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The dynamical critical exponent of the two-dimensional spin-Qip Ising model is evaluated by a
Monte Carlo renormalization-group method involving a transformation in time. The results agree
very well with a finite-size scaling analysis performed on the same data. The value of z = 2.13+0.01
is obtained, which is consistent with most recent estimates.

I. INTRODUCTION

The dynamics of the two-dimensional spin-Hip Ising
model remains a source of interest and controversy. Near
the critical point, not only does the correlation length (
diverge following ( ~T —T,~, where T, is the criti-
cal temperature and v a critical exponent, the correlation
time r also diverges due to critical slowing down. This di-
vergence can be characterized by the dynamic critical ex-
ponent z, where r (', or equivalently, r ~T —T,

~

where 4 = vz. The dynamic scaling hypothesis asserts
that, in the long time limit, all times scale with this di-
verging time scale, so that a dynamical universality class
is characterized by, among other things, this critical ex-
ponent z. Since the particular value of z is common
to all members of a universality class, it is an impor-
tant and fundamental quantity. Here we use a novel
Monte Carlo renormalization-group method to estimate
z = 2.13 + 0.01 for the two-dimensional spin-flip Ising
model, which is in the universality class of model A (see
Ref. 29), where a nonconserved scalar order parameter is
the only dynamical mode.

Many authors have attempted to evaluate z by a
variety of techniques, giving values that are not always
consistent with each other, even when considering the
given errors. There are many possible explanations of
these discrepancies, and we shall consider some of them.
First, however, we shall discuss some lower bounds. For
model A, mean-field theory predicts z = 2 —i7, where rl is
the critical exponent describing the power-law decay of
the correlation function. Using a generalized Langevin-
equation approach, Schneider2 showed this was a lower
bound on z. Of course, the mean-Geld result is correct
at and above the upper critical dimension d„= 4, below
which the e = 4 —d expansion2s gives z = 2+0.01345(4—
d)2 —0.002268(4 —d)s + O(4 —d)4. The lower critical

dimension of model A is dt = 1, and Bausch et al.24

have calculated the d = 1 + e expansion of the kinetic
drumhead model to be z = 2+ (d —1)—

2 (d —1)2+ O(d—
1)s. More recently, one of usso argued that the dynamic
critical exponent should be larger than the reciprocal of
the exponent for domain growth, yielding z & 2.

Of the diferent techniques used for the determination
of z, no method seems to have proved better than oth-
ers. Moreover, a given method does not always yield
consistent results. For example, high-temperature expan-
sions of diferent orders apparently converge to different
values whether the expansion is computed for spin-spin
time correlations or magnetization correlations.
On the other hand, Monte Carlo techniques have sys-
tematic errors which can be quite diFicult to evaluate.
For example, it is generally believed ' ' ' that the dy-
namic universality class of the spin-flip Ising model is
insensitive to the algorithm used as long as the updat-
ing algorithm is local. 3 Some results obtained in one
dimension support this hypothesis. However, stud-
ies in three dimensions using Creutz s deterministic mi-
crocanonical dynamics yield a value of z that "agrees
with the Monte Carlo measurements as they agree among
themselves" but is nevertheless slightly higher than most
recent estimates (e.g. , Refs. 37 and 38 and references
therein). This discrepancy could be due to the methods
of estimation of z rather than to the algorithm, but to
our knowledge, there exists no systematic analysis test-
ing the limits of validity of the dynamic universality class
hypothesis. This is a potentially important issue, since
nonlocal acceleration algorithms are being developed
which have exceedingly small values of z.

Besides the algorithm, another source of systematic
error is from critical slowing down itself. While such ef-
fects are well known and are typically incorporated
to consistently estimate z, the existence of long time cor-
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relations can potentially induce subtle couplings of cor-
relations in pseudorandom number generators.

It has also been noted ' that the linear relaxation
critical exponent of the magnetization M can dier from
the nonlinear one. The nonlinear relaxation time w is
defined as w = Jo [M(t) —M(oo)]/[M(0) —M(oo)]d t
where the denominator is for normalization. If the inte-
grand is written as a sum of exponentials, Q,. ui, e
then 7. will simply be the weighted sum of the partial
relaxation times. The limit when M(0) —+ M,q, i.e. , as
the system is left to relax from a value near its equilib-
rium value, defines the linear relaxation time. It char-
acterizes a relaxation process that does not include the
scaling of the order parameter itself. Racz et al.
used sealing arguments to suggest that the nonlinear crit-
ical exponent Az of an observable A can be related to( ~)

the linear critical exponent AA by the following relation:
——E~ —P~ where P~ describes the scaling of the

quantity A with respect to temperature. Mori et Ol.

in d = 2, and Chakrabarti et at.4z in three dimensions,
reported observations of such a relation.

Current techniques used in Monte Carlo simulations
sometimes involve nonlinear response in terms of the def-
inition given above. Some authorsia, ii, i6, is ha
the relaxation of the order parameter in systems pre-
pared at zero temperature when put in contact with a
heat bath at some temperature near T, On the. other
hand, other techniquesi, 4—io, i2, i3 involve the measure-
ment of some time correlations in critically equilibrated
systems. Presumably there could be differences involv-
ing transient dynamics in these methods. However, there
is no real distinction made in the literature concerning
possible discrepancies between these various methods. It
is not clear yet how important the distinction between
linear and nonlinear relaxation times is, and further in-
vestigations should clarify this situation.

Finite-size eKects can be important in simulations of
critical systems, e.g. , the eEect of using the infinite sys-
tem critical temperature can induce systematic errors in
small systems. Although these effects can be exploited
by finite-size scaling, very small systems may not be in
the range where scaling applies. Finite systems also in-
troduce the concept of ergodic time, ' s i.e. , the mean
lifetime of the system in one of its broken symmetry
states. While infinite systems at T, have a vanishing
order parameter, finite systems of size L have nonzero
values +~M,

~

between which the system has spontaneous
transitions. Those transitions introduce a large effect in
time correlations as discussed below.

Finally, it should be noted that experiments have been
done on systems thought to be in the universality class
of model A. The few results44 4s of which we are aware
yielded values of z well below 2. However the experiments
are difficult, and the microscopic processes involved in
the systems are various, so that it may be that the ex-
periments do not probe the problem of interest herein.

II. METHOD

The Monte Carlo renormalization group (MCRG) was
introduced by Ma, and developed by others, espe-

cially Swendsen. 47 For critical dynamics, the method
was extended by Tobochnik, Sarkar, and Cordery, and
others. MCRG allows one to use the self-similarity
in critically equilibrated systems by analyzing the ef-
fect of a controlled change of length scales on correla-
tion functions. When length scales are changed by a
factor of b, by some suitable blocking of b" spins to one
renormalized spin, the correlation length is changed by
( ~ (/b. This implies that time scales are changed by
a factor of r —+ r/b', from which the dynamic critical
exponent can be estimated. Unfortunately the method
is self-consistent in that there is no proof the system ap-
proaches a fixed point under the renormalization group.
Thus it is essential that checks are made that, after sev-
eral levels of RG, sealing is consistently observed. Here,
we generalize the usual procedure of blocking in space,
by blocking in time t.

Consider the Hamiltonian of an Ising-like system:

X=) Z.S., (I)

where the K~'s are the coupling constants including tem-
perature, the n index runs over all i = 1, 2, . . . , N spins
for nearest-neighbor, next-nearest neighbor (and so on)
interactions, and the S~'s are generalized spins made of
specific products of spins o., = +1 on each site. For exam-
ple, the Ising model has Ki = J/k~T, a—nd K &i = 0
where J is the coupling constant, k~ is Boltzmann's con-
stant, and T is temperature and Si = o', o'~ such that
the sum is restricted so that i and j are nearest neigh-
bors. Here we will consider the two-dimensional Ising
model on a square lattice, and apply a renormalization-
group transformation repeatedly to this evolving sys-
tem. As mentioned above, a typical numerical MCRG
transformation s is to "block" by a length rescaling fac-
tor of b: A block of b" spins is transformed into a renor-
malized spin by majority rule of the spins in the block,
with a random outcome on ties. The resulting renormal-
ized Hamiltonian is assumed to be expressible in terms
of another short-range Ising-like system, with more S~
terms contributing. Numerically, the approximation re-
sults from the fact that the number of spins remaining
after m blockings is N/b~", thus coupling constants for
interactions are truncated, if they involve larger length
scales than the entire system. Thus, for equilibrium
properties, a suitably chosen transformation operator will
change the Hamiltonian 'H(K) by moving the parameter
vector K to some other point in K space.

For critical dynamics the situation is analogous. Say
one begins with the Ising model again, with the dynam-
ics of single-spin Hips, where each evolving configuration
depends only on the previous one, i.e. , a Markov process.
Under the blocking transformation mentioned above, it
is expected that the original master equation which is
"short range" in time is changed to a non-Markovian
equation which has memory over some small time scales.

Our original contribution here is to introduce block-
ing in time as well as space. We simulate a process on
a regular time scale measured in terms of Monte Carlo
steps (MCS). In addition to applying a standard real-
space MCRG transformation technique, we perform a
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blocking of spins, by majority rule, in consecutive dis-
crete time steps. In principle, the advantage of block-
ing in time can be twofold. Firstly, we expect that it
will smooth out high frequency fluctuations allowing one
to reach the asymptotic limit of the RG transformation
more rapidly than with blocking in space alone. In the
same way as blocking in space iterates away irrelevant
short-length-scale behavior, we expect that blocking in
time will further eliminate short-time irrelevant memory
effects. Secondly, one can suitably adjust the time block-
ing factor bi to balance the effects resulting from blocking

in space, by choosing, for example, b~
——6", where zo is

some reference exporient. We choose zo = 2 for reasons
that will become clear below.

Before discussing the method in more detail, we intro-
duce the quantities that will be measured in time. Criti-
cal dynamics involves a scaling relation in which all time
scales, in the long time limit, are measured in units of
the diverging correlation time. Thus, one needs only to
choose a convenient measure of time correlations. We
shall use the time displaced correlation function for the
magnetization M, as defined by

(M(tp)M(tp + l')) —(M(ip)) (M(tp + t))
(M(~p) —(M(~p))')"'(M(~p+ ~) —(M(~p+ ~))')"' (2)

where M is P,. cr, as usual. Other correlation measures
are discussed below. All averages were computed from
selected numerical discrete time steps 6t (usually a few
MCS). In principle, the time-correlation function should
be fitted to a series of exponentials

pM(t) =) ii~, e '~ ',

where ~, & ~~ if i ( j. However, tests made to fit the
data to two exponentials showed that wi )) wz. Indeed,
all our data were well fit to a single exponential with
time constant 7.M. Data were extracted from one long
simulation from which values of yM(t) were computed
over a time range of t = 0 to t = 5aM. Further averaging
was also made by running 32 systems in parallel.

To calculate z, we use a matching procedure. In
principle, after the irrelevant variables have been iterated
away, the probability distribution function will remain in-
variant under further renormalization-group transforma-
tions. It is expected that, after a finite number of itera-
tions, contributions from the irrelevant variables will be
negligible. Then, any quantity determined after m block-
ings of an N spin system should be identical to those de-
termined after m+ 1 blockings of a system of Nb" spins.
In our new method, time scales after m blockings of the
small lattice are also explicitly rescaled by a factor (bi)~,
while the larger lattice has times explicitly rescaled by a
factor (bi)~+ . Unless bi = 6', quantities measured on
the two lattices will still be at difFerent times t and t'
Hence, close to the fixed point, we expect a matching
condition to hold: y(N, m, t) = p(Nb, m+ l., t') for a
correlation function y. Prom this, the time rescaling fac-
tor t'/t can be calculated, through the measurement of a
suitable correlation function, yM in our case. The diffe-
renc between the estimate of z and the correct dynamical
critical exponent can then be obtained, since

g.l
bZ —Zo

t
where b" = bq.

Our B.G transformation was done in the following way.

During a simulation, every four configurations, each sep-
arated by one MCS, were "blocked" in space and time:
One block spin was made by majority rule of the 16 spins
coming from 4 consecutive eonfigurations of 4 neighbor-
ing spins, ties were broken at random. This corresponds
to a space blocking factor b = 2, and a time blocking
factor of bz ——2" = 4. Such a choice would give asymp-
totically trivial rescaling of length and time if z = 2, and
we expect it to make our study sensitive to the difFerence
(z —2), which is small.

Instead of doing point to point matching, i.e. , matching
each discrete time step, the quality of our data is such
that we have matched the entire function yM(t), since it
could be well fitted to one exponential. More explicitly,
we have 7M (' and a renormalized system for which

('~ where (' = (/b Therefore. , without blocking in
time, the critical exponent is obtained from ~M/~M ——6'
Now, if time is rescaled in such a way that wM

——~M/bz,
then rM/wM = 5'/bi ——O' " The discr.epancy (z —2)
can then be obtained from

ln[rM(L, m)] —ln[~M(bL, m+ 1)]z —2=
ln

Simulations were done on two-dimensional nearest-
neighbor square lattice spin-flip Ising systems with pe-
riodic boundary conditions. We used a single-flip multi-
system algorithm, i.e. , one running different systems in
parallel instead of the more common multi-flipping one-
system algorithms. The only correlation between the par-
allel systems is the sharing of the updating sequence his-
tory, but we expect this to be negligible. The dynamic
algorithm was of Metropolis type, i.e. , one using a flip-
ping probability based on min(1, exp + ~"~ ). Systems
were initialized for 20—50~M at the critical temperature
of the infinite system. 4s All measurements were made at
the same temperature.

The results could also be interpreted using a finite-
size scaling analysis. According to this approach, the
correlation length of the systems should be of the order
of the system size so that
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(6)

Therefore, the correlation time for different system sizes
directly yields the critical dynamic exponent. Consistent
results from both methods will be presented in the next
section.

III. RESULTS

From each of the simulations detailed in Table I a cor-
relation time was extracted, as listed in Table II. Fig-
ures 1 and 2 show a typical decay of pM(t), demonstrat-
ing that the time correlations for finite systems can be
well described by an exponential. All the fits were done
using a least-squares Bt algorithm. The dynamic critical
exponent could then be obtained by comparing the val-
ues of vM for different systems. Values of z thus obtained
are listed in Table III. The first striking fact is that a
point to point finite-size scaling yields a value that com-
pares very well with the one obtained from the dynamic
MCRG we propose. This suggests that the discrepancies
in the values of z as obtained from systems of different
sizes are not systematic errors in the evaluation methods.

Although our study involves more accumulated aver-
ages than any previous work, it is still difficult for us to
uniquely extract errors. We have found that the "instan-
taneous" values of 7.M contains large fluctuations. Fig-
ure 3 shows that even when binned and averaged over

757M, the value of rM averaged for 32 systems still
contains a fair amount of fluctuations. Therefore, as is
well known, ' Q very long simulations are required to get
a representative value of time correlations. Furthermore,
the regimes of fitting of pM(t) have been chosen as well
as possible, but it should be noted that a logarithmic
scale applied to small numbers can introduce large fluc-
tuations. Nevertheless, we found that our data was well
represented by simple exponential decay over the long
times we considered (t & 57.M).

If one computes the same time correlations with the

TABLE I. Simulation details for the various systems. The
range is the amount of Monte Carlo steps per spin (mcs)
for which the function rp~(t) has been extracted. It can be
thought of as an observation window over one simulation run-
ning in time. The total mcs for one system can be obtained
by multiplying columns 2 and 4. All the systems were first
equilibrated for 10 times the value of column 2, which in turn
is of the order of 2—5 7.M.

12
16
16
20
24
24
32
48
64
96

Range (mcs)
1024
2048
8192
4096
8192
8192

16384
16384
32 768
65 536
98 304

6t (mcs)

8
16
16
16
16
16
16
16
64
64

Average No.
32 000
32 000
64 000
32 000
32 000
26 400
32 000
64 000
4832
18016
2336

mmax
2
2
3
2
2
3
3
4
4
4
4

c(t) = ) cr;(tQ)o, (tQ + t)

or

E(t) = ) ~;(tQ)~, (tQ+ t),

where i and j are nearest neighbors, showed that yM(t)

absolute value of the magnetization, then one finds much
smaller correlation times, thus showing that the ergodic
time is for the most part responsible for the large value of
wM. Since the ergodic time is due to a finite-size effect, it
is not surprising to find such a good agreement between
our results and finite-size scaling. Also, comparison with
other kinds of time correlations, 7 e.g. ,

TABLE II. The values of ~M as estimated from a least-squares fit of the time-time correlation
function p~(t) to a simple exponential. The values are in mcs and the simulation characteristics can
be read from the respective entry in Table I. The errors indicated in parentheses are those obtained
from the fit. The last line represents the value of z obtained from finite-size scaling analysis applied
to each column.

8
12
16
16
20
24
24
32
48
64
96
z

0
261.41(6)
631.8(2)
1186.6(3)
1189.1(5)
1930.7(3)
2853.9(3)
2837.9(3)
5355(2)
12528(2)
23316(4)
54620(20)

2.153

1
64.31(4)
157.9(1)
296.5(1)
296.9(3)
482.9(1)
716.0(4)
713.3(6)
1338.8(3)
3130.4(5)
5814(2)

13660(10)
2.145

MCRG iteration number
2

16.34(4)
39.5(l)
74.0(1)
74.3(2)
120.5(2)
179.0(3)
178.3(3)
334.6(2)
782.8(3)
1453(1)
3415(5)

2.142

18.6(1)

44.8(2)
44.5(l)
83.7(1)
195.6(1)
363.3(8)
852(3)
2.125

20.8(1)
49.4(2)
92(1)
214(2)
2.128
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1n E(t)
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1n C(t)
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20000 25000

—0.9—
—1.0

0
I

5000 10000 15000
t (MCS)

20000 25000

G on a 64 x 64 system.FIG. 1. Critical dynamics MCRG on
for m =,1, 2, 3, 4, from top to bottom. Averaged

over 32 independent systems observed for
ever 16equilibrating time of 204800 mcs and yM calculated every

mcs.

FIG. 2. Critical dynamics MCRG on a yn a 32 x 32 system.
or m = 0 1, 2, 3, from top to bottom. Averaged

for 8192000 mcs.over 32 independent systems each observe for
Equilibrating time of 81 920 mcs and yM calculated every 16
mcs.

is b far less noisy. See Fig. 4.
Eva '

h d t th standard finite-size scal-Evaluation of t e a a wi
f z = .14 6 0.01, consistent within ives a result, of z =

'
h used this technique on systems

arable size. However, pointwise scaling s owof compara e size.
w a lar er value of z andthat small systems tend to show a arger v

that this tendency seems to disapp ear for L larger t an
32. This result is somewhat surprising since a previ-

= 2 from matchingous MCRG study7 observed a small z = 2 fro
systems osofsize L = ans o ' = 8 d 16 and obtained a larger value

. On the other hand, a nu-h matching larger systems. On e o
ave a low value ofmerical study of very large systems ga

z = 2.076 ~ 0.005. Therefore, there is still some reason
ndence on system size.

Some authors have argued that the smallness o e
ld be held responsible for thed namic critical region coul~ e e re

h
yna

luatin z. However, t ed'K lties encountered in evalu
'

g
scalin relations obtained near the critica p

'' '
al oint do not

t"oug oh ht to be strong finite-size e ects. oreover, our
MCRG results are quite consistent from
RG as the level of iteration of RG is increased. Thisas

h that the system is in the criticalself-consistently shows a
regime.

Finally, by consi ering a'd ' that small systems have a sys-

d do not seem to be in the asymptotictematic error an o no se
l' regime we obtain an estimate of z = 2.scaing re i

lue is con-from t eh MCRG method we propose. This va u
5)18)7)9)10j12)13 aS We]]sistent with most of the recent work, a

as our finite-size scaling study herein.

IV. CONCLUSION

normaliz ableWe showed that time can be used as a renorma '

MCRG method. Combined with standard
ec ', value forreal-s ace MCRG techniques, we extracted a value or

e y
' ' ' at was consistent withthe dynamic critical exponent t a wa

d f the same data by finite-size scaling.values extracte rom e s
Our estimated value of z = 2.13 + 0.01 is also consis en
with most recent estimates.

The motivation for introducing this method was t e
possibility of obtaining a more accurate value of z. Un-

f d th t the method was not superior
to conventional finite-size scaling or real-space MCRG

least equivalent. Further studies would be required to

inodal decomposi-related dynamic problems, such as spino a ecom
tion.

m oint to point finite-size scaling (FSS) and by match-TABLE III. Values of z as estimated from porn o po'
ing the correlation times according to relation (5).

8—16
12-24
16—32
24-48
32-64
48-96

FSS
2.183
2.171
2.172
2.139
2.124
2.124

1
2.182
2.178
2.173
2.138
2.120
2.125

MCRG iteration number
2

2.182
2.178
2.174
2.132
2.118
2.126

3
2.182
2.179
2.176
2.131
2.119
2.122

2.167
2.144
2.137
2.130
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—0.5

—1.0

TM

5400

5300
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5100
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4900—

4800

4700

4600—3.5 '

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
$(MCS)

4500
0 3200 6400 9600 12800 16000 19200 22400 25600 28800 32000

Number of averages

FIG. 3. The evolution of the value of the cumulated av-
erage of the time-displaced correlation functions for a system
of 32 x 32 sites. Even if we accumulated a large amount of
data, we see that the cumulative average still contains a fair
amount of fluctuations.

FIG. 4. Different time-displaced correlation functions for

a system of 64 x 64 sites. Note the large difference between

p@(t) and pM (t) showing that the energy relaxes much more

rapidly than the order parameter. Also note the noise com-

mon to C(t) and E(t). We used pM (t) in our estimations.
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