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Heat release in glasses at low temperatures
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The long-time heat release in glasses after cooling a sample from some initial temperature T~ to Tp

has been calculated in the framework of the soft-potential model. It is shown that there are three tern-

perature regions where time and temperature dependences of the heat release are different. In the
thermal activation region Tp ) T, (where T, is a characteristic crossover temperature from tunneling to
activation of the order of a few kelvin) the heat release appears to be independent of T& and proportional
to Tp ln( t /tp ) /t Tp /t ' for t ) tp, where tp is of the order of 100 s. In the tunneling region

Ti & T, the heat release is proportional to (Ti —Tp)/t in accordance with a prediction of the standard
tunneling model. And in the intermediate region Tp & T, & T, the heat release is proportional to
(T, —Tp)/t and does not depend on T, . It is shown that there is a distribution of the characteristic
crossover temperature in the glass. This distribution can be calculated from the heat-release data in the
intermediate temperature region. The distribution function has several peaks corresponding to several

types of two-level systems in the glass. Choosing these distributions it is possible to explain the
numerous heat-release experiments in different materials.

I. INTRODUCTION

It is well known now that two-level systems (TLS's) are
responsible for the universal low-temperature properties
of glasses, ' and the model of Anderson, Halperin, Varma,
and Phillips ' (AHVP model) explains these properties
quite well. However, the region of applicability of this
model is limited to low temperatures only (below a few
kelvin). At higher temperatures predictions of the
AHVP model contradict with experimental data. This
also takes place in those cases when it is clear that the
TLS's are responsible for the observable phenomena.
One of them is the long-time heat release. The TLS's
with high barriers V (and large relaxation times) are re-
sponsible for the long-time dependence of the heat release
in glasses. '

The heat release Q is usually measured after cooling a
sample from some initial equilibrium temperature T&

(charging temperature) to a final temperature To. Ac-
cording to the AHVP model, the temperature and time
dependences of the heat release are

Tl —T

i.e., it increases with T, proportional to T& —To. How-
ever, such temperature dependence is usually observed if
T& is smaller than a few kelvin only. For higher charging
temperatures, the heat release saturates and does not de-
pend on T~.

There are at least two possibilities to explain this be-
havior. First, the distribution function of the TLS s ener-
gies E has a cuto6' at some energy Ef of the order of a
few kelvin and the TLS's density of states, P=O, for
E)Ef. Second, for temperatures T, higher than some

characteristic temperature T, (also of the order of a few
kelvin), it is impossible to create a nonequilibrium distri-
bution of the TLS's during the cooling of the sample from
T j to T, . The reason is that there are fast-relaxation pro-
cesses in this temperature region in the TLS's responsible
for the heat release at T=TO on the experimental time
scale. ' The mechanism of the fast relaxation can be
thermal activation processes over the barrier. It is
known that these processes are responsible for the relaxa-
tion ultrasound absorption in glasses at temperatures
above a few kelvin. But the AHVP model gives no
answer about the value of the crossover temperature T,
from tunneling to activation, and in the framework of
this model it is not clear why the crossover temperature
T, is so small (of the order of a few kelvin).

But it is possible to answer this question in the frame-
work of the soft-potential model (SPM), which has been
proposed in Ref. 21 and developed further in Refs.
22 —28. The SPM contains the AHVP model as a partic-
ular case and reproduces at low temperatures all the re-
sults of the AHVP model concerning the universal low-
temperature properties of glasses. The advantage of
this model is that without additional hypotheses it de-
scribes the higher-temperature universal properties of

23, 24, 26—28

II. SOFT-POTENTIAL MODEL

According to the soft-potential model, ' the TLS's are
described by the soft anharmonic-oscillator potentials

r 2 3 4

V(x) = 6'0 g — +g — +X X X
(2. l)

a a ,

'a
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Here x is the generalized coordinate having the units of
length and describing the motion of the tunneling entity,
a is the characteristic length of the order of the intera-
tomic spacing (a =1 A), and 6'0 is the binding energy of
the order of Mv = 10 eV, M being the average mass of
atoms constituting the glass. The values of the dimen-
sionless parameters i) and g are distributed due to fiuc-
tuations of the structural parameters of a glass. The soft
potentials correspond to IgI, gI «1. In this region the
distribution function of these parameters is given by

P(i), g) = Po, (2.2)

E = (g2+ g2)i/2 (2.3)

where Po is a constant.
F«g /r)t. &hatt /Ii)I, negative rt, and Ii)I )3ili, the

two lowest levels in the potential (2.1) form a TLS with
the energy splitting E,

y
coth

2m.pfi U 2kT
' 3/4

1 8 V
r(E) 3 W

(2.1 1)

where

(E)= 2~PA'U'
h

E
2kT ' (2.12)

and we take into account (2.4) and (2.8). In the thermal
activation region, the relaxation time

=—e
—V/kT (2.13)

T Tp

where ~p —10 —10 s.
The crossover temperature T, from tunneling to ac-

tivation can be found from the equations
The tunneling splitting Ap and the asymmetry b, are
determined by

7 tun

1 1
(2.14)

3
(2.4)

(2.5)

where t is a time of experiment. As a result,

3 ln i
I tlat(E)]

8 ln( t /ro)
(2.15)

where gz is the important small parameter of the mode1,

=(g2/2Ma&@ )&i3-10—& (2.6)

M being an effective mass of the tunneling entity. The
energy Wis determined by

&=@or)~i =k(10 K), (2.7)

where k is the Boltzmann constant. This is the scale of
characteristic energies in the potential (2.1) for 7) =(=0.
The barrier height V between two minima in the double-
well potential (2.1) for b, « V depends on the value of Ii) I

only: W = (2—2. 5)kT;„. (2.16)

For t =100 s, r(E) =10 " s, and r0=10 ' s,
kT, =0.73W.

Just the smallness of the energy 8' explains the small-
ness of the crossover temperature T, from tunneling to
activation. The value W for a particular glass can be ob-
tained from the position of the minimum T;„in the tern-
perature dependence of C(T)/T, where C(T) is the
specific heat. ' From numerical calculations (see also
Ref. 24), it has been found that kT;„/IV=0. 4—0.5 (de-
pending on the details of the distribution function of g if
Po is not a constant), i.e.,

8
4

2

(2.8)
For SiO2, T;„=2 K, i.e., 8'/k =4-5 K and
T, =2.9—3.7 K.

The interaction of the soft atomic potential (2.1) with a
deformation E is described by the bilinear term

III. GENERAL THEORY
OF THE HEAT RELEASE IN GLASSES

X
V;„,= @()H —e,

a
(2.9)

The general formula for the heat release in glasses due
to TLS's reads

where the dimensionless coe%cient H =1. The deforma-
tion potential of the TLS y is given by

1 HW

jL

1/2

(2.10)

It appears to be of the order of 1 eV.
In the tunneling region the TLS relaxation time is

given by the usual expression

Q= —g nE =+
TLS TLS

n —np E, (3.1)

where n is the TLS upper-level occupation number, np is
the equilibrium upper-level occupation number, and ~ is
the TLS relaxation time.

The heat release at the temperature Tp as a function of
time t (t =0 corresponds to the final temperature To) is
then given by

Q = g —[n (0)—no]e
TLS

(3.2)
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1

E /kTQ
e

(3.3)

where n(0) is the nonequilibrium occupation number at
the moment t =0, n0 is the equilibrium occupation num-
ber at the temperature T0,

1/3
m. k 2

12 9

p 5/2

X V[T,f(T„t) T—Q(To, t)]t (3.11)

and ~ is the TLS relaxation time at T = T0.
Let us calculate the heat release and discuss the results

for three different cases: (1) To, T, & T, (the thermal ac-
tivation processes can be neglected), (2) T, & To, T& (the
thermal activation processes dominate), and (3)
To & T, & T& (the intermediate case).

A. Tunneling range ( To, T~ & T, )

where

f(T t)=1
kT r,„(kT)

1/2

(3.12)

So the heat release in the tunneling region is roughly pro-
portional to (T, —To)/t. Such dependence is equivalent
to the AHVP model (1.1).

In the tunneling range, we can take the nonequilibrium
occupation number n(0) in the equilibrium form at the in-
itial temperature T, ,

1
n (0)=

e '+1
(3.4)

To calculate the heat release in this case, we will use in-
stead of the variables rt and g those of the AHVP model,

~o
E (3 5)E and p =

Now, taking into account that P(g, g) is an even function
of g, we obtain from (2.2)—(2.5) the distribution function
F(E,p) of variables E and p:

1/3
2 Po'Qt. 1 1

I 2/3

where

L =ln 8
E p

(3.7)

The distribution function practically does not depend on
the TLS energy E.

The relaxation time (2.11) can be expressed through
the same variables too,

tun

2E 3
p=7 coth

2rrpg v 2kT r; (E)
(3.8)

2/ 2

(3.10)

we obtain, for t ))r,„(kTO ),

where we will neglect in the following the logarithmical
dependence of the minimal relaxation time r;„(E)on pa-
rameter p [through the deformation potential y; see
(2.10)].

Replacing the summation in (3.2) by the integration
with the distribution function F(E,p),

=Vf dEf dpF(Ep), (3.9)
TLS 0 0

where V is the volume of the glass, and integrating over p
and then over E,

8. Thermal activation range ( T, & T„T, )

For the thermal activation processes, the relaxation
VjkTO

time r=roe [see (2.13)]. Because of its strong tem-
perature dependence, the relaxation time may change by
many orders of magnitude for temperature changes of a
few kelvin. Because of this, any realistic cooling schedule
will inevitably lead to a nonequilibrium situation. It has
been shown that there is a characteristic freezing temper-
ature T*; above this temperature the TLS occupation
number coincides with its equilibrium value n 0, and
below it is given by its frozen-in value at T = T . In
accordance with Ref. 33, the width of the transition re-
gion, where freezing takes place, is much smaller than the
freezing temperature and the occupation number n (for
TLS's with E « V) as a function of time during cooling
of the sample from T, to To (for arbitrary cooling
schedule) is given by

no(t) for t & t
n(t)= '

n, (t') for t ) t*, (3.13)

where t* is defined by T(t *)= T" and T* is the freezing
temperature,

(3.14)

where ~R
*

~
is the cooling rate at the freezing temperature

So the occupation of the upper level of the TLS is
given by the equilibrium value for T) T* and by the
frozen-in value no(T*) for T & T*. Therefore TLS's with
T*(T0 do not contribute to the heat release at all be-
cause their occupation number n(0) coincides with the
equilibrium value n0. Hence

EjkT*+ 1

1

E/k To
e

e ' "B(T*—To),

(3.15)

where B(x) is the Heaviside step function [B(x)=1 for
x )0 and B(x)=0 for x & 0].

In the thermal activation region, we will use for calcu-
lations the variables E and V instead of variables g and g.
The corresponding distribution function @(E,V) can be
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p 5/2
0 /L

~/4 3/48' V
(3.16)

Replacing the summation in (3.15) by the integration
with the distribution function 4(E, V),

=Vf "dVf "dE e(E, V),
TLS O 0

(3.17)

calculated from (2.2), (2.5), and (2.8) if we neglect the tun-
neling splitting 50. As a result,

vr @o'r)t. W
5/2

V
in'(t, /rp)

&»p ln (t/rpy) —ln (tp/rp)
X dye

0 ln'/ (t/r~)

kTQ

(3.25)

For t ))to we can replace the upper limit in the in-
tegral (3.25) by infinity. Performing the integration, we
obtain

and integrating over the energy using (3.10) (one may
neglect the weak energy dependence of the freezing tem-
perature), we obtain

p 5/2~ k o'91. & d V 1 '/'( T*2 T2 )—
12 g 5/4 o V3/4

+oYII. W
5/2

Q=
in'(t, /r, )

1n(tto/rp)'/' ln(t/tp)
X

ln /
( t /r p )

Since 1 « t /t 0 « t /~0, we have

kTO
V

(3.26)

Xe(T*—Tp) . (3.18)

To carry out the integration in (3.18), let us change the
integration variable V for z,

to
ln —=ln—

70 70

and we come to the final result

(3.27)

V =k Toln —and d V =kTQ
7 d7
TQ

It follows from (3.14) and (3.19) that

kT*kT*= V ln ;IR*Iv

(3.19)
vr Po'rIt. W

ln'/4( to /ro)

, , ln(t/t, )
cc T

9/4
kT, ln(t/t, )

w

(3.28)

On the time scale 20 & t/to & 200, the time dependence of
the heat release (3.28) can be approximated by the power
law Q ~ t ' with the accuracy about of 5%. Another
important thing is that the heat release in the thermal ac-
tivation region does not depend on the initial temperature
T& . The physical reason is the following.

From (3.23) [see also (3.25)], it is clear that TLS's with
relaxation times ~=t are responsible for the heat release
at the moment t. The freezing temperature for these
TLS's is determined by (3.22) with r= t. A ratio

T42=kTpin(r/rp) ln
rplR" Tlp(nr/r)p

(3.20)

The lower limit to of integration over ~ is determined by
the condition T*= Tp. We obtain, from (3.20),

TO TQ

IR *I»( To/IR *

leap)

(3.21)

ln( rlrp)
T ~ TQ

ln( to /rp)
(3.22)

Because, as follows from (3.20) for realistic relaxation
time ~ & 10 s, TQ & T* & 1.3TQ, instead of T*, we can set
To in the denominator of (3.20). As a result

5/2 9/4
Pprll W~ kTp

V
12 W' ln (to/ro) W

ln (r/rp) —ln (tp/rp)
in'/4(r/r, )

Replacing the integration variable once again,

(3.23)

—=y and dc= —t
7 3'

we derive

(3.24)

( tp =30 s for the heat-release experiments in the thermal
activation range To = 10 K, l

R * = 10 K/s, and
ro= 10 ' s). And, for T*(r) t p ), we will use the expres-
sion [see (3.20)]

AT
TQ

T TQ

TQ

ln(t /t, ) « 1
ln(to «o)

(3.29)

is much smaller than unity. For example, for t =10 s,
to = 100 s, and ~0= 10 ' s, the ratio hT/TQ =0 3.
Therefore the contribution to the heat release on the real-
istic time scale comes from the TLS s with freezing tem-
peratures nearly coinciding with To (Tp & T* &1.3To).
The TLS's with T*=T& ) 1.3TQ give contribution to the
heat release for astronomical values of the time

T) /To —1
t —tp( tp/rp) ' only.

We see that in comparison to the tunneling range all
dependences of the heat release on the experimental pa-
rameters T„TQ, and t change, if the thermal activation
dominates. The time dependence changes from Q ~ t
to Q ~ t ' with a & 1. In the tunneling range, the heat
release is independent of Tp (for Tp « T, ) and propor-
tional to T, [see (3.11)]. The thermal activation converts
these dependences: The heat release is independent of T,
(at least for T& ) 1.3To) and proportional to Tp/ (i.e.,
roughly proportional to Tp ).
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C. Intermediate case ( Tp & T, & T, )

Usually from experiment, we have an intermediate case

Tp&T &Ti (3.30)

4/3
3V(r)=
8 r(E)

(3.31)

where the thermal activation processes at temperature Tp
are frozen in and the tunneling processes are responsible
for the heat release. Since at T~ ) T the thermal activa-
tion processes dominate and the nonequilibrium occupa-
tion number n(0) is given by its frozen-in value no(T ).
The formula for the heat release in this case coincides
with (3.11), where instead of T, we should set T*.

However, for such a conclusion one needs the condi-
tion T* + T, for all the relevant TLS's. We will show
now that the freezing temperature T depends only
weakly on the relaxation (or measuring) time and TLS en-
ergy, and nearly coincides with the crossover tempera-
ture T, (being bigger than T, ). Using (2.11), we obtain
the relation between the tunneling time ~ and the barrier
height V:

proposed to describe it using an energy-dependent densi-
ty of states. In our consideration the density of states
(3.6) as a function of the energy and barrier height is con-
stant in the tunneling region. The relaxation rate (2.13)
in the thermal activation region does not depend on the
energy, either. And our explanation is that the TLS's
with nearly the same freezing temperatures (and barrier
heights) are responsible for the heat release at low temper
atures Tp & T, . During cooling from T& to T„all these
TLS's are in the thermal equilibrium with the lattice due
to fast thermal activation processes (thermal depopula-
tion, but with the rate independing of the energy). As to
TLS s with higher barriers (and higher freezing tempera-
tures), they do not contribute to the heat release at all (at
least on the experimental time scale).

The calculated parameters V, T*, and T, of a-Si02 and
LiC1.7H20 for relaxation times and a cooling rate typical
for heat-release experiments are given in Table I. The
characteristic energy }V was calculated from (2.16) and
experimental values of T;„. For calculation of r(E)
(2.12) (at E =kT*) the value of K3 =4k y /mph'4U

determined from ultrasonic experiments ' was used
[see (3.8) and (2.12)]:

For the freezing temperature, we will use the expression
(3.14),

Sk Er;„(E)= tanh
~3E3 2kT

2 (3.35)

kT*= V

ln(kT* /ro~R*~ V)

V

L( V/r, lR 'lk)
(3.32) r(E) =r;„(E) E

where the function L (x) is determined by

L (x)=ln (3.33)

Both the crossover temperature T, and freezing tempera-
ture T* are nearly constant in the time scale typical of
heat-release experiments. Thus our consideration pre-
dicts a sharp transition of the T& dependence of the heat
release at

Using now (2.15), (3.32), and (3.31), we obtain for the ra-
tio T*/T, as a function of time (r=t),

ln(t!ro)
I.( V(t)/r, ~R "~k )

(3.34)

For ro=10 ' s, r(E)=10 " s, R* =10 K/s, and
W/k =4 K, we obtain that this ratio changes from 1.1 to
1.4, when t changes from 10 to 10 s and it is nearly in-
dependent of Wand E.

Thus, at T, ) T*= T„all the TLS's due to fast
thermal activation processes release during the cooling
from T, to T, and do not contribute to the heat release;
i.e., the heat release is independent of T, at T, ) T*= T, .
The TLS's are freezing at T ~ T*, and then (at To (T, )

they give the usual contribution to the heat release as a
result of tunneling through the barrier. The main contri-
bution to the heat release for Tp & T, & T, comes from
TLS's with the freezing temperatures T*= T, .

The idea that a thermal depopulation of the TLS's is
responsible for the saturation of the heat release with in-
creasing of the charging temperature T, has been pro-
nounced in Ref. 6 and approved in Ref. 19. However, au-
thors of Ref. 6 supposed that this phenomenon results
from the thermal depopulation of high-energy states and

T, = T* =(1.1 —1.4)T, . (3.36)

Since the crossover and freezing temperatures in this case
are proportional to the characteristic energy W the abso-

Material LiCl 7H20

8'/k (K)
K3 (10 S/K )

~ (s)
V/k (K)
T* (K)
T. (K)

kT /W
kT, /8'
T)}c/T

10
100

3.3
2.8

0.82
0.71
1.15

4
0.4

10'
130

4.3
3.2
1.1
0.8
1 ~ 37

10
445

14
13

1.0
0.9
1.1

14
4.44

10'
570

18
13.7

1.3
0.98
1.3

TABLE I. Calculated values V (potential barrier height), T*
(freezing temperature), and T, (crossover temperature) for a-
Si02 and LiCl 7H20 for relaxation times w and cooling rate
( ~R *~ = 10 ' K/s) typical for heat-release experiments [Eqs.
(2.15), (3.31), (3.32), and (3.34)]. The characteristic energy W
was deduced from the temperature T;„,where a minimum of
the function C(T)/T was observed [Eq. (2.16)]. C(T) is the
measured specific heat. The coefficient E& was determined from
ultrasonic experiments (Refs. 34 and 35). ~o= 10 ' s.
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lute values of these parameters differ for various materi-
als. However, the ratios T*/T„kT*/W, and kT, /W
remain nearly unchanged even for larger value of the en-
ergy W(see Table I).

In our consideration we have not taken into account
the existence of a maximum barrier height V,„ in the
distribution function (3.6) [or (3.16)]. As we can see from
Table I, the barrier heights of the TLS's responsible for
the heat release in a-SiOz are much smaller than
V „/k =500 K obtained from the position of the relaxa-
tion absorption peak. Therefore the idea that the cutoff
in the barrier distribution [or (b,o/E);„=5 X 10 (Refs.
19 and 36)] is responsible for the saturation of the heat
release with increasing of the charging temperature T& in
the particular case of a-Si02 contradicts with the experi-
ments on relaxation ultrasound absorption. The barrier
height V = V,„=k ( SOO K) corresponds to
(Ao/W);„=2 X 10 [see (2.4) and (2.8) for W/k =4 K]
and to tunneling relaxation times r =6 X 10 yr [see
(2.11)]with r(E) =10 " s.

IV. COMPARISON WITH EXPERIMENT

A. Tunneling range ( To, T& & T, )

heat release,

2I 2

C(T)= VPT In
12 r;„(kT) (4.1)

(4.2)

12 C( T)
~'k' VT 1n[4t/r, „(kT)]

24 Qt
2k2 ~(T& T2)

(4.3)

(4.4)

In the SPM the specific heat is determined by
'1/3+

C(T)= tr'k' — '"' TV
9 8'

1/28 t
kT r;„(kT) (4.5)

and the heat release is determined by (3.11). As a result,
we obtain

where P is a constant density of states of the TLS's. Thus
the density of states P can be obtained both from the
specific heat (Pc ) and the heat release (P& ):

The most heat-release data in the tunneling range are
in a good agreement with the standard tunneling theory
of AHVP, except for some organic materials, where other
time dependences were observed. ' Therefore a direct
comparison between the SPM and the AHVP model is
reasonable.

The AHVP model yields, for the specific heat and the

p 5/2

Pc =F, (T, t)

p 5/2
0 /L

Pg =F2(T„To,t)

(4.6)

(4.7)

' 1/3

F, (T, t)=12 2 8' t
kT r;„(kT)

1/2
4t

ln r;„(kT) (4.8)

(4.9)

Both theories agree with each other if
F, (T, t)=F2(T, , To, t)=const, since Pc=P&=P in the

T,f (T„t) Tof(To,t)—
F&(T& T& t)

9 Ti TQ

AHVP model. The calculated values of F, (T, t) and
F2(T, , To, t) are given in Tables II—IV for a-SiOz and
LiC1.7H2O and for typical parameters T, TI Tp and t of
specific-heat and heat-release measurements. It is seen
that the functions F, (T, t) and Fz(T„To,t) show weak
time and temperature dependences only. Thus the SPM
leads nearly to the same time and temperature depen-

TABLE II. Calculated values of F, (T, t) for a-Si02 [Eq. (4.8)] with W/k =4 K, K, =0.4X10 s K
(Ref. 34) and for LiC1 7H20 [ W/k = 14 K, EC, =4.44 X 10 s K ' (Ref. 35)] for parameters t and T typi-
cal for the specific heat measurements.

Material

T (K)
t (s)

F, (T, t)
Fl (T, 10 s)

0.1

10
0.94

a-Si02

1.0 0.1

102 104

0.70 0.79
0.82+0. 12

1.0
104

0.62

1.0
10
0.67

LiC1.7H20

8.0
10
0.56

0.62+0.05
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TABLE III. Calculated values of F2(T, , TO t) for a-SiOz [Eq. (49)] with W/k =4 K, %3=0 4X109
s K ' for parameters T„Tp, and t typical for heat-release measurements.

T) (K)
Tp (K)

t (s)
F2( T], Tp, t)

F2(1.8 K Tp t)

1.8
0.1

104

0.195

1.8
0.1

10'
0.177

1.8
1.0

104

0.193

1.8 3.6
1.0 0.1

10 10
0.177 0.192
0.186+0.009

3.6
0.1

10'
0.175

3.6
1.0

10
0.191

3.6
1.0

10'
0.175

dences of the heat release as the AHVP model. The re-
gistration of these differences between the models re-
quires precision specific-heat and heat-release measure-
ments. However, the absolute value of F, is about 4
times larger than the absolute value of F2 (see Tables
II—IV). If the SPM is correct, we expect PC=4P& in
contradiction to the AHVP model, where P~ =P& =P.

Up to now, comparable heat-release and specific-heat
data exist for a-Si02 and LiC1.7H20 only. For both ma-
terials the density of states, P&, calculated from the
specific-heat data is clearly larger than the density of
states, Po, obtained from the heat-release experiments
(see Table V); i.e., the experimental results are in better
agreement with the SPM. More experimental data are
necessary to prove this interesting fact.

8. Intermediate range ( Tp & T, & T, )

Our consideration predicts a sharp transition of the
heat-release temperature dependences at
T, =T*=(l.l —1.4)T Q ~ T, —To at T, (T* and

Q ~ T, —To at T, ) T* (i.e., Q does not depend on T, in
this case).

Figure l shows the heat-release data of various amor-
phous and glasslike crystalline materials in the represen-
tation Q/Q, as a function of T, /T„. Q, is the calculat-
ed value in the tunneling range [see (3.11)]. The parame-

Q( T~ ) = 2 tanhaT& +B tanhbT& +C tanhcT& (4.10)

we have found a good fit of the experimental curves
Q(T, ) for nine different materials (see Figs. 2 and 3,
where we present two of them), it is possible to give an
analytical expression of G ( T*):

ters PogL/ /Wand T„are given in Table VI. For the or-
ganic materials, where Q is not proportional to t
Q/Q, was determined for t =1 h, neglecting the devia-
tion from the t law. T„ is the upper limit of T~,
where the temperature dependence corresponds to the
tunneling range; i.e., Q is proportional to T, —To. We
see that the expected sharp transition is not observed: Q
is independent of T, at T, )8T„only (where Q/Q, is
proportional to T, ); i.e., the transition extends from
T„ to about 8T„.

On the other hand, for all the materials and To & T„
the time dependence does not change from T, & T„ to
T& ) T&, case. This means that the thermal activation
processes at To & T„are frozen in and the tunneling pro-
cesses are responsible for the heat release. Therefore the
absence of the sharp transition at T' can be understood if
there is a distribution of the values of W (and correspond-
ingly of T* and T, ) in the glass.

The distribution function G ( T* ) [or G ( W) ] can be
evaluated from the experimental curve Q(T, ). The dis-
tribution function G ( T* ) coincides with the absolute
value of the second derivative of the function Q(T, ) on
its argument T, (see the Appendix) and
G(T*)=2T*G(T* ). Since with

1.0 0 OA++~kg

x
&0

0.1

0,2 0,5

T, / T1C

~ a- Si02

05 & LiC[ ' 7H20
epoxy resin

Co69Feg5Cr2 S)25822
x PLZT 8.5/65/35
+ YBa& Cu3 07

0.2 - ~ 3-me thy[pentane 2,3-dirnethy[butane

xx
~T,

x

+X
I

5 10

G(T*)=
Qo

2 tanhaT* +~b2 tanhbT*
Aa

cosh aT* cosh b7'2

+C 2 tanhcT*+Cc
2 42cosh cT

(4.1 1)

where Qo is determined by (A3), QD
= Aa +Bb +Cc, and

TABLE IV. Calculated values of F2( Tl, Tp t) for LiCl 7H20
[Eq. (4.9)] with W/k = 14 K, K3 =4.44 X 10~ s K ' for parame-
ters T~ Tp and t typical for heat-release measurements.

FICx. 1. Heat release of various amorphous and glasslike
crystalline materials for references (see Table VI) in the repre-
sentation Q(T„To,t)/Q, as a function of T~ /T„at T, (T,
Q, is the calculated heat release in the tunneling range [Eq.
(3.11)]. T„ is the upper limit of T„where Q is proportional to
Tl Tp (see Table VI).

T, (K)
Tp (K)

t (s)
F2( T] Tp t)

F,(T„1.5 K, t)

2.5
1.5

2X 103

0.18

2.5 7.0
1.5 1.5

4X 104 2 X 10'
0.17 0.177

0.174+0.006

7.0
1.5

4X10'
0.168
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TABLE V. Comparison between the calculated specific heat
and heat release with the experimental data for a-Si02 and
LiC1 ~ 7H20. P& and P& are the density of states in the AHVP
model deduced from the specific-heat (Pc) and heat-release

(P& ) measurements. For the functions F, ( T, t) and

F2(T1,Tp, t), see Eqs. (4.8) and (4.9) and Tables II—IV. The
SPM predicts F1(T,t)/F2(T1, Tp, t) =Pc/P& ) 1 in contradic-
tion to the AHVP model.

200

Material

Pc (10 /Jm')

P& (10 /Jm')

Pc/Pg
F, (T, 10' s)

F2(T1,Tp, t)
F, /F

a-SiO,

5 3'
7 5'
1.0'
30

1.8 —7.5
0.82+0. 12

0.186+0.009
4.4+0.8

LiC1 7H20

31+6

10.1+0.3

3.1+0.7
0.62+0.05

0.174+0.006
3.5+0.4

0

T -T (K)
1 0

250

'References 37 and 38.
Reference 11.

'Reference 6.
Reference 4.

FIG. 2. Heat release from an YBa2Cu307 sample 1 h after the
start of cool down as a function of the charging temperature T, .
The solid circles are data from Ref. 15. The line is the fit using
(4.10) with A =66.7 pW/g, a =5.4X 10 K, 8 =118 pW/g,
b =8.33X10 K, and C =0.

tan hx 1 (x —x )
2

f (x) —=4x = exp —
2cosh x &2~5 25

(4.12)

the coefficients A, a, 8, b, C, c, etc. , are chosen to obtain
a good fit.

The physical reason for such a form of the fitting func-
tion (4.10) is that the corresponding distribution function
(4.11) is a linear combination of functions, each of them
differing very slightly ( ~ 5%) from the Gaussian distribu-
tion with the same dispersion and position of the max-
imum,

where x =0.915 and 6=0.304 are position of the max-
imum and dispersion of the function f (x), respectively.

In Figs. 4—7 are shown the obtained distribution func-
tions G(T") of YBa2Cu307, a-SiOz, and LiC1 7HzO and
of the metallic glass Co69Fe45Cr2Si2 ~B2z. Similar distri-
bution functions were obtained for other amorphous and
glasslike crystalline solids too (for their parameters, see
Table VI). In the common case, the distribution function
has several peaks. The first one usually has the biggest

TABLE VI. Parameters of the distribution function of the freezing temperature in different materials obtained from the heat-
release data. T*„T*2,and T*3 are the positions of the peaks in the distribution function (in parentheses the concentration of TLS's
of corresponding type is given). T„is the average value of the freezing temperature. W/k is the value of the characteristic energy in
the SPM deduced from position of the first peak in G(T*) and data of Table I (t =10 s). PpgL /Wis the value characterizing the
density of states in the SPM [see (3.6)]. T;„ is the temperature where the minimum of the function C( T)/T' was observed, C(T) is
the measured specific heat, and T1, is the upper limit of the charging temperature T1, where the experimental heat-releast data agree
with Eq. (3.11). Except T;„,all parameters were deduced from the heat-release data [see Eqs. (4.10), (4.11),and (4.13) and Table I].

Material
Tmin Tlc
(K) (K)

Tm 1

(K)
m2

(K)
m3

(K)
BV

(K)
W/k
(K)

a-SiOz'
LiCl-7HpO
FespB14Si6'

Co69Fe4 5Cr2Si2. 5B2z

Epoxy resin'
Pentanol-2

3-methylpentane —(2,3)-dimethylbutane
YBa2Cu307"

Pbp 915La0.085(Zl0. 65T10 35 )03'

2.0
7.0

1.4

2.0

2.0
8.0
3.3
4.0
2.5
3.8
2.5
2.3
1.3

3.5 (78%)
16.1 (100%)
4.76 (68%)
4.1 (33%)
4.56 (79%)
5.61 ( 55%)
4.1 (79%)
3.9 (79%)
2.05 (67%%uo)

20.9 (13%) 24.2 (9%%uo)

11.9 (32%%uo)

9.61 (56%) 20.5 (11%)
15.9 (21%%uo)

13.6 (45%)
13.9 (21%%uo)

10 (21%%uo)

4.1 (24%)

7.9
16.8
7.36
9.35
7.3
9.5
6.39
5.46
3.4

4.3
16.1

5.6
63

8.3
5.0

43
23

100
24
67

'Reference 6.
Reference 11.

'References 12 and 13.
Reference 13.

'Reference 9.

'Reference 10.
gReference 8.
"References 14—16.
'References 17 and 18.
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Co89Fe~ 5Cr2 Si25B22

0
0

T*(K)
40

FIG. 7. Distribution function of the freezing temperature
G(T ) in Co69Fe4 5Cr2Si2 5822. Fitting parameters are given in
the caption to Fig. 3.

influenced by the main peak of the corresponding distri-
bution function G ( W). However, it is difficult to obtain
the distribution function from these experiments, whereas
the heat release is very sensitive to existence of TLS's
with large value of T (or W). Even a small number of
such TLS's yields a marked contribution to Q because of
their large energies.

The physical reason for the distribution of 8' within
one peak can be either the distribution of binding energy
Bo or the distribution of the effective mass of the tunnel-
ing entity M because probably a large number of particles
are responsible for a "dressing" of the moving atom.
The different peaks could be caused by a different
geometry of the tunneling entities.

C. Thermal activation range ( T, & To, T& )

T, =(0.7—0.9)T*, (4.14)

heat-release measurements at To ) 3 K are required for
the most investigated materials (see Table VI). Such ex-
periments are quite difficult, because the sensitivity of the
heat-release measurements decreases rapidly with in-
creasing of To. Up to now, only two experiments were
performed in this temperature range with the glasslike
crystalline material YBa2Cu307 (Refs. 14—16) and the
epoxy resin.

At TO=1.5 K the heat release of Yaa2Cu307 is pro-
portional to t ' and the T, dependence yields T&, =2.3
K ( T, =3.5 K, W/k =5.0 K; see Fig. 1 and Tables I and
VI). The heat release was measured after cooling a sam-
ple from T& =201 K to various To (1.56 ~ To ~4.25 K)
also. At TO=3.2 K about 30% of TLS's have T, & To
(see Fig. 4) and the heat release is proportional to r

The heat release in the thermal activation range is de
facto unexplored. Since

T] = 20.1K

10
Tp = 4.25K

T = 3.20K

0

~ ~ cP
o%oocoo o o o

0
0

10

Tp = 1.56K

YBa2Cu307

]0
I

10

l

10 10'

t{sec)
FICi. 8. Heat release Q(T, , To, t) after cooling of YBa,Cu307

from the equilibrium temperature T& =20. 1 K to various To
(1.56 ~ To ~ 4.25 K) as a function of time t (Ref. 16).

(see Fig. 8) in a good agreement with (3.28), which pre-
dicts Q to be proportional to t . Moreover, the abso-
lute value of Q increases with increasing To in agreement
qualitatively with (3.28), while the heat release decreases
with To in the tunneling and the intermediate ranges.

It is not surprising that the inQuence of the thermal ac-
tivation starts at a much lower temperature than T, =3.5
K. Since T, and T* have the same distribution (propor-
tional to the distribution function of W), we expect to re-
gister the first inhuence of the thermal activation at
TO=2. 3 K (when about 10% of TLS's have T, ( Tc). It
may be thought that an up-down motion of Q fort) 2X10 s and Tp=4. 25 K can be explained by the
thermal activation processes if there is a cutoff in the
barrier-height distribution at V=170 K t'see (3.19) for
TO=4. 25 K and ra=10 ' sj. But, at first, the cutoff'
should be unbelievably steep. And, second, the
ultrasound-absorption data ' indicate that there is no
cutoff in this barrier-height region. The position of
ultrasound-absorption relaxation peak about 36 K (for
frequency 1.06 kHz) corresponds to a cutoff in the
barrier-height distribution at V/k=700 —800 K only.
The only difference between heat-release experiments'
and the ultrasound one ' is the different time scale. In
the former case, the time scale is about 2X 10 s and in
the last one it is only 10 s. The steepest of the up-down
motion indicates some fast reconstruction of the whole
sample (like the first-order phase transition). But more
experimental data are necessary to prove this fact.

From Fig. 8 ( To = 1.56 K), we also see another in-
teresting fact: The heat release is proportional to t ' for
t &2X10 s and proportional to t for t) 5X10 s.
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10

I

T](K) To(K) T)(K) To(K)

+ 1.30 1.09 ~ 1.90 1.14

Because of Q ~ T* T—o, the freezing temperature in the
short-time range appears to be smaller than in the long-
time range. It correlates with data from Table I [and
(3.31)], where one can see that the freezing temperature
(and the barrier height of the relevant TLS's) increases
with time slowly. However, the behavior of crystalline
YBa2Cu307 may be not typical for amorphous systems.
Therefore analogous experiments must be performed
with amorphous solids (for example, with a-Si02, where

TI, =2.0 K, T, =3.2 K).
For some noncrystalline organic materials (epoxy resin,

pentanol-2, 2-methylpentane/2, 3-dimethylbutane), Q is
proportional to t ' with a =0.66—0.76 even at tempera-
tures below 2 K. ' However, some facts indicate that
this time dependence is not caused by the thermal activa-
tion: (1) The T, dependence for these materials yields
T„values not far from the corresponding value for a-
Si02 (see Table VI), i.e., T, =3.7 —5 K. (2) The time
dependence (Q ~t ) was found for epoxy resin at
TO=1.0 K, as well as at To=0.05 K.

Nevertheless, the thermal activation processes seem to
be responsible for the following phenomenon. For the
epoxy resin, not only the heat release after cooling but
also the heat absorption after rapid heating was mea-
sured. In the tunneling range ( To, T, ( 1.4 K) in both ex-

periments, the same absolute values and the same time
dependences were observed (see Fig. 9) in agreement with
tunneling theory. However, if one temperature is lower
and another one higher than = 1.4 K, there are
differences between heat release and heat absorption.
After cooling, the temperature To (1.4 K and we are in
the tunneling range. After heating To) 1.4 K and, for
some part of TLS's, thermal activation processes dom-
inate. And though we did not consider here a theory of
the heat absorption in the thermal activation region (this
theme deserves a separate consideration), we mention
some interesting experimental facts. The time depen-
dence changes from Q ~t ' in the tunneling range
(To(1.4 K) to Q ~t at To=1.92 K; the absolute
value of the heat absorption is larger than the value of
the heat release. At To) 1.92 K the time dependence
changes again and the relaxation is faster than g

For the epoxy resin, the heat absorption was measured
for a nearly constant AT=T& —To=0. 5 K also. The
heat absorption at To ) 1.6 K is roughly proportional to
TO2( T, —To) (see Ref. 9 and Figs. 9 and 10).

Our analysis shows that the available experimental
heat-release data in the thermal activation range agree
qualitatively and partially quantitatively with our con-
sideration if we take into account a distribution of the
characteristic energy 8'and correspondingly of the freez-
ing temperature Tf and crossover temperature T, . For a
closer examination of our theory, more experimental data
are necessary.

V. CONCLUSION

Ch
10

Using the soft-potential model, we developed a general
theory of heat release in glasses which explains numerous
experiments in a wide temperature region. In the low-
temperature region, the temperature and time depen-
dences nearly coincide with the predictions of the stan-
dard tunneling model of AHVP. However, the SPM pre-
dicts that the density of states obtained from specific heat
is about a factor of 4 bigger than the density of states cal-
culated from the heat-release data (if one uses the AHVP
model). In the higher-temperature range (more than a
few kelvin), the thermal activation processes in frozen-in
TLS's are responsible for the heat release and determine
its time and temperature dependences. The crossover
temperature T, between tunneling and activation appears
to be of the order of a few kelvin only. Its value is deter-
mined by the characteristic energy 8 in the soft atomic
potentials, which is related to position of the minimum in
the temperature dependence of the specific heat
C(T)/T . It is shown that a distribution of this energy
should exist to explain the experimental data. The distri-
bution function obtained from the heat-release data has
several peaks which correspond probably to different
types of two-level systems in the material.
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APPENDIX

dQ(x)
dx x =0

=x —J dy(x —y)G(y) .
0 0

From (Al) and (A2), we have

(A3)

(A4)

Let us, for simplicity, consider the case when T0=0.
Then the dependence of the heat release Q from the
charging temperature x = T

&
is given by

Q(x)=Qp J dy G(y)[xe(y —x)+ye(x —y)], (Al)

where the distribution function of the freezing tempera-
ture squared G (y)(y = T* ) is normalized to unity,

f dy G(y)=l (A2)
0

and

And from (A4) we obtain

G(x)=— 1 d

Qp dx2
(A5)

T2
(A6)

From the experimental curve Q(T, ), one can deter-
mine also the average value of the freezing temperature
Tav~
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