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Quantum diffusion of light interstitials: One-phonon contribution to the impurity-lattice scattering
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The dynamics of an impurity described by a single-band small-polaron model are investigated. In pre-
vious studies it was concluded that the lowest-order processes that can contribute to impurity-lattice
scattering are two-phonon processes. We show that, for weak coupling, there is a one-phonon contribu-
tion to the scattering. The temperature of the site-to-site hopping rate is determined. We find that this
one-phonon contribution gives a linear temperature dependence that can completely suppress the 77
dependence predicted by the standard, two-phonon, analysis. Possible experimental manifestations of

the one-phonon contribution are discussed.

I. INTRODUCTION

There are many physical systems whose low-
temperature transport properties can be interpreted in
terms of the quantum-mechanical tunneling of an impuri-
ty between interstitial sites of a host lattice. Some exam-
ples of such systems are u* in metals,' 7 muonium in
NaCl and KCL®° hydrogen and deuterium in met-
als,’®~ 13 ortho-H, and HD in solid para-H,,!*!> 3He in
“He,'*~ '8 and hydrogen and its isotopes adsorbed on met-
al surfaces.! 2> In these systems the mass transport of
the impurities is thought to proceed via quantum-
mechanical tunneling of the impurity from site to site,
limited by scattering from the lattice, by scattering from
other impurities, or by scattering from conduction elec-
trons.

For the systems described above it is assumed that the
amplitude of tunneling from site to site is small compared
to other energies in the system, e.g., the Debye frequency
of the host lattice, and the vibrational frequency of an im-
purity on one site. If the tunneling between sites is treat-
ed as a perturbation, the model is called a small polaron
model for the narrow band transport. This model was
originally proposed in order to explain electron conduc-
tion in narrow band materials.?® It has also been applied
to the theory of the quantum diffusion of light intersti-
tials in solids,?’ 3 the quantum diffusion of light adsor-
bates on surfaces,3! ~3 and to the transport properties of
excitons.3> 38

The low-temperature transport properties of the exper-
imental systems listed above all show a temperature
dependence that is indicative of weak coupling between
the impurity and the lattice (or the conduction electrons).
For weak coupling of the impurity to the host lattice, the
standard analysis of the small-polaron model predicts
that the lowest-order processes that can contribute to
impurity-lattice scattering are two-phonon processes.”%?’
These processes are strongly temperature dependent,
with a site-to-site hopping rate predicted to go as T~ at
low temperatures for tunneling in a three-dimensional
(3D) system. However, such strong power-law depen-
dence is not seen experimentally.*

In this paper we show that there are one-phonon pro-

47

cesses that contribute to the impurity-lattice scattering
when the impurity is tunneling between identical, degen-
erate sites, i.e., the situation described by the standard
small-polaron model. This is the main result of this pa-
per. In previous work the site-localized impurity states
were treated as stationary states of the thermally aver-
aged Hamiltonian, and the hopping rate between these
states was calculated using perturbation theory.26” 28
However, the thermally averaged Hamiltonian includes
site-to-site tunneling operators which mix the site-
localized states, and therefore these states cannot be
treated as stationary states. When this nonstationarity of
the localized states is included in the calculation of the
rates, we find that it is possible to get a one-phonon con-
tribution to the impurity-lattice scattering.

At low temperatures the one-phonon contribution to
the scattering has a profound effect on both the magni-
tude and the temperature dependence of the impurity,
site-to-site, hopping rate. The one-phonon contribution
shows a linear temperature dependence which can com-
pletely suppress the T7 temperature dependence predict-
ed by the standard two-phonon scattering. Indeed, we
will show that the standard T result can only be seen for
systems in which the impurity bands are extremely nar-
row, in which case the one-phonon contribution becomes
negligible. Exactly what we mean by ‘“extremely nar-
row”” will be made quantitative in the body of the paper.

The lack of experimental observation of the strong
two-phonon temperature dependence may be due to the
fact that for such extremely narrow bands, either (i) the
tunneling rates, and hence any transport properties, be-
come immeasurably small, or, (ii) that the imperfections
of any real lattice are enough to cause site-energy asym-
metries greater than the impurity bandwidth. In the
latter case an alternative one-phonon mechanism, which
we will discuss in Sec. IV, will operate and this also gives
rise to a linear temperature dependence.*’

In Sec. II, we present the small-polaron model and ana-
lyze the dynamics of the impurity using the equations of
motion of the reduced density matrix. The temperature
dependence of the impurity site-to-site hopping rate is re-
ported in Sec. III. We compare our results to the stan-
dard two-phonon results and show under what conditions
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the standard analysis is applicable. In Sec. IV, we com-
pare the one-phonon contribution that arises out of our
analysis with the results for other possible one-phonon
mechanisms. We also speculate on possible experimental
manifestations of this new one-phonon contribution to
the scattering. In Sec. V, we briefly summarize the main
results of this paper.

II. HAMILTONIAN AND EQUATION OF MOTION
OF REDUCED DENSITY MATRIX

The single-band Hamiltonian for noninteracting inter-
stitial impurities moving in a periodic lattice and coupled
linearly to the lattice displacements is

H=—1,3 azas+n+2 wqbeq
s,n q

+3 1, 3 (Ve gbgTrighl) . (2.1)
S q

Here s labels the sites in the lattice, n the nearest-
neighbor sites, and q the phonon modes. a;r (ag) creates
(destroys) an impurity at site s, ng (=aZas) is the number
operator for this state and bl; (by) creates (destroys) a
phonon in normal mode q with frequency o, (q labels
both wave vector and polarization branch). %, is the bare
tunneling amplitude. This Hamiltonian is derived assum-
ing that the lattice can only connect impurity states on
the same site. Therefore, the impurity-lattice coupling is
through the impurity density only, with strength y .
There is also the implicit assumption that the tunneling
amplitude between nearest-neighbor sites, t;, is much
greater in magnitude than any difference in site energies.
In the Hamiltonian, Eq. (2.1) all site energies are taken to
be equal and are set to zero. For any real system this last
assumption will become more questionable as the mass of
the tunneling impurity increases. Eventually any site-
energy asymmetry, due to lattice imperfections or in-
teraction with other interstitials, will be enough to cause
the zero-order impurity eigenstates to become localized.
We assume that the tunneling amplitude, ¢,, is large
enough that the site-energy differences can be ignored but
that it is still small compared with the maximum lattice
frequency, .,y

The standard polaron transformation*!

U =exp

*
Mbq—hbg] ] . e
@q Dq

—ng Y

q
of the Hamiltonian, Eq. (2.1), gives
UHU'=—1, 3 B, ipalagn+ 3 0blb,—3 V,oneng
s,n q s,s’
(2.3)
with

Bygin=exp |— 3 (A5 b — A% )
q

(2.3a)

and
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7/5, _YS+n, Y i .
A(s],s+n: 9 9 _ qeth(l_etqn) .

wq CL)q

(2.3b)

The last term in Eq. (2.3) is a lattice-induced impurity-
impurity interaction with strength ¥ ;, given by

Re[y4qV gl

Vs,s‘ = 2 o

q q

(2.3¢)

In the limit of dilute impurities we can ignore these
lattice-induced interactions between the impurities. We
therefore retain only the diagonal elements of ¥V .., which
add a site-independent, lattice-induced stabilization. In
this limit the transformed Hamiltonian becomes

UHU'=—1,3 B, 10{a;1nt 3 0gbibg— Equ, 315
s,n q s

(2.4)

(2.4a)

In deriving these results we have used the periodicity of
the lattice in order to write the coupling strength y , in
the form

P e A (2.5)
The q dependence of y 4 will depend on the dimensionali-
ty of the phonon system and on the details of the
impurity-lattice coupling.

The dynamics generated by the Hamiltonian in Egq.
(2.4) will be analyzed using perturbation theory, treating
the tunneling as the perturbation. We therefore take the
last two terms of Eq. (2.4) as our zero-order Hamiltonian,
H,. The tunneling terms, which now include the lattice
operators B ¢ ,;, provide the perturbation V. That is

UHU'=H,+V (2.6)
with
Hy=—Egp S n,+3 oblb, (2.6a)
s q
and
V=—1,3 Bysindlag , . (2.6b)

s,n

The Hamiltonian given in Eq. (2.6) describes a small-
polaron model for interstitial motion in the limit of dilute
interstitials. This Hamiltonian has been extensively stud-
ied in a variety of contexts, some of which have been dis-
cussed in the Introduction.

The dynamics of this coupled many-body quantum sys-
tems are, for our purposes, best analyzed by looking at
the equations of motion of the reduced density matrix in
the site basis. For an impurity whose motion is described
by the Hamiltonian given in Eq. (2.6), the equations of
motion, in the Markovian approximation, are given
by42,43
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pss ”02 Ps+n, st )—ﬁs,s’+n(z)]
=2y Pe () 8y ¢ 3 ¥ Peinstall)
+288',5+n y+ﬁs’,s(t) ’ 2.7)

where z is the number of nearest-neighbor sites. 7, is the
renormalized tunneling amplitude and can be written as

I,=6t, (2.8)
with the renormalizing factor 6 given by

J(a))

o
2kT /@

0=exp -—%fold coth

] . (2.8a)

max

J(w) appearing in Eq. (2.8a) is a dimensionless spectral
weight function defined by

| 2

J(0)=43 i (2.9)

q wmax

sin*(q- n/2)8(0—wq/@nay) -

v~ appearing in Eq. (2.7) is the “Golden Rule” rate of
impurity transfer from one site to a neighboring site, i.e.,

the impurity site to site hopping rate. ¥~ and ¥ * can be
written as*?

vi=w,, 37 * (2.10)
with dimensionless rates # * given by

yE=e 90 [ dry3d 277 T4 —1] 2.11)
and

J(a)) ..

()= f do—"[coth(w/2kT)cos(wT)—i sin(wT)] .

(2.12)

The tunneling amplitude, ¢,, and temperature kT, ap-
pearing in Egs. (2.10)-(2.12) are now dimensionless and
J

J(col) J (@)

(2)=%f dcolf Wy—5— wz

+[coth(w, /2kT)coth(w, /2kT)+1]F (o, +w,)}

with

F(co)=fwwdTJ%d(Z?OT)cos(wT) ) 3.5)

Before investigating the effects of the nonstationarity
of the site-localized states on these rates we will review
the standard results?® 28 obtained by setting the Bessel
functions in Eq. (3.5) equal to unity. F(w) then becomes
proportional to a § function at zero frequency. In analyz-
ing these terms we will restrict ourselves to spectral
weight functions with the model form

no", w=1,

J@)=1o, w>1.

(3.6)
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are in units of the maximum lattice frequency, w,,. d
appearing in Eq. (2.11) is the dimensionality of the tun-
neling system and J, is the zero-order Bessel function.
The standard small-polaron expression for ¥ ~ is the same
as given in Egs. (2.10)-(2.12) except that it does not con-
tain the J29(27,7) factor.?’ The appearance of this extra
factor is a consequence of the correct inclusion of the
nonstationarity of the site-localized states in the calcula-
tion of the site-to-site hopping rates.** If y~ and y
calculated using the standard small-polaron expression,
i.e., setting J3%(27,7) =1, the equation of motion given in
Eq. (2.7) reduces to the result previously obtained by Ki-
tahara et al.®!

III. TEMPERATURE DEPENDENCE
OF THE HOPPING RATES

We now investigate the temperature dependence of the
dimensionless rates given in Eq. (2.11). For weak
impurity-lattice coupling the contribution of many-
phonon processes to these rates is unimportant, and we
may expand the integrand to obtain a series of terms cor-
responding to one-phonon processes, two-phonon pro-
cesses, etc.,

,}7i=e_¢(0)f°° dTJ(Z)d(z’tVOT)

X{F D) +LSNPF -] . (3.1
Interchanging the order of the time and frequency in-
tegration in Eq. (3.1) we obtain

,)7i=e—~¢(t)(_+—_,]/(l)+y(2)¢ e , (3.2)

where 7" represents the n-phonon contribution to the
rate. The one- and two-phonon terms are given by

(= fo‘dw—J—(—‘;ﬁcothm/sz)F(w)
[0}

(3.3)

and

——— {[coth(w, /2kT)coth(w,/2kT)—1]F (0, —w,)

(3.4)

The value of 1, which we will call the coupling strength,
will depend on the strength of the impurity-lattice in-
teraction. The frequency exponent, n, will depend on the
dimensionality of the lattice and on the details of the lo-
cal impurity-lattice interactions. For an interstitial tun-
neling between identical sites in a three-dimensional solid
J (@)~ 3, 344344
Using the spectral weight function given in Eq. (3.6),
with n =35, the standard one- and two-phonon contribu-
tions to the rate become
y'V=0 (3.7

and
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6

y =i 2 kry [ a0 (3.8)

sinh(w)
Equation (3.7) states that, in the standard picture, conser-
vation of energy requires that there are no one-phonon
processes that contribute to the site-to-site hopping
rate.?®?’ For low enough temperatures the upper limit of
the integration in Eq. (3.8) can be taken to infinity, yield-
ing standard integrals.* In this limit the two-phonon
contribution becomes

(2) — .2 (27T)
"84

As long as the temperature dependence of the renormal-
izing factor e ~%© is not too strong, the overall tempera-
ture dependence of the rate, at low temperatures, goes as
T7. For higher temperature we can approximate the in-
tegrand in Eq. (3.8) by its leading-order term. This then
yields a T? temperature dependence for the two-phonon
contribution

=2 (kT (2kT <<1) . (3.9)

y D= 2 2T (kTP (2kT>1) . (3.10)

When the time dependence of J3%(27,7) is included in
the calculation of the rates, F () is no longer proportion-
al to a & function. F(w) can be calculated analytically for
1D,* and for 2D and 3D it was integrated numerically.
In Fig. 1, we show plots of the function F(w) for one-,
two-, and three-dimensional tunneling systems. The
effect of including the J3%(27,7) factor is to smear out the
zero-frequency 6 function, giving it a width equal to
twice the renormalized bandwidth. For 2D and 3D sys-
tems F(w) is identically equal to zero for w> 87, and
> 127, respectively.

In the Appendix we calculate the one-phonon and
two-phonon contributions to the rate for a 3D tunneling
system coupled to a 3D lattice, i.e., J(w)=nw’ and F(w)
given in Fig. 1(c). The results are

73 4
7n* 70 ﬂ, kT << 6t ,
= -2 i 3.11)
7? Lo | 125viam , o KT >>67, ,
n 4
and
772(284) (kT), 2kT <<1,
yP= (3.12)
n2-~<kT)2, 2kT>1 .

The utility of writing the one-phonon contribution in
terms of the ratio 7 3/7 will be made clear shortly. £ ap-
pearing in the low-temperature limit of Eq. (3.11) is
defined by
o J— n 2n
= > (—1)" (2.4)
n=0

~1. xX1072.
n!  (4+2n) 1.4749x10

(3.13)

From Eq. (3.11) we see that when the nonstationarity of
the site-localized states is included in the calculation of
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the rates we now get a one-phonon contribution. The
nonstationarity of the localized states leads to an uncer-
tainty in their energy (of the order of the renormalized
bandwidth). It is therefore possible to get a one-phonon
contribution to the rate without violating conservation of
energy.

At low temperatures the one-phonon contribution will

2.0t

f F(w)

0.51

0‘0- 1 1 1 ]

(=1
W
S.
s

o/t

0.8 (b)

0.6F

0.4}

F(w)

[

0.2

0.0f

[=)
w
St
vy

/T,

F(w)

[

0.21

0.0 1

/T,

FIG. 1. Function F(w) [Eq. (3.5)] (multiplied by renormal-
ized tunneling amplitude 7,) as function of frequency (in units of
fy). (a) 1D tunneling system, (b) 2D tunneling system, (c) 3D
tunneling system. The dashed curve is the approximation given
in Eq. (A1).
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dominate and will give rise to nonstandard temperature
and isotope dependence for the rate. Both ¥! and ¥
are monotonic increasing functions of temperature, and
the temperature exponent of ¢!’ is always less than that
of y¥. We can therefore find a unique temperature,
denoted kT*, below which the one-phonon rate exceeds
the two-phonon rate. This transition temperature is
given by

1/6
0.50718, 2kT*<1,

=2
-0
. n
kT*= ) _,

- (3.14)
—262.3346, 2kT*>1.
U]

In Fig. 2 we show a representative plot of the tempera-
ture dependence of the full rate, calculated by numerical
integration of Eq. (2.11). For temperatures below kT*
the full rate is very different from the standard T~ rate.
The temperature dependence now shows four distinct
temperature regimes.

(i) At the lowest temperatures, kT <t,, the rate is tem-
perature independent, and is given by the low tempera-
ture limit of Eq. (3.11).

(i) For 6ty <kT <kT* we see a linear temperature
dependence, due to the high-temperature limit of the
one-phonon contribution, Eq. (3.11).

(iii) For temperatures above kT *, the two-phonon con-
tribution dominates. In the regime AKT* <kT =1 the
temperature exponent is somewhat less than the T pre-
dicted by the standard treatment.

(iv) Finally, at the highest temperatures, £+ <kT, we go
over to the T2 high-temperature limit of the two-phonon
rate.

Inclusion of the one-phonon contribution has a pro-
found effect on the low-temperature behavior of the rate.
For the lowest temperatures shown in Fig. 2 the full rate

ot
Full rate
........ One-phonon contribution
S2F e Two-phonon contribution
—_
|
>~
=
S -4r
1))
[*)
=1
-6t
-8t
. s

lOgID(kT/wmax)

FIG. 2. Log-log plot of the dimensionless rate, ¥ ~ [Eq.
(2.11)], as a function of temperature (in units of w,,,) (solid
curve). Calculated for a 3D system, i.e., J(w)=70’ and F(w)
given in Fig. 1(c), with %=10"! and ¢,=10"%% Iie,
t2/n=10"* The transition temperature, kT, is defined in Eq.
(3.14). Also plotted are the one-phonon (short-dashed curve)
and two-phonon (long-dashed curve) contributions.

is 13 orders of magnitude greater than that predicted by
the standard T result.

In Fig. 3 we show how the ratio ¢3 /7 affects the tem-
perature dependence of the rate, ¥ ~, for two different
values of the coupling strength, 7. The temperature
dependence of the scaled rate depends on the ratio t3 /79
in three ways: (i) the low-temperature value scales as
t2/n, Eq. (3.11); (ii) the transition temperature, kT*, is
determined by ¢3 /7 through Eq. (3.14); and (iii) the tem-
perature exponent in the intermediate-temperature re-
gime kT* <kT <1 depends on t}/n. Writing the tem-
perature dependence of the rate in the intermediate re-
gime as ¥ ~ ~ T%, Fig. 4 and Table I show the dependence
of the temperature exponent, x, on the ratio ¢t3/7. In
Fig. 4, we show the best fits for «, for the parameters
t3/m=10"*and 1075, and in Table I we summarize the
dependence of k on t3 /1. From Fig. 4 and Table I we see
that the intermediate-temperature dependence is well de-
scribed by ¥ ~ ~ T*, with k given approximately by

—log,o(T3/m), Te/m=10"7,

7, T3/p<1077. (3.13)

K~

We will therefore only see the standard T’ temperature
dependence if we are in a parameter regime for which
72/m<1077, i.e., very narrow bands.

In summary, for weak impurity-lattice coupling the
main effect of including the nonstationarity of the site-
localized states in the calculation of the site-to-site hop-
ping rate, i.e., including the J2¢(27,7) factor in Eq. (3.5),
is to allow a contribution from one-phonon processes.
These processes completely change the low-temperature
behavior of the rate from that predicted by the standard,
weak-coupling, two-phonon rate which goes as 77 in 3D.

ot
-2F
T b
> =
Ne———
2
g o 1
- -1
7 n=10
8 ,//
,// --------- n=107?
A Two-phonon
1o contribution
2.0 1.5 1.0 0.5 0.0

IOgIO(kT/(Dmax)

FIG. 3. Log-log plot of the dimensionless rate, ¥ ~ [Eq.
(2.11)] (in units of 5% as a function of temperature (in units of
®ma). Calculated for a 3D system, i.e., J(w)=70’ and F(w)
given in Fig. 1(c), with 7=10"" and 1072, and t3/7=10"73,
1075, and 1077. Arrows indicate the transition temperature,
kT*, defined in Eq. (3.14). Also shown is the two-phonon con-
tribution to the rate.
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TABLE I. Dependence of the temperature exponent, «, on
the ratio t3 /7, for a 3D tunneling system coupled to a 3D lat-
tice.

t§/n K Valid for kT~
1073 2.57 0.16-0.40
10~* 4.00 0.11-0.25
1073 5.20 0.063-0.16
107 6.06 0.056-0.14
1077 6.48 0.040-0.10
1078 6.79 0.032-0.10

At low temperatures the rate is dominated by the one-
phonon contribution, and shows a linear dependence on
temperature. The one-phonon contribution can also
modify the T’ temperature dependence, due to the two-
phonon processes at higher temperatures. For intermedi-
ate temperatures, kT* <kT <2.5kT*, the temperature
dependence can range from T’ to T2. The exact power-
law dependence is determined by the ratio t3/7. The

one- and two-phonon contributions to the rate ¥‘! and
2)

v'“’ and the transition temperature kT* for a 2D tunnel-
ol
-1r
/N
] o~
[ =y
S -2
80
2
-3+
-4t
-2.0 -1.5 -1.0 -0.5 0.0
IOgIO(kT/‘Dmax)
of
I e -2
>~
—
=
&
- -4}
-6f g

-2.0 -1.5 -1.0 -0.5 0.0

IOgIO(kT/mmax )

FIG. 4. Log-log plot of the dimensionless rate, # = [Eq.
(2.11)], (in units of %?) as a function of temperature (in units of
®may) (solid curve) and best linear fit to the log-log plot in the
intermediate-temperature range (dashed curve). Calculated for
a 3D system, i.e., J(w)=no’ and F(w) given in Fig. 1(c), with
(@) t3/n=10"%(b) t3/n=10""5.
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ing system coupled to a 2D lattice are given in the Ap-
pendix.

IV. COMPARISON
TO OTHER ONE-PHONON MECHANISMS
AND TO EXPERIMENT

A. Comparison to other one-phonon mechanisms

The one-phonon contribution to the site-to-site hop-
ping rate derived in this paper is given by
y B :wmax?(z)y( ! ) >
where ¥ is defined in Eq. (3.3). For a 3D tunneling sys-
tem the high- and low-temperature limits of ¥‘!’ are given
in Eq. (3.11) and these then give a one-phonon contribu-
tion to the rate of

Ot 3216.26, kT <%, ,

Y o, mT478.33kT, kT >6F, . “2)

4.1)

There are two other slightly different physical situa-
tions which can given rise to one-phonon contributions to
the site-to-site hopping rate. The first occurs if the inter-
stitial sites are not degenerate and the site-energy
differences between adjacent sites is much greater than
the tunneling amplitude.** The Hamiltonian describing
such a system is given by

H=Y¢en,—t, aIas+n +3 a)qbeq
s s,n q
+ 3y S (Vo gbg T rED) 4.3)
S n
where ¢, is the impurity energy on site s, and
le,—eg| >>1, for all nearest-neighbor pairs of sites s and
s’. This Hamiltonian is the same as the original Hamil-
tonian given in Eq. (2.1) except for the additional site en-
ergy term, 3 €& . Since |g,—gy| >>1,, the site-localized
states are good zero-order eigenstates. Assuming that the
spectral weight function is given by J(w)=7w’, the
Golden Rule rate of going from site s to site s+n is given
by

coth(Ae/2kT)+1, e>egyy,
Vsmstn ™ 2T0max 088 | coth(Ae /2kT)— 1, &, <eyss
(4.4)
with
Ae=lgg, n—¢l - (4.42)

In Eq. (4.4), the site energies, tunneling amplitude, and
temperature are all dimensionless and are given in units
of the maximum lattice frequency, w,,,. For low temper-
atures, kT <<Ag, we can replace coth(Ae/2kT) in Eq.
(4.4) by unity, yielding

Z2A.3
DmaxME AE4T, €>€c4r

Vsos+nlkT <<Ag)= g 4.5)

» Es<E€g4np -

For temperatures greater than Ae the uphill (e,<eg,)
and downhill (e,> €, ,) rates become equal and are given
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by
Ve sin KT >>Ae) =0, MTo A4k T . (4.6)

These one-phonon rates are similar to the rates given in
Eq. (4.2) except that the form of the temperature depen-
dence is now determined by the site-energy asymmetry,
Ag, and the magnitude of the rate depends on both Ae
and 7,. The purity of the sample, the number of defects,
and the concentration of the tunneling impurities can all

affect the value of Ae. We therefore expect that the ob--

served transport properties will depend on all of these
factors.

A second one-phonon contribution to the hopping rate
is possible if the tunneling occurs between inequivalent
sites within a unit cell.** In this case we will get a one-
phonon contribution even when the inequivalent sites are
degenerate. For a 3D system this intraunit-cell tunneling
will be described by a spectral weight function that goes
as @’ at low frequencies, i.e.,

T7a>3, o<l,

Jintra(w)
We have written the coupling strength in Eq. (4.7) as 7} to
emphasize the fact that the coupling to the lattice for
these intraunit-cell processes is different than that which
leads to the > spectral weight used in this paper. 7 will
only be nonzero if there is some change in the trace of the
double force tensor in going from site to site within the
unit cell.>*" With an > spectral weight function the
standard analysis, i.e., taking J2¢(27,7)=1 in Eq. (3.5),
yields a one-phonon contribution to the rate. In this case
the one-phonon contribution is given by

Y imtra = Omax 1L glimo [27o coth(w /2kT)] , (4.8)
w—>

which upon taking the zero-frequency limit gives
yi;tra:wmaxﬁftz)‘tﬂ-kT M (4-9)

The intraunit-cell mechanism gives rise to a one-phonon
rate which is proportional to T for all temperatures. This
is very different from the rate given in Eq. (4.2) which
predicts a finite hopping rate at 7T =0. This difference
should, in principle, make it possible to distinguish be-
tween these two one-phonon mechanisms. We now ex-
amine some experimental results on the transport proper-
ties of light interstitials in 3D which might be explained
in terms of a one-phonon impurity-lattice scattering
mechanism.

B. Comparison to experiment

1. Diffusion of positive muons in aluminum

A linear temperature dependence of the hopping rate
has been observed in experiments on u* diffusion in met-
als’?*57 and it has been speculated that this tempera-
ture dependence is due to one-phonon muon-lattice
scattering.">*%~8 In Fig. 5 we show the experimental
data for pu* diffusion in aluminum'*’ together with a
representative fit of the data using our one- and two-

—

Experimental curve

----------- Theoretical curve

Iogm[v (s")]

log,[T (K)]

FIG. 5. Log-log plot of the total hopping rate, v (in units of
s™1), as a function of temperature (in units of K). Experimental
results are reproduced from Ref. 47 (solid curve), and are fit us-
ing Eq. (2.10) with J(0)=70°, @myx=5X1013 s7! (i.e., Debye
temperature of 400 K), 7=7.8, and #,=0.03 (i.e., a bare tunnel-
ing amplitude of 1 meV) (dashed curve).

phonon model. The experiments measure the rate of
site-to-site ,u+ transfer, which is referred to as the hop-
ping rate v, and are fit using our calculated hopping rate
v, given in Eq. (2.10). Above about 4 K the experimen-
tally observed hopping rate is an increasing function of
temperature, with two distinct temperature regimes. At
intermediate temperatures, between about 4 and 40 K,
the rate is a nearly linear function of the temperature,
while at higher temperatures there is a much stronger
temperature dependence. For temperatures between
about 40 and 100 K the hopping rate is well described by
a power-law temperature dependence, v« T, with
k=4.7.

Experiments on p* diffusion in Al doped with Mn im-
purities? found no dependence of the u* hopping rate on
Mn concentration. We can therefore conclude that one-
phonon processes due to site-energy asymmetries are not
important in this system. The interstitial muon can occu-
py both the octahedral (O) and tetrahedral (7) sites in the
fcc Al lattice. It is therefore possible to get a one-phonon
contribution to the rate from intraunit-cell processes, via
an O-T-O-T jump sequence. Previous studies'*” used this
model in order to try and explain the linear temperature
dependence of the 1™ hopping rate, but it was concluded
that this model was probably not applicable to this sys-
tem.! We will use our model to try and explain the ob-
served rate in terms of hopping between equivalent octa-
hedral sites.

As shown in Fig. 5 the high-temperature results can be
fit almost exactly by our model. We can also simultane-
ously account for the observed weaker temperature
dependence in the intermediate temperature regime, al-
though the fit is not as good as at higher temperatures.
In making comparison with experiment we have multi-
plied the site-to-site rate given in Eq. (2.10) by 12. This is
since the experiment measures the total muon jump rate,
and each octahedral site has 12 nearest-neighbor octahe-
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TABLE II. Parameters used to fit " in Al experimental data
shown in Fig. 5. S'is defined in Eq. (4.10) of the text.

7 S to (meV) fo (meV)
6 0.75 0.8 0.38
8 1.0 1.0 0.37
10 1.25 1.3 0.37
11 1.375 1.5 0.38
12 1.5 1.7 0.38

dral sites to which the muon can hop.*’ The agreement
shown in Fig. 5 could only be obtained using a narrow
range of the parameters of the model. These values,
given in Table II, agree well with previous estimates of
the coupling strength and tunneling amplitude for u ™ in
Alb? For the purposes of comparison to previous work,
the coupling strength 7 defined through Eq. (3.6) has also
been reported in terms of an S value, defined by

(T =0)=e"%. (4.10)

6(T =0) is the lattice renormalizing factor, Eq. (2.8a),
evaluated at zero temperature. For a 3D system de-
scribed by an «’ spectral weight function, S =7/8. Pre-
vious studies have yielded S values of S =1.73 or 2.16
(Ref. 2) and S =2.2,! and a tunneling amplitude, ?,, of
about 1 meV.""? Using our model we have been able to fit
the observed high-temperature hopping rates for u* in
Al using the true Debye temperature of the solid,
Tpepye =400 K, and very reasonable values of the cou-
pling strength, S=1 (n=8), and tunneling amplitude,
to=1 meV. Using the same S and ¢, we have also been
able to account for the weaker temperature dependence
seen at intermediate temperatures.

2. Diffusion of muonium in KCL

In Fig. 6 we show the experimentally determined hop-
ping rate, i.e., site-to-site transfer rate, for muonium in
KCl° Stamp and Zang*® have proposed a model of
coherent impurity motion limited by one-phonon scatter-
ing to account for the observed temperature dependence.
They assume that the delocalized impurity states are a
good zero-order description, and calculate the rate of
one-phonon scattering between these states. Within their
model they conclude that there is no one-phonon scatter-
ing possible for impurities moving in narrow bands.
Their one-phonon scattering rate is zero if the renormal-
ized bandwidth is less than some threshold bandwidth,
which is of the order of the Debye frequency of the lat-
tice. However, for tunneling in narrow bands, i.e., sys-
tems with bandwidths very much less than the Debye fre-
quency, the site-localized basis should be a better zero-
order description and the analysis presented in this paper
should be applicable. In their analysis Stamp and Zhang
then proceed to find a T° temperature dependence for the
one-phonon scattering rate, which is very different from
our result. In the calculation of their impurity-lattice
scattering rate, Stamp and Zhang have included only
terms proportional to n,, the thermal average number of
phonons in mode q. These terms arise from a thermal
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FIG. 6. Log-log plot of the muonium hopping rate, v (in
units of s~ 1), as a function of temperature (in units of K). Ex-
perimental results are reproduced from Ref. 9, and are fit using
v=D /a? with J(©)=10°, 0yn,=3X10" s7! (i.e., Debye tem-
perature of 231 K), =13, and #,=0.1 (i.e., a bare tunneling
amplitude of 2 meV). The theoretical results are shown as the
solid curve and have been multiplied by 10™*! in order to scale
to experiment (see text).

average of lattice correlation functions of the form
(b:;bq Yvath- They have omitted the terms proportional to
ng+l1, which arise from the lattice correlation functions
<bqb£>bath' If these terms are included, the resulting
scattering rate shows a temperature dependence very
similar to our one-phonon rate, i.e., constant at low tem-
peratures and linear at higher temperatures. However, it
is now no longer possible to explain the T ™33 tempera-
ture dependence found in the muonium in KCI experi-
ment using only this one-phonon scattering.

We have tried to fit the experimental data within our
model, by equating the experimentally observed hopping
rate, v, with the single-particle coherent diffusion
coefficient, as was proposed by Stamp and Zhang.*® That
is v=D /a?, with the coherent diffusion coefficient D

given by*1'#
a®2f}
D =“*—*:‘“*’: . 4.11)
zy +v

a is the distance between interstitial sites. Using Eq.
(4.11) it was not possible to reproduce both the tempera-
ture dependence and the magnitude of the rate simultane-
ously. In Fig. 6, we show a representative fit to the data
which reproduces the temperature dependence, i.e.,
T 733, but is off by about 4 orders of magnitude in the ab-
solute value of the rate. This could be due to the fact
that simply interpreting the experimentally determined
hopping rate as D /a? is not valid, as was discussed by
Stamp and Zhang.*® Alternatively, if other scattering
mechanisms are important, for which there is some evi-
dence,®? these would act to reduce the coherent diffusion
and hence reduce v.*

Finally, we note one additional piece of quantitative
evidence that can be interpreted as giving direct support
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to our model. This is the observed flattening off in the
rate for T =20 K which is well reproduced by our results.
In our analysis the temperature below which one-phonon
scattering is dominant, kT*, and the exponent, «, of the
power-law temperature dependence at higher tempera-
tures 7%, are not independent. They are related
through the ratio 73 /7 [Eqs. (3.14) and (3.15)]. Therefore
given the T *? temperature dependence, our model
would correctly predict that the hopping rate levels off
below about 20 K.

V. CONCLUSIONS

In this paper we have proposed a new one-phonon
scattering mechanism for impurities weakly coupled to
the lattice and moving in narrow bands between identical
interstitial sites. Previous studies have concluded that, in
this physical situation, the lowest-order processes that
can contribute to impurity-lattice scattering are two-
phonon processes. The standard two-phonon scattering
model predicts a very strong T’ temperature dependence
for the low-temperature transport properties of the inter-
stitial in 3D. Such strong power-law temperature depen-
dence has not been observed experimentally.>® The one-
phonon scattering rate derived here is constant at low
temperatures and becomes linear in temperatures as the
temperature is raised above the impurity bandwidth. At
low temperatures this one-phonon contribution to the
scattering is dominant and the high-order temperature
dependence due to the two-phonon scattering is com-
pletely suppressed. We have given a quantitative esti-
mate of when it should be possible to observe the stan-
dard two-phonon result.

In slightly different physical situations it is also possi-
ble to get one-phonon contributions to the rate. We have
compared our one-phonon results to these other one-
phonon mechanisms, arising either from tunneling be-
tween nondegenerate sites or from tunneling between ine-
quivalent sites within a unit cell. Experimentally it
should be possible to differentiate between these mecha-
nisms, since the rates which they predict have different
dependences on both temperature and sample purity.

The observed temperature dependence of the hopping
rate of u* in Al is well described by our model for inter-
mediate and high temperatures. We have also attempted
to explain the observed low-temperature hopping of
muonium in KCIl in terms of coherent diffusion, as has
been previously proposed by Stamp and Zhang.** We
found that within our model it was possible to fit the
form of the observed temperature dependence but not the
absolute magnitude. Some possible reasons for this
discrepancy were presented.

The main conclusion of this paper is that the nonsta-
tionarity of the site-localized states can affect not only the
coherent motion of an impurity but also the incoherent
impurity-lattice scattering. When this effect is included
we find that it is possible to get a one-phonon contribu-
tion to the impurity site-to-site transfer rate even for tun-
neling between degenerate states. At low temperatures
this one-phonon contribution dominates, and the temper-
ature dependence of the rate is very different from that
predicted by the standard, two-phonon, analysis.

5729

ACKNOWLEDGMENTS

We thank the ACS-PRF and NSD for financial support
for this work. P.D.R. also thanks Eric Hiller for useful
and fruitful discussions. K.B.W. would like to also thank
the Alfred P. Sloan Foundation for financial support.

APPENDIX

In this appendix we outline the algebra involved in
deriving the one- and two-phonon contributions to the
rates when the J3(27,7) factor is included in the evalua-
tion of F(w) given in Eq. (3.5). For a 3D tunneling sys-
tem the exact F () can be approximated by

exp{ —[(2/10)(w/Ty)]*}

o T,V2
Fo @)=y o>128, .

, o<l12f,,

(A1)

This approximation is shown in Fig. 1(c), together with
the exact function calculated by numerical integration of
Eq. (3.5).

For a 3D tunneling system coupled to a 3D lattice, i.e.,
F(w) given by Eq. (A1) and J(w) given by Eq. (3.6) with
n =35, the one-phonon rate, valid for 127, <1, is given by

(1) — ’2_(2kT)4
Y V2 fo

127, /2kT
dx x3coth(x)

—[(4/10)(kT /Fyx]?

Xe (A2)

For kT << 6f, we can take the upper limit of the integral
to infinity, expand the Gaussian in a power series in
(4/10)(kT /Fy)x, and use*

n+1

lim foydx x"coth(x)~({)"n!é(n +1)+ 4 (A3)

y— oo n+1
to evaluate the resulting integrals. {(n) is the Riemann §
function. Including only the leading-order term gives the
low-temperature limit of Eq. (3.11). The high-
temperature limit of y‘! is obtained upon replacing
coth(x) in Eq. (A2) by its leading-order term, 1/x.

The major contribution to the two-phonon rate is given
by

6
@~ 25y 202kTY [ deo—2
L4 s fo @ sinh*(w)

which is the same as the §-function approximation, Eq.
(3.8), with 7/2 replaced by 1.25V'7/2. We ignore this
small difference and use the §-function approximation to
y'? given in Eq. (3.8) for the two-phonon rate.

Finally we summarize the results for a 2D tunneling
system coupled to a 2D lattice, i.e., F(w) given in Fig.
1(b) and J (w) given by Eq. (3.6) with n =4. The one- and
two-phonon contributions to the rate are given by*

) (A4)

2 T | 128 =
n ? £,0.9438, kT <<4i,,

y M= . (AS)
7? —77‘1 0.9%KkT, kT >>47,,
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and

2 (27)° 5
n 60 (kT), 2kT<<1,
y? = )
n2—371(kT)2, 2UT>1 .

From these expressions we see that, for temperatures
greater than the bandwidth, the temperature dependence
is completely determined by the ratio ¢, /7 and scales as
1. The transition temperature also depends on t, /7 and
is given by*
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7 1/4
l?" 0.58565, 2kT*<<1,
kT* = 7 (A7)
29.16732, 2kT*>1.
n
In the intermediate-temperature regime, kT*<kT

<2.5kT*, the temperature dependence of the rate is well
described by ¥y~ ~ T* with « given by

—logo(Ty /1), To/m=107°,

5, To/m<107°. (A8)

K=~
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