional Heisenberg AFM * with NN exchange Ji
the spin correlation decays slowly following a 1/R power
law. introducing frustration by NNN exchange J2 of
strength Jz =J, /2, the GS state is a valence bond
state * for which the spin correlation is extremely short
Ianged.

The inhuence of frustrating NNN bonds Jz for the
Heisenberg spin-1/2 AFM on a square lattice is described
by the so-called J&-J2 model,

H=J, g(S;.S,.+„+S;-S,. + )

+J2+(S,.S,+ + +S;-S,+ ),

where S; denotes the spin-1/2 operator on site i and the x
and y are unit lattice vectors in x and y directions.

The model (1) was discussed in several papers in recent
times. ' ' ' The main conclusions from these papers
are as follows:

(i) There is some evidence that for a critical value
(J2"'/J, ) the conventional collinear antiferromagnetic
LRQ breaks down. Though the calculations for
(Jz"'/J, ) are not very precise, a value of about 0.4 ap-
pears to be reasonable. ' *

(ii) For Jz/J, ~0.65 the large Jz creates collinear
magnetic ordering with a columnwise arrangement of up
and down spins. If J2 further increases, an antiferromag-
netic LRQ arises within the initial sublattices.

(iii) In the region of strong frustration (Jz/J, =0.5) a
quantum spin-liquid state could be realized without con-
ventional collinear ordering. The properties of this quan-
tum spin liquid are still controversial. For J2 slightly
above the critical value there are indications of a short-
range resonating valence bond state with an exponential-
ly decaying two-spin-correlation function. ' ' Howev-
er, more interesting is the suggestion of a noncollinear
LRQ put forward in several papers. ' '

Three different possibilities are discussed: a dimerized (or
spin-Peierls) state, a state with scalar chiral ordering, or a
state with enhanced vector chiral correlations. In partic-
ular, owing to the possibility of excitations with fraction-
al statistics (anyons} and owing to experimental investi-
gations of broken reaction symmetry and parity,
the symmetry properties of these states are of consider-
able interest.

Recently, the static and dynamic properties of the
Ji-Jz model were compared with corresponding proper-
ties of the t-J model. %'hile the static properties of
both models are qualitatively similar, it is noi surprising
that a significant difference between both models was
found for dynamic properties.

In the present paper we discuss static magnetic GS
correlations and study the in@uence of localized holes
simulated by ferromagnetic bonds (Aharony model} and
by cutoff NN bonds (Zhang-Rice} in the Ji-J2 model.
%'e are interested in the inhuence of these additional in-
homogeneities on the stability of conventional antiferro-
magnetic LRQ as well as the formation of exotic types of
order in the strongly frustrated region. Because the criti-

cal frustration (J2"'/J, )=0.4 for the breakdown of the
AFM is too large, being realistic for materials with high-
T, superconduction, it is particularly interesting whether
or not the static holes are able to reduce the critical J2
drastically.

In the frustrated quantum Heisenberg model, Monte
Carlo methods are di%cult to apply because of the minus
sign problem. Therefore we use as the standard tech-
nique (Refs. 5,15,46—48,53,54) the Lanczos procedure for
the exact diagonalization of clusters of 16 and 20 sites on
the square lattice.

II. THK Jg-J2 MODEL
W'ITH INFINITE RANGE INTERACTIONS

Let us start with a simple soluble version of the spin- —,
'

J,-J, model,

H=J)
i6 A,j68

S, .S +J~ g S, .S, +J~ g S;.S~, (2)

Qne finds

H =(1/2)J,S + (J2-J, /2)s~ + (J2-J, /2)ss —J2(3Ã/4),

where N is the total number of interacting spins. Accord-
ing to the first term in (4), the Cxs is a singlet S =0 for
antiferromagnetic J& &0. The values of S~ and S~ in the
RS depend on Jz. %'e consider frustration, i.e., compet-
ing antiferromagnetic J2 &0. For smaller values of frus-
tration J2 &0.5J&, both S~ and Sz are as large as possi-
ble, i.e., S =(N /4)(X/4+1), for strong frustration
J2)0.5J, we have S =0 (u= A, B}.At J2=J, /2 (max-
imum of frustration) the ground-state energy is degen-
erated with respect to S~ and S~.

Now we can calculate the spin-spin correlation func-
tions in the CiS. Qne finds for J2 & 0.5Ji-.

&s,s, )l, , „=&s,s, )j.. .=l/4,
& s;s, & I;, , = —(1/4+1 jx),

and for J2=0.5J&..

&s, s, &i„„=&s,s, &i„,
=&ss, &i, „-,
= —3/[4(% —1)],

(5a)

and for Jz &0.5J&.-

&s, s, &l.. .=&S,s,-&i, ,
= —(3/2) [1/(~ —2)], (7a)

which is a variant of a model first studied by Lieb and
Mattis. In contrast to (1) the interaction J, is equal to
J, for all spin pairs (i,j ) belonging to different sublattices
A and B and equal to J2 for aH pairs belonging to the
same sublattice of either A or 8, independent of R, -R .
Then H can be expressed by the squares of the total spins:

S=gs;, S„=g S;, S~= Qs;.
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(s,s, &i,,„,,=o (7b)

For dominating Jz, an order parameter

N/2
M~ =( $ v;,S,,X/2, .

a

2

=+1,a= A, B

is relevant (see Sec. III B), which describes an antiferro-
magnetic order within the initial sublattices A and B.

is the corresponding staggered factor. We notice that
in a singlet GS the x and y components contribute with
the same value to the square of the sublattice magnetiza-
tion. Furthermore, we can write M, as

M, = —[4/(3N )](S~S~), (10)

indicating that in a singlet GS the sublattice magnetiza-
tion is related to the coupling between the total spins of
the two sublattices A and B.

From Eqs. (5)—(7) one obtains for M,

M, =(1/3)(l/4+1/N); J2 &0.5Ji,
M, =(I/4)j 1/N+1/[N(N —1)]]; J2=0.5Ji,
M, =0, M, =(1/2)[1/N+1/[N(N —2)]I,

J~) 0.5J, . (13)

In the limit of large N the correlation functions as well as
the sublattice magnetizations approach the molecular
field values. As expected, the frustration acts against the
antiferromagnetic ordering; the spin-spin correlation as
well as the sublattice magnetization vanish in the thermo-
dynamic limit. For finite X, the quantum Auctuations are
present and yield finite antiferromagnetic correlations
even in the strongly frustrated case. Furthermore Eqs.
(5)—(7), (11)—(13) contain the finite-size scaling rules for
the order parameters of the model (2). In contrast to the
1/'t/N scaling found in the 2D Heisenberg AFM for M,
(Refs. 11,15,64) the leading term here is 1/N. In the frus-
trated case, one has quadratic corrections indicating a
possible sensitivity of finite-size scaling rules against frus-
tration, particularly for small systems.

(i.e., for J2 )0.5J, , the sublattices A and B are effectively
decoupled).

For finite systems, antiferromagnetic LRO can be de-
scribed by the square of the sublattice magnetization of
one spin component:

N
1

2

M, = —$ rS;, ), ~~„=+1,~E~= —1 . (8&S ~ I IZ & ICA & I&B

FM1: one ferromagnetic NN bond of strength

FM2: two ferromagnetic NN bonds of strength
Jf = —J),

ZR: one Zhang-Rice defect.
The configuration FM1 corresponds to a "hole" con-

centration of 1/2N and configurations FM2 and ZR to
1/N. In the case of two ferromagnetic bonds (FM2) we
choose the configuration with the lowest energy for small
J2 (see Fig. 1), i.e., both bonds belong to the same pla-
quette and are opposite each other (e.g., for N =16, this
configuration has the lowest energy for J~/Ji &0.65).
Clearly, the arrangements of ferromagnetic bonds in the
x or alternatively, the y direction are physically
equivalent. For the calculation of order parameters, un-
less we consider local quantities, we average over both ar-
rangements. Additionally, to the FM2 configuration with
the lowest energy, we considered an average over all
configurations with two ferromagnetic bonds as well.
However, this yielded qualitatively the same results as
the lowest energy configuration and therefore we did not
present them.

We notice that for finite J2 the 20-site cluster has a
symmetry other than the 16-site cluster (cf. Refs. 43, 15).
In particular, there is a level crossing for X =20 at about
J2 =0.58 for the homogeneous case, which influences the
properties of the system in the vicinity of this point.

A. Ground-state energy
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The frustration causes an energy increase induced both
by unsatisfied bonds and by the reduction of the correla-
tion strength of interacting spins. Therefore the max-
imum in the energy curve marks the region of strongest
frustration and the deviation from the linear behavior in-

III. THE J, -Ji MODEL ON THE SQUARK LATTICE

We investigate now the GS of the model (1) for N =16
and N=20 sites with additional local defects of the
Aharony type (local ferromagnetic bonds) and of the
Zhang-Rice type (cutoff NN bonds of a certain spin). For
the scaling of the energy we choose J&=1 and consider
four different bond configurations:

HS: homogeneous system without defects,

CD
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FIG. 1. Arrangement of sites and bonds for the 16-site clus-
ter discussed in the paper. The numbers between the sites
represent the nearest-neighbor spin correlation (S S;) for the
system with two ferromagnetic bonds (FM2) between sites 1 and
8 and sites 2 and 7, respectively.
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of longer-distance correlations is obtained for clearly
lower values of J2. It seems to be evident that frustration
is able to destroy long-range correlations for values of Jz
significantly lower than 0.5.

However, increasing J2 beyond 0.6, the spin correla-
tions (S S') for lattice points i and j belonging to the
same sublattice A or 8 reappear [cf. (Figs. 4(e),4(f)],
whereas the intersublattice correlations are drastically di-
minished. This indicates an antiferromagnetic ordering
within the initial sublattices for large J2.

Let us now discuss the global antiferromagnetic long-
range order. For that we use as order parameters the
square of the sublattice magnetization M, [Eq. (8)] to de-
scribe the conventional LRO and M, [Eq. (9)] to de-
scribe antiferromagnetic LRO within the initial sublat-
tices. M, and M, are shown in Fig. 5. Obviously, there
are indications for a quantum spin-liquid region around
J2 =0.5 where both order parameters describing conven-

FIG. 2. Energy per spin vs J&/J, for the homogeneous sys-
tem (HS), the system with one ferromagnetic bond (FM1), two
ferromagnetic bonds (FM2), and one Zhang-Rice defect (ZR)
for N =16.

0.00

—0.02

dicates a change in the relation between NN and NNN
spin correlation. For the simple model (2) the energy de-
pends linearly on J2 with a kink at its maximum value at
J2/J, =0.5. The energy for the 2D model (1) is drawn in

Fig. 2. For small J2, the homogeneously frustrated sys-
tem has the lowest energy. The system with the Zhang-
Rice defect has a higher energy since four NN bonds are
missing. Moreover, there are level crossings at J2 =0.5

and J2=0.6 for the ZR system, which will influence the
order parameters in that region of J2. For the systems
with ferromagnetic bonds, the energy is increased by ad-
ditional plaquette frustration, which creates weakly
correlated unsatisfied bonds even for J2=0 [cf. Fig. 1,
bonds (1,8) and (7,2)]. The maximum of the energy is at
J2 /J i 0.56 for the homogeneous system, i.e., at slightly
higher values than for model (2). However, it is shifted to
smaller J2 values by the defects. For larger J2 the two
sublattices become more and more decoupled for the
homogeneous system and the ZR system as it is shown by
the NN spin correlation in Fig. 3(a). For systems with
ferromagnetic bonds, the averaged NN spin correlation is
close to the value of the homogeneous system, but as
shown by Fig. 3(b) the correlation strongly varies from
bond to bond and there is a magnetic coupling between
the two sublattices yielding an energy gain for J2 &0.5

(Fig. 2).
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B. Conventional antiferromagnetic LRO

First we discuss the averaged pair-correlation function
(S S'), which is dependent upon the separation r, for"
different values of frustration. Obviously, the frustration
reduces the spin-spin correlation drastically. In particu-
lar, for longer distances the correlation is almost com-
pletely suppressed for strong frustration [HS, Jz=0. 5,
Fig. 4(a)]. If we introduce additional defects [Figs.
4(b) —4(d)] this tendency is increased and the suppression
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Flax. 3. Nearest-neighbor spin correlation (S Sf ) vs Jz/J,
for N = 16. (a) Averaged values over all nearest-neighbor
bonds. (b) Local values for the system with one ferromagnetic
bond (FM1) between sites 1 and 8 (for the arrangement of sites
cf. Fig. 1). Local correlations are presented for bonds both far
from and close to the defect. For comparison the averaged
value for FM1 and the value for HS are shown.



5798 JOHANNES RICHTER 47

0.10
S ls 1

0.05

0.00

-0.05

-0.10—

-0.15—

Jz ——O.

HS

Jg=0.4 Jg——0.5

l II

ll

/ l';)

0.10
+I i

0.05

0.00

—0.05

—0.10

—0.15

J2——0.

FM]

J2=0.4

ii, l II:,

0.10

0.05

0.00

-0.05

-0,10-

-0.15—

J2=0.

FM2

Jg=0. 15 J2=0.3 0.10
S1g I

0.05

0.00

—0.05

-0.10-

—0.15—

J,=O.

ZR

J,=0.15 J,=0.3

FIR. 4. Histogram of the averaged pair-
correlation function (S Sf ) dependent upon
the spin separation r;, for N = 16 and various
values of J2. The columns belong to separa-
tions a, &2a, 2a, &5 a, and &8a (a is the lat-
tice separation). In b, c, and d the additional
dots on the tops of the columns indicate the
corresponding values of the homogeneous sys-
tem. For the abbreviations HS, FM1, FM2,
ZR see Fig. 2.
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tional collinear LRO are very small.
The inhuence of the defects on the order-parameter

M, is weak [cf. Figs. 4(e) and 4(f)]. There is only a small
shift of the critical Jz values where the antiferromagnetic
LRO within the initial sublattice occurs. Nevertheless,
there is a difference between the systems with (FMl,
FM2) and without ferromagnetic bonds (HS, ZR), the an-
tiferromagnetic orders within the initial sublattices are
coupled to each other by the ferromagnetic bonds,
whereas they are almost decoupled for HS and ZR [cf.
Fig. 3(b)].

More interesting is the order parameter M, which is
relevant for small frustration. As discussed in the Intro-

duction M, is expected to vanish in the thermodynamic
limit at J2 =0.4 [for the homogeneously frustrated model
(HS)]. ' This is confirmed by the pair correlation
shown in Fig. 4(a). This critical Jz=0.4 is clearly too
large to be relevant for the breakdown of AFM in cu-
prate superconductors. But as demonstrated by the pair
correlation in Fig. 4 and M, in Fig. 5, the critical value
can be drastically decreased by the defects, i.e., the quan-
tum spin-liquid region is broadened by the defects. In
Fig. 6 we present the M, curves for HS, FM1, and FM2
with rescaled values for J2 in the relevant region of
J2 =0.4 and find an effective reduction of J2 of about 0.1

0. 12
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d'esca lecI
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I I I I I I I I I ( I I I I I I I I I

FIG. 5. Sublattice magnetizations M, and M, (e= A, B)
[see Eqs. (8) and (9)] vs jz/I, for N = 16.

FICx. 6. Sublattice magnetization M, vs rescaled values of J2
for N =16.
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and 0.25, respectively. A resulting value of J2"' =0.15 in
the latter case is, however, quite realistic in the cuprates.
As estimated in the undoped material, a
J2 =0.05 —0.2 may already be present.

Owing to the defects, the magnetic ordering is inhomo-
geneous as can be seen in Fig. 1. We can look for the
square of the local sublattice moment,

0.08—

N

M, =—gM. . .
(14)

0.04—

which is drawn in Fig. 7 for FM1. Site 1 is close to the
defect and site 11 is far from the defect. For comparison
the averaged sublattice magnetization and the sublattice
magnetization for the HS are shown. We see clearly that
the magnetic order is inhomogeneously distributed over
the system, nevertheless the local moment of site 11 (far
from the defect) is still lower than the value for the HS,
indicating that the topological defect alters the magnetic
order not only in its direct vicinity.

To demonstrate that similar effects as discussed above
for N =16 are realized for %=20 also, we compare in
Fig. 8, the sublattice magnetizations for HS and FM2.
However, we notice that the finite-size scaling for M, dis-
cussed in several papers for the unfrustrated Heisenberg-
AFM ' ' ' is violated for J2 0.3. As discussed in Sec.
II, care has to be taken if scaling rules of the unfrustrated
systems are applied to frustrated ones.

Let us now discuss in more detail the ground-state
properties in the strongly frustrated region J2 =0.5,
where no conventional magnetic order in the pair corre-
lation is present.

C. Chiral order

0,02—

0.00
0.00 0.20 0.40 0.60 0.80 1.00

Jg/J )

FIG. 7. Local sublattice magnetization M, ; for the system
with one ferromagnetic bond between sites 1 and 8 (FM1) and
N = 16 (for the arrangement of sites cf. Fig. 1). For comparison
the averaged values for FM1 and the value for HS are shown.

However, in the S = 1/2 case considered here, both
definitions of the vector chirality are identical;

1

+&'jk 4 F&'jk

Recently, Kawabayashi and Suzuki found a Mermin-
Wagner-like theorem for the vector chirality in 2D sys-
tems.

As for the sublattice magnetization we can choose one
component of Cr; k arbitrarily for a singlet ground state.
The z component considered here can be written as

One very interesting candidate for an unconventional
ordering in the strongly frustrated region is the chiral or-
der. The chirality operator has to measure the handiness
of a plaquette of spins. However, the definition of the
chirality for spin system is not unique. In the context of
the anyon theory of high-T, superconductivity, Wen,
Wilczek, and Zee proposed the triple scalar product of
three spins,

E,,k =S;(S,X Sk ),
as the chirality operator of a triangular plaquette. This is
usually called scalar chirality (cf. Refs. 44, 52). However,
starting in 1977 with Villains papers on frustrated spin
systems, a vector chirality was discussed in many other
papers (cf. Ref. 44 and references therein). This vector
chirality is defined as

2

0, 10—

F;k=(S;XS.+S, XSk+SkXS;) .

Furthermore, Caspers and Tielen proposed a vector
chirality parameter G;.k, which is related to the scalar
chirality E; k by

&J =(S +S, +Su)«, k .

0,00
0.00 0.20 0.40 0.60 0.80 1.00

J,/J,
FIG. 8. Sublattice magnetization M, vs J2/J, for the homo-

geneous system (HS, squares), and the system with two fer-
romagnetic bonds (FM2, crosses) with N = 16 and N =20.
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Z,,„=S(e,G; I, ) =i [(S,+S, —S, S,+ )+(S+S„—S, S„+)

+(S„+S;—S„S,+)j, (19)

2
1

i, i +x, i +x+y i, i +x+y, i +y
1

(20)

which describes a spin current around the plaquette
(i,j,k)

Obviously, the scalar and the vector chirality have
different time-reversal symmetries; the first one is odd
and the second one even.

The interpretation of E,"k and Z,"& as chirality opera-
tors can be illustrated by considering an isolated triangu-
lar plaquette. The quantities which commute with the
Heisenberg-Hamiltonian of that triangle and with each
other are the square of the total spin (S,+S2+S3), the z
component of the total spin (S„+Sz,+S3, ), and E,23
from (15) or, alternatively, Z, z3 from (19). Hence the
fourfold-degenerate ground state

~ P ) of the antiferromag-
netic plaquette can be characterized by the quantum
numbers Eo = —3/4J, S =1/2, S, =+1/2 (Kramer's de-
generacy) and the chirality (or rotational symmetry) of
the state C =+&3/4, ' i.e., the ground states can be
divided into two classes of different chiralities. Applying
E J 23 on the ground states, we find

E,23 ~Eo, s,s„c) =2S,C~E&,S,S„C), i.e. , E&23 mea-
sures the product of S, and C. Otherwise the application
of Z, 23 on the ground state yields

Z», lEo, S,S„C) =16S,'C ~E„S,S„C) =4C~E, ,S,S„C),
i.e., Z, 23 measures C alone.

As pointed out in Ref. 56 an order parameter of type
(16) resembles the formerly discussed twist order parame-
ter ' with additional vector products along a diagonal
direction.

Using Eq. (19) an order parameter

0. 1 5

1e sit

0.00 0.20

0.20—

0.15—

0.10—

0.00 0.20

0.40 0.60 0.80 1 00
J,/J,

0.40 0.60 0.80 1.00
J~/J,

was discussed in Ref. 54. In (20) x and y are unit lattice
vectors in the x and y direction. As pointed out in Ref.
54 this order parameter shows a significant enhancement
in the strongly frustrated region of the J,-J2 model with
16 and 20 sites. We show Z in Fig. 9 for HS, FM1, and
FM2, and ZR. Due to the ferromagnetic bonds, the or-
der parameter is increased (drastically for N = 16, slightly
for N =20) and the maximum is shifted to slightly small-
er values of J2. The reason for this enhancement of vec-
tor chiral correlations might be an additional tilting of
spins in the vicinity of the defects. The ZR defect
suppresses Z for Jz &0.5, but then the system changes
over to a state of high Z for a small region of
0.5 ~ J2 ~ 0.6. We conclude that defects and particularly

FICx. 9. Vector chiral order parameter Z [cf. Eq. (20)] vs

J2/J] for X = 16 (a) and N =20 (b).

ferromagnetic bonds may favor a tendency towards
enhanced vector chiral correlations in the ground state.

An order parameter based on the triple scalar product
was discussed for N = 16 and N =20 by Dagotto, and
Poilblanc and co-workers. ' Initially they argued that
there is no evidence of enhanced scalar chiral correlations
in the J

&

—J2 model. This was confirmed by an
effective-field calculation of Kawabayshi and Suzuki.
However, recently Poilblanc et al. studied the scalar
chirality with different symmetries. They found a
strong increase of

1 E + + + +E ~ + + . + . +E + + +E (21)

for N =16. The parameter T~ has Az symmetry and is odd both under time-reversal (T) and parity (P) and therefore
most interesting for the anyon physics. Confusingly, they found a very large parameter
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for B symmetry also, which clea y
'

rl is even larger than
Tz and has, surprisingly, a maximum v
or

um value for the con-
ventiona un ru1 frustrated Heisenberg AFM i.e. , Jz =0 .
Hence it was unclear whether the maximum in ~ in
frustrated region can be rea y

'

p11 inter reted as an indica-
tion of a groun sta e wid t ith broken scalar chiral symme-

n T andtr . Let us look for the influence of defects on Tz antry. et us oo
Tz. The results are presented in Fig. IO. Ob

'
y,

~ ~

Obviousl, the
defects iminis ea' ' '

h th maximum in Tz. This ten ency is
N =16 [Fi . 10(a)] and N =20 [Fig. 10(b)].

On the other hand, the minimum in Tz is strong y in-
ed b the defects [Fig. 10(c)]. We argue that a statecrease y e e

with scalar chiral order with 32 symme ry,
'

model seems to beken T and P symmetry, in the J&-Jz mod
doubtful and is additionally disfavored by defects.
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FIG 10. Scalar chiral order parametmeters vs J2/J, . (a) Param-
r T ,'c ', r N=16. (b) T~ forr T [cf. E . (21)] with A2 symmetry for X—

nd the arameter T& with BIN =20. (c) Comparison of T~ and e pa
symmetry [cf. Eq. (22)] for X =16.
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FICJ. 11. Dimer order parameter D [c . q.D cf. E . (23)] vs Jz/J, for
(a) N =16 and (b) N =20.
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Another candidate for unconventional ordering in the
spin-liquid region of the J, -J2 model is a columnwise ar-
rangemen ot f spin dimers (singlet states of two spins).

43,47, 53 —55The order parameter used in the literature is
0.30—

] iD=2 — —1 S; S,. +
l

(23) 0, 20—

where i, is given by the lattice vector R, =& „,=(i i ) of the
site i.i. This operator measures the long-range phase

ion. Itcoherence of singlets along columns in the y direction.
was shown ' that this dimer order parameter has a
maximum for % =16 and )V=20 for strong frustration
almost at the same J2 value as Z from Eq. (20). However,
th h ncement of D caused by frustration was found to

54 considerbe lower than the enhancement of Z. We now consi er
the inhuence of defects on D in Fig. 11 and find that de-
fects strongly suppress dimer order. This is not surpris-
ing since defects certainly act against singlet formation.

0. 1 0—

0.00 0.20

0.40—

I I I I I I I I
]

I I I I I I I I I ) I

0.40 0, 60 0.80 1.00

E. Collinear state

Let us now turn to J2 values above the quantum spin-
liquid region discussed in the previous two sections. We
know that for large J2 a conventional antiferromagnetic
LRO with a four-sublattice structure reappears [order-

above the quantum spin-liquid area, another collinear or-
dering with a columnwise arrangement of up and down
spins is favore .d 43 53 15 However, this type of ordering is
related to the four-sublattice AFM since the correspond-
ing columnwise Ising states are Neel states of the four-
sublattice AFM. But otherwise, contrary to M, , the
collinear column order is a state with important nearest-
neig or corr

'
hb correlations and should be realized for J2 values

smallwhere (S,S ) for nearest neighbors is not yet too sma
(cf. Fig. 3).

53, 15We consider the order parameter

0.30—

0.00 0.20 0.40
I I I

0, 60 0.80 1.00

FIG. 12. Collinear order parameter C [cf. Eq. )E . 24) vs Jz/J&
for (a) %=16and (b) 1V =20.

C= g(S; S, + +S, .S,
1

2X
(24)

—S;.S,.+
—S; S,. )

2

Results for C are shown in Fig. 12. We see that the max-
imum of C is at J2=0.67 for the homogeneous system
(HS) where M, is still small. We find a slight shift of the
maximum to smaller J2 caused yb defects. But the
inAuence of inhomogeneities on C is rather small, which
corresponds to the findings for M, in 'g.'nFi . 5.

IV. PHASE DIAGRAM AND CONCLUSIONS

What can we conclude from the discussion of several
order parameters for the phase diagram for the two-
dimensiona 1- 2 m1 J -J model? To discuss this question, we

present in ig.Fi . 13 the calculated order parameters sca e
by their maximum values. This allows us to find out t e
possible regions of different orders.

It is well known that we have conventional antiferro-
magnetic LRO for small J2 (order-parameter M, , two
sublattices) and large Jz (order-parameter M, four sub-
lattices). For intermediate values there is a quantum
spin-liquid state which may have very interesting and
comp ex prop1 roperties. The critical frustration Jz Ji for
which the two-sublattice antiferromagnetic order brea s
down strongly depends on defects. In the homogeneous
system, a critical J2 of about 0.4 seems to be reasonable.
Static inhomogeneities of low concentration may de-
crease the critical Jz drastically up to values of about
0.15. Hence the region of the quantum spin liquid is con-
siderably enlarged. We note that J2 values of about 0.15
are quite reasonable for the slightly doped cuprate super-
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FIG. 13. Comparison of order parameters M,', M,' (a= A, B) [see Eqs. (8) and (9)], Z [cf. Eq. (20)], T„[cf.Eq. (21)], D [cf. Eq.
(23)], and C [cf. Eq. (24)] scaled by its maximum values for (a) the homogeneous system HS, (b) the system with two ferromagnetic in-

homogeneities FM2, and (c) with a Zhang-Rice defect ZR. For FM2 and ZR we omitted T& and D, because they seem to be less
relevant.

conductors. But which properties have this quantum
spin liquid? Doubtless there are indications of noncol-
linear ordering, described by an order parameter going
beyond a simple pair-correlation description. For the
homogeneous system without defects several candidates
compete: dimer, vector chiral, and scalar chiral [see Fig.
13(a)]. To decide which of them has to be favored is
dificult, but we can clearly argue that defects created by
doping suppress dimer and scalar chiral ordering. But
the vector chiral correlations may even be enhanced by
defects. The zero-temperature phase diagram of the in-
homogeneously frustrated J,-J2 model suggested by Fig.
13(b) and 13(c) may be described as follows: there is a
small region of low frustration J2 where a conventional
but slightly disordered two-sublattice AFM exists. In-
creasing J2 in this region is followed by a presumably
short-range ordered, i.e., disordered phase. For strong

frustration (J2 =0.5) there is a narrow region of noncol-
linear ordering which is well described by a vector chiral
order parameter. Because this order parameter breaks
the rotational symmetry in the spin space, this ground-
state ordering implies gapless excitations. A further in-
crease of J2 to 0.6—0.65 yields a collinear state of rows of
up and down spins which is a precursor of the four-
sublattice antiferromagnetic state appearing for large J2.

If we compare the systems with N = 16 and N =20 we
find that the general behavior of both is similar. Howev-
er, in details there are differences, particularly for J2
values in the vicinity of the level crossing point. Since
this level crossing is specific for N =20, we argue that
N = 16 may be more representative for large systems.

Clearly it is necessary to consider larger N to support
the conclusions given above. However, for finite Jz the
next cluster with full square lattice symmetry is N =32
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and it is at the present time impossible to diagonalize N =32 for systems with defects breaking translational symmetry.
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