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Structural modeling of transition-metal —metalloid glasses by use of tight-binding-bond forces
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A recently developed tight-binding-bond approach for the calculation of interatomic forces in disor-
dered materials is extended to amorphous transition-metal —metalloid alloys. It is shown that the interac-
tion of the transition-metal d electrons with the metalloid p electrons leads to strong covalent bonding
forces that are rejected in a pronounced nonadditivity of the pair interactions. The structure of the
amorphous alloys is modeled by a simulated molecular-dynamics quench. Results for Fe-B, Ni-B, Fe-P,
and Ni-P glasses are in good agreement with diffraction experiments. It is shown that the covalent bond-

ing forces lead to a chemical and topological order similar to that postulated in stereochemically defined
models based on the packing of trigonal prismatic units. The molecular-dynamics simulations also pre-

0
dict a medium-range order (concentration fluctuations on a scale of 15—20 A) in agreement with the ex-
isting small-angle scattering data.

I. INTRODUCTION

Metallic glasses may be synthesized from many
different combinations of materials: (i) alloys of simple
metals, (ii) alloys of transition metals, (iii) combining a
transition metal or noble metal with a simple metal, (iv)
combining a transition metal with a lanthanide or ac-
tinide element, and (v) combining a transition-metal with
a metalloid. Historically, the glass-forming ability was
first discovered in metal-metalloid systems. ' Even to-
day, the metal-metalloid glasses [especially (Fe,Co,Ni)-
(B,P) glasses] are the most important candidates for
large-scale technical applications. '

Because of the central importance of the metal-
metalloid glasses, much effort has been spent to explore
their structural, electronic, and magnetic properties. Ex-
perimentally, the atomic structure is well characterized
at the level of partial correlation functions by detailed
diffraction studies. X-ray-absorption investigations
[extended x-ray-absorption fine structure (EXAFS) and
x-ray absorption near-edge structure (XANES)] provide
at least some information on higher-order correlation
functions. ' All results point to a strong chemical and to-
pological short-range order (SRO). The electronic struc-
ture has been investigated using photoemission spectros-
copy, " ' electron-energy-loss spectroscopy, ' and soft
x-ray emission spectroscopy. ' ' The electronic struc-
ture is found to be characterized by a relatively narrow
transition-metal (TM) d band close to the Fermi level and
a strong bonding-antibonding splitting in the metalloid
(M) p band, indicating a strong covalent TM-M interac-
tion. The magnetic properties of the metal-metalloid
glasses have been measured' ' and the relation between
atomic and magnetic structure has been discussed. For
higher metalloid concentrations (more than 10%), the
magnetic moment per Fe atom decreases roughly linear
with increasing metalloid content. The extrapolated
values for pure Fe and Co seem to agree with the magnet-
ic moments of the pure crystalline elements. However, re-

suits on Fe-rich samples' (more than 90% Fe) indicate a
rather low magnetic moment.

Although the field seems to be experimentally well
covered, progress in the theoretical treatment has been
rather slow. The atomic structure seems to be rather well
understood in terms of stereochemically defined models '

based on the random packing of trigonal prismatic units
that are thought to be characteristic for the crystalline
borides, phosphides and silides. Atomistic modeling
studies have been performed using parametrized pair in-
teractions. ' After suitable adjustment of the intera-
tomic forces, some of thee models are quite successful.
However, they cannot establish a connection between the
strong local chemical and topological order characteristic
for these materials and the electronic structure.

The electronic structure of the TM-M glasses has been
discussed on the basis of self-consistent local-density-
functional calculations for simple crystalline reference
structures, and using non-self-consistent tight-binding
calculations for amorphous models. Self-consistency for
an average atom in the glassy model has been achieved in
the tight-binding linear-muffin-tin orbital (LMTO) calcu-
lations of Fujiwara, ' ' ' local self-consistency in the
tight-binding calculations of Ching et al. In a spin-
polarized version, the tight-binding approach has also
been extended to a calculation of the magnetic mo-
ments. No attempt has been made to derive interatomic
forces from the electronic structure. This would be the
missing cornerstone in a microscopic theory of the
structure-property relationship for transition-
metal —metalloid glasses.

The calculation of interatomic forces for materials with
a strong covalent character of the chemical bond is a
difficult task. Very recently, some progress has been
achieved through the revival of an old concept: the bond
order. It has been shown that within tight-binding
Huckel theory the quantum-mechanical bond energy in a
given pair of atoms i and j can be written in the
form
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Ub, „d(ij )=2t(R, )0;i,

i.e., as the product of the bond integral t(R,") between
atoms located at a distance R, and the bond order 0, .
The bond order is defined as the difference in the number
of electrons in bonding and antibonding states formed by
the local orbitals on sites i and j. Equation (1) represents
only formally a pair interaction, the quantum-mechanical
many-body character of the interatomic forces enters
through the bond order. For disordered intertransition-
metal alloys we have shown that the bond order for the
covalent interaction in the d band may be calculated
analytically on a Bethe lattice reference system. ' In the
Bethe lattice approximation, the bonding interaction (1)
reduces to a pair interaction in the spirit of an
embedded-atom (or rather embedded-bond) approach: the
pair forces depend on atomic environment through the
coordination number and the bond length. We have
shown that the electronic density of states calculated in
the Bethe lattice approximation is a reasonably realistic
approximation to the electronic spectrum of transition-
metal glasses, in particular it reproduces the d-band
shift to higher binding energies with increasing difference
in the components valence observed in the photoelectron
spectra. In the tight-binding-bond forces, the change in
the electronic spectrum is reflected in an increasing
nonadditivity of the interatomic forces arising from the
covalent d-d interactions. Combined with a conventional
pseudopotential description of the s-electron contribution
to the chemical bonding forces, this hybridized nearly
free-electron tight-binding-bond approach allows an
atomistic modeling of the transition-metal glasses that ex-
plains all significant details of the amorphous struc-
ture.

In the present paper we present an extension of
the tight-binding-bond approach to transition-
metal —metalloid systems. Our approach is inspired by
the results of recent investigations of the bonding in
transition-metal borides and phosphides. In the
TM-TM glasses, the bonding properties are determined
by the tightly bound d-band complex of both metals and
a common nearly free-electron-like s band [see Fig. 1(a)].
For the TM-M glasses the following model for the
valence-band structure is appropriate in the metal-rich
regime: the TM-d band close to the Fermi level interacts
strongly with the M-p band. The TM-s states form a
broad free-electron band, while the M-s states form a
low-lying noninteracting band [Fig. 1(b)]. The last as-
sumption could be problematic in the crystalline mono-
and semiborides where a direct B-B interaction leads to
appreciable s-p hybridization. According to all evidence,
no direct B-B neighbors exist in the TM-rich metallic
glasses, so that for our purposes this assumption seems to
be well justified.

We follow again the strategy to compute the TM-s con-
tribution to the interatomic forces in a nearly free-
electron approximation (pseudopotentials and linear
screening), and to calculate the forces from the TM-d and
M-s, p electrons using the tight-binding-bond approach
on a Bethe lattice. Here we have to remember that the
Bethe lattice defines an effective medium surrounding a

TM1-TM2
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FIG. 1. Models for the valence-band structure of (a)
intertransition-metal and (b) transition-metal —metalloid alloys.

given bond. In the Bethe lattice approach, this effective
medium is characterized solely by the coordination num-
bers and the interatomic distances. For the close-packed
TM-TM glasses we found it a good approximation ' to
assume an average coordination number of Z = 12 and to
neglect the small variations of the interatomic forces with
local fluctuations in the coordination. In the TM-M
glasses, the situation is different. There is ample evidence
that in the crystalline T3M compounds, as well as in the
T M, glasses with x =0.85 —0.75 the average coordi-
nation numbers are Z~~ —12 on the metal sites and

Z~ -9 on the metalloid sites. ' Therefore, we have to use
a Bethe lattice reference system on which the coordina-
tion number is different for both species. Two-
component Bethe lattices with two different coordination
numbers have already been used as models for the elec-
tronic ' and magnetic properties of amorphous alloys.
Details of the theory are worked out in Sec II. We find
that the strong covalent interactions lead to strong at-
tractive TM-M and TM-TM nearest-neighbor interac-
tions, whereas the M-M interactions are attractive only
for distances corresponding to second neighbors.

Section III presents detailed molecular-dynamics mod-
eling studies based on these quantum-mechanical pair
forces. We show that although the agreement with ex-
periment is not as perfect as for the TM-TM glasses, the
results are nonetheless very encouraging, especially for
the phosphide glasses. For the borides, like for any com-
pounds of first-row elements, the tight-binding parame-
trization of the valence band is notoriously difficult. Still,
the simulated structures are sufficiently realistic to allow
the differences in the structures of the B- and P-based
glasses to be traced back to the differences in the valence
band structure. Our conclusions are presented in Sec. IV.
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II. INTERATOMIC FORCES
IN TRANSITION-METAL —METALLOID GLASSES

A. The hybridized nearly free-electron
tight-binding-bond (NFE-TBB) concept

For a transition-metal system with nearly free s and
tightly bound d electrons we assume that the total energy
may be decomposed into contributions from s and d elec-
trons. '

=Eb,„d
—g N; (4)

The last equality relates the bond energy to the band
energy, i.e., to the sum of the one-electron energy eigen-
values. E; is the on-site energy, and N; stands for the
number of d electrons on site i.

The one-band approximation assumes that the TB-d
orbitals are degenerate and neglects the directionality of
the d-d bonds. This is, of course, of questionable validity
for crystalline systems, but appears to be a legitimate first
approximation in a disordered (liquid or glassy) system.
It follows that in a two-center orthogonal TB approach,
the bond energy is given by

Eb,„d = g' t; (R;~ )0;J,= 1
(5)

l, J

where t,J is the transfer integral and 0; the bond order.
The bond order is defined as the difference of the number
of electrons in the bonding and antibonding states formed
by the TB orbitals on sites i and j. It can be expressed in
terms of the off-diagonal Greens function via

E
8,. = —— ImG .(E)dE .lJ

Formally, Eq. (4) defines a pair interaction, but the
many-body character of the covalent bond enters via the
bond order —in general, 0;- depends on the local envi-
ronment of the (ij ) bond.

Etot Es +ETB

The s-electron part is treated in standard pseudopotential
perturbation theory, ' expressing E, in terms of a
volume energy Eo(Q) and a sum over density-dependent
pair potentials @,(R;0). For the tight-binding contribu-
tion it has been shown that the variational property of
the ground-state energy in the local-density approxima-
tion allows one to decompose ETB into a repulsive pair-
interaction term accounting for the electrostatic,
exchange-correlation, and nonorthogonality terms, and a
covalent bond energy Eb,„d,

1
ETa =

2N g '4 „p(R;J)+Eb,„d .
l,J

The bond energy represents the gain in energy arising
from the formation of a band with the local density of
states n, (E). Wit. hin a one-band approximation, one has
(E~ is the Fermi energy)

Eb,„d= g J (E E;)n;(E)d—E

B. Application of the NFK-TBB concept to TM-M glasses

Our extension of the NFE-TBB concept to TM-M
glasses is based on the following assumptions: (i) the
TM-s electrons form a NFE band, (ii) the M-s atoms form
a full, nonbonding band separated from the lower part of
the valence band, (iii) the TM-d and M-p bands form a
strongly hybridized TB-band complex, (iv) a one-band ap-
proximation is appropriate for both TM-d and M-p
states. This means that the chemical occupation of a
given site specifies at the same time the angular momen-
tum quantum number of the TB orbital. In the following
we shall use a single Greek index a to label at the atomic
species and the quantum number, i.e., n =TM, d or
+=M,p. The numbers N, and Nd of TM-s and d elec-
trons are taken to be equal to the results of self-consistent
band-structure calculations for the crystalline TM met-
als, for the metalloid atoms the number of p electrons is
always equal to their number in the free atom.

A major problem in electronic structure and total-
energy calculations in binaries consists in the charge
transfer and the large and mutually compensating
changes in the band energy and in the electrostatic and
exchange-correlation contributions arising from the
charge redistributions. The local-force theorem ' ' of
density-functional theory shows that to first order in the
charge redistribution this compensation is exact, so that
the change in energy is given to first order by the change
of the band energy for a frozen potential. Moreover,
within TB theory, Pettifor has shown that the change of
the band energy at fixed on-site energy (corresponding to
a frozen potential) is equal to the change of the bond en-

ergy at fixed orbital occupancy. If the orbital occupancy
in the alloy is equal to that in the pure metals, the contri-
bution of the promotion energy to the alloy energy van-
ishes (see the detailed discussion in Ref. 41). With this
constraint of local charge neutrality, the decomposition
of the tight-binding energy into a repulsive pairwise term
and a bond energy remains valid for a binary system.

However, as the local-force theorem is valid only to
first order in the change in the charge density, one has to
verify that the use of this theorem is justified under the
given circumstances. One possibility is to compare the
approximate density of states calculated on the reference
systems (see below) used for the calculation of the bond
order and the interatomic forces with the exact density of
states (DQS) determined for the structure calculated by
molecular dynamics using these pair forces. For the
intertransition-metal glasses it has been shown that the
approximate DOS calculated on the Bethe lattice refer-
ence system compares well with the exact DOS of the
computer-generated models, calculated using a LMTO
supercell method. ' Similar tests for the TM-M glasses
are now under preparation.

The bond order O,-~ has to be calculated on an ap-
propriately chosen reference system. For the TM-TM
glasses we have shown that a Bethe lattice is sufficiently
realistic to reproduce the main features of the d-band
complex (transition from common-band to split-band
form with increasing difference in the d-band occupancy
of the two metals). The Bethe lattice is characterized by
the length of a nearest-neighbor bond and the coordinate
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number Z. The bond order has an inverse square-root
dependence on the coordination number (with a scaling
assumption for the second moment of the electronic
DOS, this results in the usual VZ dependence of the
tight-binding energy). ' With the high average coordina-
tion number characteristic for TM-TM glasses (Z —12),
the inhuence of small local fluctuations in the coordina-
tion on the interatomic potentials can be neglected. The
situation is different in the TM-M glasses. There is
sufficient evidence for significant differences in the TM-
and M-coordination numbers. ' The analysis of the
diffraction and EXAFS data shows that in all T„M,
glasses with 0.75 & x & 0.85, we have ZzM —12 and
ZM-9 (see Ref. 21). The Bethe lattice approach to the
electronic DOS can be generalized to the case where the
coordination number depends on the site occupation.

On a binary Bethe lattice the degree of chemical order
has to be specified. The partial coordination numbers are
given by

a,P, y=A, B . (13)

S ti= S, a, 13= A, B, ctWf3,p (14)

the four equations (13) reduce to two quadratic equations
for the diagonal elements

S =t E E —(Z —1)—
2

~ap
X p t S +p p Spp

pp

a,P=!,B, a&13 .

Considering that the off-diagonal elements of the transfer
matrix obey the relations

Z (i=@ t3Z, a, f3=A, B, (7) Solving for S yields a quartic equation

where p & is the probability that an a atom has a P neigh-
bor and

Z =Z +Z &, a,P= A, B, aWI3 (8)

is the total coordination number for the species a. For a
random distribution of the two chemical species, we have

p t) =x& where x& is the concentration of f3.

III. CALCULATION OF THE BOND ORDER
ON A BETHE LATTICE

For a Bethe lattice with nearest-neighbor interactions
only, renormalized perturbation theory leads to the fol-
lowing relations for the diagonal and off-diagonal Greens
functions, G;; and G; P, and for the self-energy 6, ,

G;;(E)=[E E; b,;] ', —a=—A, B,
G;,~(E)=S pG~(E), a, P= A, B,

(9)

(10)

g~(E) =Z t S +Z &t &S&, a,P= A, B, a&13,

where t
& are the nearest-neighbor transfer (hopping) in-

tegrals. The transfer matrices S p are determined by the
solution of the four simultaneous equations

A4S + A3S + A2S + 3 &S + Ho=0 (16)

Explicit expressions for the coefficients 2, , i =0,4, are
given in the Appendix. These relations are more complex
than the corresponding relations for the TM-TM glasses
given in Ref. 41 because the coordination number de-
pends on the site occupation.

The quartic equation (15) has to be solved numerically.
The physical solution is determined by the condition that
the partial densities of states n (E)=(I/~) ImG, , (E) cal-
culated via (9) and (8) are positive semidefinite. Combin-
ing Eqs. (13) and (14) with Eqs. (8)—(10), we find that the
off-diagonal Greens function for nearest-neighbor sites is
given by

Equation (17) shows that due to the factor
(Z —1)/Z in the denominator, G,"~KG~ . However,
the difference is small for large coordination numbers and
vanishes in the limit Z, ZP —+ ~. The bond order in an
a,P bond is approximated by the arithmetic mean of the
two off-diagonal Greens functions, i.e.

E
8,"~= ——J Im[ —,'(S (iG~+Sii G) )]dE,

G;P=S pGP= o.p

IE Ei [(Z ——1)/—Z ]b. ](E E,~ b,~)——

a, P= A, B,a&P . (17)

Z —1P
(E E~)Sp =t 13+ g tt3—y(,)Sy(,)tiSi3

a, P, @=A,B . (12)

u, @=A,B .

A. TB parametrization of the electronic Hamiltonian
and bonding pair interaction

(18)

For details of the derivation, see Ref. 41. Equations
(10)—(12) correspond to a situation where we have an a
atom at site i and a f3 atom at a nearest-neighbor site j
(coupled through t &), the index r labels the (Zti —1)
neighbors of type y(r) of site j (with the exception of the
a atom at site i ). Taking a configuration average and
solving for Sp leads to

The tight-binding parametrization of the electronic
Hamiltonian for transition-metal —metalloid systems is a
nontrivial task. B and P, the most important metalloids
in metallic glasses, occur in various complex polymorphic
structures characterized by low coordination numbers
and low packing fractions. This is very different from the
dense-packing characteristic for the metallic glasses, so
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that the transferability of the TB parameters represents a
certain problem (for the construction of transferable TB
parameters for covalently bonded systems, see also
Goodwin, Skinner, and Pettifor ). We approach this
problem by deriving the TB parameters for the metalloid
atoms from self-consistent band-structure calculations for
hypothetical high-symmetry polymorphs.

In general, the average p-p, p-d, and d-d transfer in-
tegrals for our one-band per site model are given in a
second-moment approximation ' by

t, (R,, }=+—,'[t', (R,, )+2t,', (R,, )],
t,d(R,, ) =Q ,' [t,'„(R—,, )+2t,'„(R,, )],
tdd(R, j ) =Q ,'[tdd~R—,j )+2tdd„(R,j )+2tdds(R(~ )] .

(19)

(20}

(21)

Note that with (20), t dWQt tdd. The approximation of
Ifpd by the geometric mean is common practice in TB cal-
culations and referred to as Shiba's approximation.

The o., m, and 6 transfer integrals may be expressed in
terms of the tight-binding radii Rl, l =p, d of Har-
rison ' via

(R)= fi
l~lf3~ Il~lp~

R 2l —1R P

l +lp+1

I„lp=p, d, m =o., ~, 5 (22)

where db„ is the nearest-neighbor distance in the bcc lat-
tice. The bandwidth 8' may be taken from self-
consistent band-structure calculations for the hypothet-
ical bcc phase at the theoretical equilibrium density.
However, the equilibrium volume of the bcc phase is
much smaller than that of the observed low-symmetry
phases of B and P. It has been shown that for the TB
analysis of the stability of the open covalent structures,
the second-moment scaling assumption has been quite
successful. ' An invariant second moment of the elec-
tronic DOS is equivalent to a scaling of the TB radius ac-
cording to

3
sc

p, sc p, bcc
bcc

(24)

(see the Solid State Tables of Harrison for the values of
the coeflicients gI I ).

a P
For the transition metals Rl=Rd can be fitted to the

canonical d-band width of Andersen and Jepsen. To
obtain Rl=R for the metalloids, we use the expression
for the p-band width in the atomic surface method of
Harrison and Straub [valid for body-centered-cubic
(bcc) and simple-cubic (sc) lattices]:

8mR,8 ~m d3
bcc

length d„ is about equal to the shortest B-B (or P-P) dis-
tance in the glasses. Admittedly, this procedure bears
some arbitrariness. It is justified by the fact that the
Bethe lattice DOS calculated with these parameters gives
a tolerably realistic account of the electronic band struc-
ture of the Fe and Ni borides and phosphides (cf. below)
and ultimately by the success of the resulting interatomic
forces.

For the (sso. ) interactions between the metalloid
atoms, Eq. (20) leads to an unrealistic R ' dependence of
the transfer integrals. For the s,p-bonded compounds of
the main-group elements, Harrison proposed to treat s
and p electrons on a common basis, with transfer in-
tegrals varying as R, as suggested by the lattice-
parameter dependence of the free-electron bands. This
can hardly be expected to be a good approximation for
the narrow s bands of the phosphides and borides. If we
neglect s-p hybridization, there will be no contribution of
the s electrons to the bonding pair interaction, since the
bond order of a completely filled nonhybridized band is
always zero. However, the s electrons contribute to the
repulsive potential as discussed below.

The on-site energies E; are calculated for the transi-
tion metals for the s 'd ' (N is the group number) of the
free atoms, for the metalloids they are taken from the
Solid State Tables of Harrison. This completely
specifies the input for the calcu1ation of the attractive
bonding forces. The bond order 0;~ follows from Eqs.
(16)—(18). Together with (4) this defines a bonding pair
interaction

&0 j3i„„d(R; )=t j3(R; )8. ;~ . (25)

In (25) we have assumed that the distance dependence of
the bond order is negligible against that of the transfer in-
tegral.

B. Repulsive TB pair interaction

l «lp,
I =o-, w, 6 .

(27)

N, stands for the number of electrons in TB states (in our
model either NtM for the metalloid and NTM for the
transition-metal sites). The overlap integrals are given in
terms of the TB radii by

For the parametrization of the repulsive pair interac-
tions we follow Wills and Harrison. ' The dominant con-
tribution comes from the overlap integrals N p p

is
given by

2+N; N~
+ jj, p( j } 2 I I m( ij)tl I m(RIj)

a m

(26)

for a change from a bcc to a sc lattice. The metalloid TB
radius to be used in the TM-M glasses is taken to be
equal to that of a sc metalloid lattice with the atomic
volume of the stable crystalline phase. The choice of a sc
reference structure is motivated by the fact that the bond

+I 1&m (R 'j } ~l l&m

with

21 —1 2lp
—1

l lp

l +lp —1

EJ

,l, ltt+0 (28)
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1 4m —1
' 'u 2(l +lp) (21 —l)(2lp —l) ' 'P

(29)

Equations (26)—(29) and (22) lead to an R,R, and
R distance dependence of the repulsive (d-d ), (d-p),
and (p-p ) interactions, Eqs. (22) and (25) to an R, R
and R distance dependence of the bonding (d-d ), (p-
d ), and (p-p ) pair interactions.

50
«80B20

40
O

30

20

10

(a)

C. TM-s and M-s electron contributions
to the pair interactions

TABLE I. Top: Input data for the calculation of the intera-
tomic forces. Middle: Number densities for the amorphous al-
loys. Bottom: Bond order 0;,.~ for covalent interactions in
TM-M alloys calculated on a random Bethe lattice with
different partial coordination numbers Z .

Qg, (A ) 1Vg Nd(p) E (eV) RI (A) R (A)

The contribution of the TM-s electrons to the pair po-
tentials is calculated using pseudopotential perturbation
theory. As in our work on the TM-TM glasses, ' we use
an empty-core form ' for the TM-pseudopotential,
with the empty-core radius R, fitted to the structure of
the pure liquid transition metals. For the dielectric
screening function we use the Ichimaru-Utsumi local-
field corrections to the Hartree dielectric function.

Although the M-s electrons do not contribute to the
bonding forces, their contribution to the repulsive in-
teractions is non-negligible —at least for the borides.
However, the canonical parametrization (26) and (27) of

p
is unphysical for s states, and the Harrison parame-

trization assuming W„~R was shown to yield inaccu-
rate results for first-row elements such as C and B (Ref.
60). For C it was shown that the hopping integrals and
the pair potentials fitted to the band structures, binding
energies, and lattice constants of the graphite and dia-
mond structures decay more rapidly than for silicon,
rejecting the absence of nuclear screening by the core-
electron states. The fitting procedure leads to exponents

C3
c3 0

—0

0
C)

-2

, 4 -0.2 0. 0

-- F e80820
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20
(c)
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0.2 0.4
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l

l

l

l

l

l

l

l

I
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I
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B
p
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10.04
7.79

18.99
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6.58
8.60
1

1
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—7.55

—11.05

0.840 0.80
0.744 0.58

10.76
16.34
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»giBi9
Ni64836
NlgpP20

n(A )

0.0967
0.1020
0.0890

FegoB2o
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FIG. 2. (a} Total and partial electronic densities of state for
FegpB2p calculated on the Bethe lattice. Solid line, total; dotted
line, TM; dashed line, M-DOS. The Fermi energy is marked by
a vertical line. (b) Imaginary part of the off-diagonal greens
function for FegpB2p. Solid line, TM-M; dotted line, TM-TM;
dashed line, M-M; TM=Fe, M=B. (c) Pair interactions for
FegoB2p. Same symbols.
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n = —2. 8 for the hopping integral and n = —4. 5 for the
repulsive R" pair potential. The last value is very close
to the R law of the p-p pair potential resulting from
the canonical parametrization. Therefore, to account for
the s-electron repulsion we decided to proceed as follows:
we multiply the (pprr) contribution to 4„, with an ad-
justable prefactor f@p~. fB= I corresponds to a neglect
of the s-electron contribution. For the boride glasses we
found that a value of fB -2 is necessary to avoid a clus-
tering of B atoms and a tendency to phase separation (for
details see below). For the phosphide glasses, the core
screening and the less extended P-s states minimize the
importance of the s-electron repulsion and accurate re-
sults are obtained with fB= l. All input parameters for
the calculation of the NFE-TBB pair and volume forces
are compiled in Table I.

D. NFK-TBB potentials in TM-M glasses
and their relation to the electronic structure

In the following we describe the application of the
NFE-TBB concept to Fe-B, Fe-P, Ni-B, and Ni-P glasses.
We discuss the results for the borides first. Figure 2
shows the total and partial DOS's for the p-d-band com-
plex of Fe80820. We find a relatively narrow Fe-d band
and a very broad 8-p band, the lowest part of the 8-p
band overlaps with the Fe-d band. The strong (p-d) in-
teraction leads to the formation of a narrow,
hybridization-induced pseudogap about 0.1 Ry above the
Fermi level. The DOS is in reasonable agreement with
the self-consistent linear combination of atomic orbitals
(LCAO) calculations of Ching et al. for crystalline
Fe38, with the TB-LMTO recursion calculations of
Fujiwara ' for empirical models of amorphous Fe„B,
and with the non-self-consistent LCAO calculations of
Ching and Xu ' for amorphous FespBpo. The imaginary
part of the off-diagonal Greens functions is shown in Fig.
2(b). A negative value of (

—ImG, .
J ) represents a predom-

inance of bonding states. We see that integration up to
the Fermi level counts only bonding contributions for
Fe-8 and B-B interactions, whereas for Fe-Fe the bond-
ing contributions are partially compensated by antibond-
ing states. However, since only a few 8-8 bonding states
are actually occupied, the B-8 bond order is relatively
weak (Table I). In the interatomic forces [Fig. 2(c)j this is
refiected in a strong nonadditivity of the pair forces: the
Fe-B potential has the smallest repulsive diameter (this
leads to a very short Fe-B bond distance), and the strong-
est attractive forces. The partially filled d band leads to
strong Fe-Fe interactions, the extended p states (see the
TB radii in Table I) to a large repulsive diameter for the
B-8 interactions.

If Fe is substituted by Ni, the main effects are the
slightly smaller difference in the on-site energies and,
most important, the higher degree of filling of the TM-d
band. The result of the change in the on-site energies is
larger B-B and Ni-B bond orders (and more attractive
pair interactions), the compensation of bonding and anti-
bonding contributions leads to a low bond order and a
weak pair potential for Ni-Ni pairs (Fig. 3).

The phosphides differ from the borides by the less ex-
tended p orbitals and smaller differences in the on-site en-
ergies. Consequently, the width of the M-p band is re-
duced and the M-p band has a larger overlap with the
TM-d band with a large bonding-antibonding splitting for
TM-M and M-M interactions (Figs. 4 and 5). Again, this
is in good agreement with electronic-structure calcula-
tions on the crystalline and amorphous phosphides.
Another important difference is in the larger repulsive di-
ameter of the P-P interactions. In Fe80Ppo the strength
of all three pair interactions is about the same, but the
Fe-P bond distance is predicted to be much shorter than
the average of the Fe-Fe and P-P bond distance (Fig. 4).
In Ni8oP2o the narrower and nearly completely filled Ni-d
band leads to very weak Ni-Ni forces and allows at the
same time very strong covalent P-P interactions [see the

TABLE II. Partial coordination numbers and interatomic distances in T M& glasses.

Alloy Partial coordination numbers
+TM-TM +TM-M +M-TM +M-M

0
Distances (A)

dTM-TM dTM-M d M-M

Ni8lBl9

FesoB2o

N18OP2O

Fe80P20

Fe76P24

Ni64B3{j

Theo r.
Expt.
Theo r.
Expt. '
Theo r.
Exp.
Theo r.
Expt. '
Theo r.
Expt. '
Theo r.
Expt. '

10.8
10.8
11.2
12.4
9.9
9.4
9.9

10.2

9.9
10.1

2.3
2.2
2.4
2.2
2.8
2.3
2.8

3.4

5.0
3.9

10.0
9.3
9.6
8.6

1 1.3
9.3

11.0

10.9

8.8
6.9

0.05

0.08

0.6

0.13

0.4

1.2
1.1

2.44
2.52
2.51
2.57
2.46
2.56
2.49

2.51
2.62
2.46
2.55

2.11
2. 1 1

2.27
2.14
2.39
2.28
2.44

2.44
2.46
2.21
2.12

3.50,4.15
3.29,4.02
3.55,4. 14

3.57
4.08

3.73,4.30
4.01,4.59

3.80,4.59
3.61,4.55

2.53

'The shortest metalloid-metalloid distance are not nearest-neighbor distances.
Reference 7.

'Reference 4.
Reference 6.

'Reference 5.
Reference 8.
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FIG. 3. (a) —(c)—( ) Total and partial electronic densities of state,
off-diagonal Greens functions, and pair interactions for Ni»B»,
ca culated in the Bethe lattice approximation. For the key see
Fig. 2.
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Total and partial electronic densities f t t,
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calculated in the Bethe lattice approximation. For the key see
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off-diagonal Greens function for P-P bonds in Fig. 5(b)].
In alloys with a higher metalloid content, e.g., Ni64B36,

there are only small changes in the Bethe lattice DOS, in
the bond orders (see Table I) and in the pair interactions.
However, the assumption of a nonbonding B-s band
might become problematic with increasing B content.

IV. STRUCTURES OF TRANSITION-METAL
METALLOID GLASSES

50

40
O

30

20

10

- Nf80P20 {a)

A. Molecular-dynamics modeling

We have performed microcanonical molecular-
dynamics simulations of the liquid and glassy phases.
For the integration of the Newtonian equations of motion
we use a fourth-order predictor-corrector algorithm in
the Nordsieck formulation, with one iteration per
corrector step. A net-cube approximation to the cutoff
sphere is used for finding the atoms within the interaction
radius around a given atom.

Our simulations have been performed for X= 1372
atoms in the molecular-dynamics cell, with a time incre-
ment At =10 ' s. With this value of At, the total energy
remains constant to within the four leading digits over
several thousand integration steps. The interatomic po-
tential is cut at a distance of about 25%%uo of the cube edge
of the molecular-dynamics cell. With this cutoff, each in-
teraction sphere contains about 100 atoms.

The simulation was started in the liquid phase and a
density corresponding to that of the glass and a tempera-
ture about 500 K above the liquidus of the equilibrium
phase diagram. Typical runs took 4000—5000 steps for
melting and equilibration and about as many for produc-
tion. For a production of the glassy phase the system is
quenched by lowering the temperature quasicontinously
in 8000 time steps to T=273 K by scaling the velocities
in intervals of 20 time steps. This corresponds to a
quench rate of about T=10' K s '. After quenching
the system is equilibrated for 2000 time steps, and finally
4000 times steps are used for calculating pair-correlation
functions. Pair-correlation functions are based on aver-
ages of over 40 independent configurations taken at inter-
vals of 100 times steps. Bond-angle distributions are cal-
culated for only a small number of instantaneous
configurations taken at larger time intervals. For further
details of the simulation, we refer to Ref. 41.
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Figure 6 shows the partial reduced correlation func-
tions G,"(R ) and the Faber-Ziman and Bhatia-Thornton
structure factors for amorphous Fe8082O, compared with
the neutron-diffraction data of Nold et al. The partial
structure factors of the computer-generated model are in
good agreement with experiment. The Bhatia-Thornton
structure factors show the strong chemical order in this
glass, and a rather weak coupling between concentration
and density fluctuations [SNc(Q) is very weak]. The par-
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FIG. 5. (a) —(c) Total and partial electronic densities of state,
off-diagonal Greens functions, and pair interactions for Ni8oP2o,
calculated in the Bethe lattice approximation. For the key see
Fig. 2.
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tial correlation functions show that the only relevant
discrepancies between theory and experiment are the
overestimation of the nearest-neighbor Fe-8 distance by

0
0.13 A [otherwise interatomic distances are predicted
with good accuracy (see Table II)], and a certain lack of
structure in the second peaks of the Fe-Fe and Fe-B
correlations. The B-Fe coordination number NB „,-9 is

compatible with a local arrangement in the form of caped
trigonal prisms. The total and partial bond-angle distri-
bution functions (Fig. 7) also show that the local
geometry around Fe and B sites is characteristically
different. The distribution of the angles around the Fe
sites has a main peak at 60 and Oat maxima at 110, 150',
and 180' [note that in Fig. 7 the frequency of the bond
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FICs. 6. (a) Faber-Ziman and (b) Bhatia-Thornton static structure factors S &(Q) and reduced radial distribution functions G '(R )

for amorphous FesoB2p. Solid line, molecular-dynamics simulation, dashed line, neutron-diffraction data after Nold et al. (Ref. 4).



47 STRUCTURAL MODELING OF TRANSITION-. . . 5699

«80B20
The concentration-fluctuation structure factor Scc(Q )

shows the onset of small-angle scattering, indicating the
onset of medium-range ordering [Fig. 8(b)]. This agrees
with the results of Lamparter and Steeb who deduced
from small-angle scattering with isotopic substitution
that concentration fIuctuations with a correlation length
of about 15 A exist in Ni8OB20. Thus, our standard mod-

0
els with linear dimensions of -25 A are just large enough
to show the onset of such effects. The concentration Auc-
tuations were assumed to arise from the formation of 8-
enriched regions. We shall come back to the medium-
range order below.

3. Ni«B36

B -B -8

I & I i I i I i I i I i I & I i I i I & I i I i I i I i I i I & I
I I

60 120 180

e (deg)

FIG. 7. Total and partial bond-angle distribution F(O) (nor-
malized by sin 0) for Fe8pB2p. X=Fe or B. All distributions
are normalized to the same numbers of bonds.

angles is normalized by a factor sin '(8), so that a ran-
dom distribution corresponds to a constant]. Around the
8 sites, bond angles of 72, 130, and 180' are most fre-
quent. In a broad sense, this is again compatible with a
trigonal-prismatic local order. The 8-Fe-8 bond angle
carries the information on the connectivity of the local
structural units.

2. N; B)g

The results for the glass N8&B» are shown in Fig. 8. In
this case the agreement between theory and experiment is
almost perfect, see also the interatomic distances and
coordination numbers given in Table II. The only
difference is in the shape of the first peak of Scc(Q ). We
assume that this rejects the tendency of the theoretical
model to underestimate the splitting of the first peak in
GiiB(R ). The structures of a-FesoB20 and a-Ns, Bi9 are
found to be very similar, even more so in the theoretical
model than in the data derived from the diffraction exper-
iments. The distribution of the bond angles, however,
points to certain differences in the connectivity of the tri-
gonal prismatic units (Fig. 9). The peak in the B-Fe-B
bond-angle distribution for Fe8O82o close to 145' is Bat-
tened in N18~8~9. This could be connected with the fact
that while Ni3B assumes on a Fe3C- (cementite) type lat-
tice, Fe3B has the Fe3P structure (an Fe3C-type phase can
be produced only in metastable from by liquid quench-
ing). We shall come back to this point below.

Amorphous Ni64836 has been investigated by Cowlam
et al. ' as an example of a TM-M glass with direct
metalloid neighbors. The calculated pair interactions are
shown in Fig. 10. Compared to the Ni-rich glass, the
strength of all covalent bonds is reduced, but there is no
fundamental change in the interatomic forces with com-
position (see the pair potentials shown in Figs. 3 and 10).
The experimental results are not documented in as much
detail as for the Ni-rich glass, but the calculated
Ashcroft-Langreth structure factors are in good agree-
ment with experiment (Fig. 11). Compared to the Ni-rich
glass, the total 8 coordination number is unchanged but
on average one Ni neighbor is replaced by a 8 atom
(Table II). The total Ni coordination number is in-
creased. The interatomic distance in the direct B-B pair
is dBB=2.53 A [see Fig. 11(c)], i.e., it is still slightly
larger than the shortest Ni-8 distance. The nearest-
neighbor B-B peak overlaps with the split next-nearest-
neighbor peak whose shape and position is similar as in
the NisB» glass [compare Figs. 11(c) and 8(c)). Gardner,
Cowlam, and Davies claim a shortest B-B distance of 1.8
A. However, the amplitude of the peak assigned to 8-8
pairs is hardly larger that of the unphysical termination
wiggles at even shorter distances, and the radial distribu-
tion function goes even negative at R -2.2 A. Therefore,
we consider this assignment as rather uncertain. The
bond-angle distribution functions suggest a substantial
change of the angles formed by B-Ni-8 triplets and by
bonds around a central B atom (cf. Figs. 9 and 12).

It is important to note that Ni64836 glasses show no
sign of small-angle scattering in the partial structure fac-
tors. This would suggest that the medium-range concen-
tration fluctuations detected in N18]B&9 are absent in the
8-richer glass.

C. Phosphorus glasses

1. Fe80Pq0 and Fe 7&P2&

The partial structure factors and correlation functions
of amorphous Fe76P24 glasses have been determined by
Waseda ' using the anomalous x-ray-scattering tech-
nique. This method produces substantially lower resolu-
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tion than the neutron-scattering techniques. This affects
mainly the R-space correlation effects which are affected
by truncation errors. The partial pair correlation func-
tions for amorphous Fe76Pz4 and Fe8OPpo are shown in
Fig. 13. The computer-generated model agrees
moderately well with experiment. The most serious
discrepancy is in the structure of the second peak of

gp p(& ) and gp, p, (& ). For the Fe-P glasses we show for
comparison the simulation results of Fujiwara, generated
with modified Morse-type potentials. The parameters
(exponent, diameter, strength, cutofF) of these potentials
have been adjusted such as to produce optimum agree-
ment with the experimental data. The results are in a
surprisingly good agreement with the present work
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FICy. 8. (a) Faber-Ziman and (b) Bhatia-Thornton static structure factors S ~(Q) and reduced radial distribution functions G &(R )

for amorphous Ni»B». Solid line, molecular-dynamics simulation; dashed line, neutron-diffraction data after Lamparter et al. (Ref.
7).
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Ni81B19
(where there are no adjustable parameters in the
quantum-mechanical pair forces). This would seem to in-
dicate that this is about as far as one can go with central
pair forces —improvements beyond that level would be
possible only with angular-dependent noncentral forces.
The partial structure factors (Fig. 13) indicate again a
strong chemical order (see also the coordination numbers
given in Table II) and a certain small-angle scattering.

2. N; P2o80

B -8 -B

I & I i I i I i I t I i l t I i I t I i I & I i I t I t I i I

0 60 120 180
8 (deg)

FICx. 9. Total and partial bond-angle distribution f(O) for
Ni81B19, cf. Fig. 7.

20
N ~ E4B3E

10

Figure 14 compares the structural models for amor-
phous Ni80P2o with the neutron-diffraction data of Lam-
parter and Steeb. The agreement between theory and
experiment is distinctly better than for the Fe-P glasses.
This is important, since the quality of the experimental
partial structure functions is superior for the Ni-based
glasses. Still, in the R-space correlations we note a cer-
tain difference in the width of the first peak of the P-P
correlations, and in the shape of the second peak in the
Ni-P correlations. In Q space we find generally good
agreement between theory and experiment, both in the
Faber-Ziman and Bhatia- Thornton formalisms.

In the coordination numbers we note a certain change
in the P-based glasses relative to the B glasses: at the
same composition, the TM-TM coordination numbers are
slightly larger in the P than in the corresponding B
glasses (Table II). The change is also refiected in the dis-
tribution of the M-TM-M bond angles which is distinctly
different in NisoPzo (Fig. 15) and in the B glasses. In
Fe8oPzo it has an intermediate character.

For the Ni~oP2O glass our simulations predict the most
intense small-angle scattering in the Spp(Q) and Scc(Q)
structure factors. If these long-wavelength concentration
fluctuations are indeed caused by the formation of
metalloid-rich regions, then our predictions for Fe8oP2o
and Ni8oP2o correlate with the Guinier analysis of the
small-angle scattering ' suggesting a large volume frac-
tion of enriched regions in amorphous NispP2p (Ref. 80)
and a strong decrease with substitution of Ni by Fe at a
constant TM-M ratio. '

10
D. Short-range order

-20

30

-40 s I i I i I i I i I i I i I

R (A)

FIG. 10. Pair interactions + &(R ) for Ni64B36. For the key
see Fig. 2.

The coordination numbers and interatomic distances
compiled in Table II indicate that the topology of the lo-
cal atomic environment is, in general, well described by
our simulation. In particular, we stress that TM-TM and
M-TM distances are predicted with a maximum error of
0.1 A. This is certainly a rather stringent test of the ac-
curacy of the tight-binding-bond forces. The coordina-
tion numbers are also predicted with good accuracy, al-
though one should remember that there is considerable
uncertainty due to the various possible ways to define a
coordination number (for a discussion see, e.g. , Wase-
da ). These results are certainly compatible with a trigo-
nal prismatic coordination of the metalloid atoms by met-
al atoms.

Various attempts have been made to extract informa-
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tion on the way these prismatic units are packed togeth-
er. This is the point where the models generated by
sphere-packing, molecular-dynamics, or Monte Carlo al-
gorithms are essentially different from stereochemically
defined models. ' In the former, trigonal-prismatic local
order may appear as a consequence of a particular intera-
tomic potential, but the connectivity of the local units is

expected to be random. In the stereochemically defined
models, edge sharing is imposed as an additional con-
straint. Gaskell ' has tried to relate the interatomic dis-
tances characterizing the different possible edge-sharing
arrangements of prisms characteristic for the crystalline
Fe3C and Fe3P phases to particular features of the partial
correlation functions. An Fe3C-type packing leads to a
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(Refs. 8, 9, and 76).
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FICs. 12. Total and partial bond-angle distributions f(O) for
Ni«B36) cf. Fig. 7.

second-neighbor M-TM distance across a tetrahedral and
an octahedral hole (T-O), and an Fe3 P-type packing to a
tetrahedral-tetrahedral (T-T) packing. This leads to two
characteristic distances that may be compared to the
TM-M correlation function (see Ref. 21, p. 42, for de-
tails). This is done in Fig. 16. We find that for Nis, B»
the shoulder on the left side of the second peak agrees
somewhat better with the T-0 distance (and hence Fe3C-
type packing), whereas for FespBzp the correlation is
better with the T-T distance (and hence Fe3P-type pack-
ing). This would agree with the stable crystal structures
of the Ni3B and Fe38 phases. For the P glasses there is
no clear distinction. Gaskell s random trigonal-prismatic
models with imposed cementite-type edge sharing show a
split second peak, indicating that the arrangement of the
tetrahedra is defined more sharply than in our model. A
more pronounced structure would also improve the de-
tailed agreement of our model with experiment, but, on
the other hand, our model predicts second-neighbor dis-
tances better than Gaskell's model.

From this we conclude that our quantum-mechanical
central-force model describes the bonding in TM-M
glasses very well, including the formation of trigonal-
prismatic units. However, angular-dependent forces will
eventually be necessary to produce more sharply defined
correlations between these local units.

K. Medium-range order

While it seems that the short-range order in TM-M
glasses is reasonably well described in terms of a packing

of slightly distorted trigonal-prismatic units and that the
stability and connectivity of these units is due to strong
nonadditive covalent bonding forces, much less is known
about the medium-range order. From the analysis of
neutron- and x-ray small-angle scattering data ' and
from field ion microscopy, it was concluded that
medium-range order in TM-M glasses involves two
characteristic length scales: (i) Concentration fiuctua-

0
tions with a correlation length of typically 15 A in
quenched samples, associated with the formation of B-
enriched regions in T„BI „glasses with x 0.8. Within
the B-enriched regions the stoichiometry of the glass
should be close T38, corresponding to the stable Fe3C-
and Ni3P-type phases. No concentration fluctuations are
detected for x 0.75. The incipient phase separation is
enhanced by neutron irradiation causing the formation of
excess free volume. (ii) Density fiuctuations on a length
scale of several hundred A (corresponding to Q (0.1

A ').
It is impossible to perform computer simulations at

these large scales, and even for the Auctuations at small
scale, the correlation length is dangerously close to the
linear dimensions of a typical MD sample. Therefore, it
is not meaningful to attempt a detailed analysis of the
small-angle scattering (SAS) that shows up in the
concentration-fiuctuation structure factors Scc(Q ) of
NislBI9 (but not N16gB36) FespBpp NispPzp, and to a lesser
extent, in Fe8pP. The onset of the SAS occurs typically
at Q ~0. 5 —0.6 A, in agreement with experimental ob-
servation. For a 1500-atom model and periodic boundary
conditions, the scattering intensity can be calculated only
for Q ~0.25 A ' at the densities of the TM-M glasses.
However, unlike a laboratory experiment, a computer ex-
periment allows one to visualize the 3d atomic scale
structure of the sample.

Figure 17 shows a projection of a slice of a 1372-atom
model onto the (x,y ) plane. The thickness of the slice is
7 A, i.e., slightly larger than two TM-M bond lengths.
TM and M atoms are drawn together with the network of
M-TM nearest-neighbor bonds. The size of the symbols
is scaled with the z coordinate, atoms close to the upper
surface appearing larger. The overall density of Ni atoms
appears to be quite homogeneous, but if the Ni atoms are
omitted for the sake of clearity, we see that there are fIuc-
tuations in the local distribution of the B atoms. No such
fiuctuations are found in Ni64B36 [Figs. 17(c) and 17(d)].
Strong concentration Auctuations are observed in
N18pP2p.'a small region is completely depleted of P atoms
[Figs. 17(e) and 17(f)]. A similar, though less pro-
nounced, effect is also found in FespP2p [Figs. 17(g) and
17(h)]. The correlation length of thee concentration fluc-
tuations appears to be compatible with the experimental
estimate. It is also characteristic that concentration Auc-
tuations are not observed in smaller molecular-dynamics
(MD) samples (N ~ 500 atoms). We also find that a lower
density enhances the trend to phase separation.

Of course, we have to admit that these results depend
to some degree on the parametrization of the repulsive
forces between the metalloid atoms (cf. Sec. III C). Here
it is important to emphasize that we use the same param-
eter in the repulsive B-B interactions in all boride glasses
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and at all compositions (no adjustment was made for the
phosphide glasses). Hence, the concentration dependence
of the medium-range order shown in Fig. 17 should not
be the result of our choice of parameters. At the mo-
ment, an improved TB parametrization of B must be left
to future studies. This will be a rather dificult task, since

the existing database for such a parametrization is much
narrower than, e.g. , for C.

Hence we conclude that the medium-range concentra-
tion fluctuations arise from the strong M-TM bonding.
For packing reasons, a B atom can be surrounded by at
most 9—10, a P atom by up to 11 neighbors. Due to the
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Bhatia-Thornton partial structure factors for a-Fe80P2O. Solid line, present MD simulations; dashed line, static relaxation calculations
of Fujiwara [with prescribed chemical short-range order in the starting model (Ref. 5)]; dotted curve, experimental results of Waseda
et al. (Refs. 5 and 78).
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strong attractive M-TM forces it is energetically favor-
able to saturate the maximum allowable number of
bonds. Our present MD simulation leads to a qualitative-
ly correct description of medium-range ordering. How-
ever, much larger models are required for more than a
semiquantitative interpretation of the SAS data.

V. DISCUSSION
We have shown that a simple TM-d-M-p bond model

can account quantitatively for the interatomic forces in
disordered transition-metal —metalloid alloys. The strong
covalent character of the bond is reAected in the pro-
nounced nonadditivity of the interatomic pair forces.
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G &(R ) for amorphous Ni80P2o. Solid lines, molecular-dynamics simulation, ' dashed lines, neutron-diffraction results of Lamparter
and Steeb (Ref. 6).
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This nonadditivity is sufficient to reproduce the main
features of the short-range order in the glassy phase:
strong chemical ordering and at least a certain tendency
to a trigonal-prismatic topological short-range order re-
lated to the structure of the stable crystalline phases.
There are certain indications in the measured correlation
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FIG. 16. TM-M pair correlation functions for (Fe,Ni)-(B,P)
glasses. The vertical bars labeled T-T and T-0 indicate the
tetrahedron-tetrahedron and tetrahedron-octahedron packing
of trigonal prisms characteristic for a Fe3P- and Fe3C-type con-
nectivity of the trigonal prisms.

CDa
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(b) VeapP2O

P -P -P

functions that the local topology is somewhat more
sharply defined in the real material than in our models.
To eliminate these remaining small differences it will be
necessary to go beyond the pair-potential approximation.
However, both the quantum-mechanical calculation of
angular-dependent forces by a moment expansion of the
bond order and their use in MD simulations constitute a
considerable complication.

Our simulations also indicate the existence of concen-
0

tration fluctuations on a length scale of 15—20 A, in
agreement with small-angle scattering data. The semi-
quantitative prediction of these medium-range Auctua-
tions and of their concentration dependence is certainty
remarkable. However, a quantitative analysis of the ex-
isting SAS data will require simulation on much larger
ensembles. Such calculations for systems with several 10
atoms are now under way and preliminary results look
promising. The new structural models also allow for an
investigation of the electronic and magnetic properties of
TM-M glasses and a discussion of the interplay between
the atomic and electronic properties on a microscopic
basis.

I ( I & I i I & I & I & I & I & I i I i I i I ) I i I ( I t I & I
I I

60
8 (deg)

120 180

FIG. 15. Bond-angle distributions in amorphous (a) Ni8pP2O

and (b) Fe8oP2o, cf. Fig. 7.

Note added in pvoof. The molecular-dynamics simula-
tions of the structure of Fe B, „glasses (x =0.9, 0.80,
0.85, and 0.75) have been repeated from models contain-
ing 10 atoms in the periodic cell. The results confirm
the conclusions drawn on the basis of the smaller ensem-
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dashed circles, M atoms. Solid lines show nearest-neighbor M-TM bonds. Left part; projection of all atoms; right part; TM atoms
are omitted for sake of clarity. See text. (a) and (b) Ni»B», (c) and (d) Ni64B&6, (e) and (f) Ni8oP, O, and (g) and (h) FegoP2o.

bles and show that a quantitative interpretation of the
SAS data is possible. The structural models discussed in
this paper have been used as the basis of spin-polarized
electronic structure calculations for Fe 8& „glasses.
The results show that Fe-rich Fe-B glasses are weak ferri-
magnets (positive moments on the Fe sites, small negative
moments on the 8 sites). The calculated variation of the
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by the

magnetic moment with composition is in full agreement
with experiment.

APPENDIX

Expressions for the coefficients A; in the quartic equation (2.15) are given below.
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