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Theoretical study of anomalous incommensurability in a-phase uranium
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The long-standing puzzle concerning the incommensurate structure of a-phase uranium is studied
theoretically. It is proposed that the domain-boundary region which coherently connects the two vari-
ants of the incommensurate charge-density-wave (CDW) states, gives rise to the anomalous diffraction
effect. By taking into account the energy associated with spatial variation of the phase factor of the
CDW, which couples strongly to the strain, the properties of the domain-boundary region have been
studied with a Ginzburg-Landau-type treatment. Particularly, the response of the system against uniaxi-
al stress has been investigated. The results explain consistently the observed diffraction experiments.

I. INTRODUCTION

Q =H+q,
with

H=ha+kb+1c, h, k, l: integers,

q= —,'a+q b+q, c,
qy =q

at the lowest temperature.
There are other types of "incommensurate" peaks

which are indexed by

q=H+h( —,
' —5)a,

with

(2)

&=0.0037 .

The properties of the former satellites are extensively
studied both experimentally and theoretically, and their
physical origin is now well understood. The satellites are
due to stabilization of a CDW (charge density wave) state
with the modulation wave vector as given above. Recent
observation by the high-resolution diffraction measure-
ments ' has unambiguously clarified the details of the
lock-in procedure of the incommensurate wave vectors

The extraordinary structural characteristics of the
92nd element, uranium, at low temperatures have been
the subject of extensive studies since the fascinating
discovery of the incommensurate diffraction peaks was
reported by Smith et al. ' Since then, various kinds of
studies have been carried out to clarify the properties of
the underlying physics to produce these diffraction
effects. '

It has been known that there exist two different kinds
of incommensurate peaks as observed by diffraction
scattering experiments. The major incommensurate
peaks are located around each Bragg reflection and in-
dexed by

into the commensurate values, q ~—,', q, ~ —,', at low tem-
peratures in accordance with the theoretical predictions
based on a Landau-type phenomenological treatment.

The microscopic understanding, however, of the stabil-
ization of the CDW state with this particular modulation
is still lacking. Especially, the reason for the stabilization
of the wave vector, which is appreciably off the sym-
metric [110]direction, should be elucidated.

On the other hand, the origin of the second kind of in-
commensurate satellites is not understood. The difficulty
mainly resides in that the peak positions do not satisfy
the translational symmetry with respect to the change of
the Brillouin zones as is given by Eq. (2). (That is, the in-
commensurability depends on the index h. ) In such a
case, one finds it difficult to define the common rnodula-
tion wave vector of an entity which propagates within a
regular lattice. In fact, this kind of "anomalous incom-
mensurability" has been observed in the precursor regime
( T ) TM ) of various martensitic transformations in bcc-
based alloys. ' The diffraction pattern with anomalous
incommensurability was discussed previously. ' The
peaks appear at the reciprocal lattice points of the low-
temperature orthorhombic phase whilst the fundamental
Bragg reflections retain the cubic reciprocal lattice of the
high-temperature phase.

Fuchizaki and Yamada" and Walker studied the ori-
gin of the anomalous incommensurate lattice indepen-
dently and both concluded that its essential origin is at-
tributed to the strong coupling between the order param-
eter and the local strains of the lattice. However, there
are quite different aspects between the anomalous incom-
mensurate lattice in martensite and in a- U, which
prevents the direct application of the previous treatment
to the a-U case: In the case of martensite, the anomalous
incommensurate lattice appears in the precursor regime
of the phase transition (T) TM), whereas in a-U, it is
present far below the transition temperature.

The purpose of the present paper is to elucidate the
physical origin of the second type of incommensurate
peaks, in order to understand fully the structure, and
whence to obtain a clearer microscopic understanding of
the electronic as we11 as of the elastic properties of this
material.
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II. BACKGROUND INFORMATION

To begin with, let us briefly review the treatment of the
anomalous incommensurate lattice in the martensitic
transformation by Fuchizaki and Yamada. " They dis-
cussed that in the precursor regime, the short-range or-
der (the embryo) of the martensite lattice, is nucleated in
the cubic mother matrix as a result of excitation of non-
linear, solitonlike fluctuation, which they call "embryonic
fluctuation. " Due to the strong coupling of the order pa-
rameter (internal distortions) to the strains, the embryo
induces local strain e around it within the regular bcc lat-
tice. In other words, the modulated martensite structure
is preferentially embedded on the strained lattice. Thus
the satellite-peak positions are at h ( —,

' —e )a rather than at
—,'ha. On the other hand, the Bragg peaks are insensitive
to the fluctuations whence they retain the average cubic
lattice. The crucial point is that in the precursor regime,
the system is described by a coherent mixture of the em-
bryo of the martensite and the bcc matrix.

In the present system, on the other hand, the anoma-
lous incommensurate reflections are observed in the tem-
perature region far below the phase transition, which
rules out the possibility to apply directly the above dis-
cussions to cx-U. However, we notice that there is a
different kind of heterogeneity in the present case. Chen
and Lander' made the direct electron microscopic obser-
vation of the CDW state and found that the specimen
was divided into macroscopic domains of two different
types, each of them being characterized by the CDW
state with qz

= ( —,', +q~, +q, ) and ( —,', —
q~,

—q, ) and with

Let us consider the properties of the boundary region
between these two domains. If the energy associated with
the spatial change of the phase factor of the CDW is
sufIiciently large, the domain boundaries would not be
formed just by an incoherent, discontinuous change of
the order parameter, but there will be interfacial region
with finite width where the wave vector is gradually
changing from qI to qII. Therefore, if we assume a
strong coupling of the "gradient" energy (the energy as-
sociated with the spatial change) of the phase factor of
the CDW to the strains, one expects that the interfacial
region plays the role of the embryo of the previous treat-
ment. If such is the case, the anomalous incommensurate
lattice will exist as long as the domains persist in the sys-
tem as the stable configuration.

There are interesting experimental results which sug-
gest the important role of the strains in the phase transi-
tion process of a-U. Smith and Lander' and Marmeggi
et al. ' carried out the experiments to observe the effects
of the application of uniaxial stress in the CDW phase.
The results are surnrnarized as follows.

(i) When the stress o. is applied along the [100] direc-
tion, the intensities of the anomalous incommensurate
reflections are reduced, while the major satellites do not
change appreciably.

(ii) When the stress o' is applied along the [011]direc-
tion, the intensities of the anomalous incommensurate sa-
tellites do not change substantially. On the other hand,
relative intensities of the main satellites with qr versus

those with qII changes sensitively.
These results definitely indicate that the strains should

be taken into account to understand the phase-transition
mechanism.

In the next section, we discuss the properties of the
domain boundary between two variants of the incom-
rnensurate structure by taking into account the gradient
energy associated with the spatial change of the phase
factor, and its coupling to the strain. The discussion is
given using a somewhat simplified two-dimensional (2D)
model system. In Sec. IV, we extend the model to a
more complex 3D system so that the direct application to
a-U becomes possible. Particularly we discuss the effect
of application of external stress to compare with the ex-
perimental results as described above. In Sec. V, a sum-
rnary and discussion, with emphasis on the microscopic
electronic properties of a-U, is given.

III. SINGLE-q —2D SYSTEM

+2=ye
(4)

In the bulk sample, therefore, these two variants of the
equivalent structures will coexist forming macroscopic
domains.

Let us consider the properties of CDW "structure" in
the vicinity of the domain-boundary region. As has been
discussed in the preceding section, if the gradient ener-
gies associated with the spatial change of the order pa-
rameter such as p, ~Vg~, @2~V Vg~ etc. are sufficiently
large, the boundary should not be formed just by an in-
coherent, discontinuous spatial change of the order pa-
rameter from g, (r) to $2(r). Rather, there will be inter-

FICr. 1. The configurations of the CDW wave vectors in the
model system. Both q& and q2 are equivalent due to the 2mm
symmetry, and expressed, respectively, by ( —,', q~ ) and ( ~,

—
q~ ).

Notice only the q~ component is incommensurate.

For simplicity, let us consider the following model sys-
tem: a single-q incommensurate CDW is stabilized in a
rectangular 2D system belonging to the point group
2mm. The wave vector is given by

q=( —,', q ) .

That is, it is commensurate along the x direction but in-
comrnensurate along the y direction, whence the wave
vector is off the symmetric [10]axis. From the symmetry
property (2mm ), there are two equivalent incommensu-
rate structures (variants) which are expressed by the or-
der parameters (see Fig. 1):



5616 Y. YAMADA 47

facial region with finite width where g is gradually
changing from f,(r) to $2(r).

It would be reasonable to assume that the gradual
change is attained by the local modulation of the phase
factor rather than the amplitude (phase-modulation mod-
el). The order parameter, including the boundary re-
gions, is generally expressed by

q (r) =qe'~" I

where the amplitude g is a constant throughout the sys-
tem.

Let us define a vector q(r) by

q(r)=&P(r) .

ap'e
&&

2

The stability conditions of the system are given by

5F/5q (y)=0, 5F/5e»(y)=0 .

From the condition, 5F/5e» (y ) =0, we have

e»(y)= — ~
q~ (y) .

Substituting eii(y ) into Eq. (9), F is given in terms of q
as follows:

For a plane wave, q(r) =q (constant) of course defines the
ordinary wave vector of the sinusoidal modulation. We
consider q(r) to be the independent variable [rather than
P(r) itselfj by writing,

qi(r) ~iq(r) r

F(q )= J a. 2+ —
q

Bqy a
v gy 2 y

(13)

%(r)~iIi, as y~+ ~,
%(r)—+%& as y~ —oo .

(9)

We expand the GL free energy in terms of the two in-
dependent variables q (y) and e»(y)(=Bu/Bx) as fol-
lows:

'2

F(q, e„)=I ii + —
q + —

q + —
q

~qy a 2 b g d
4 ~

That is, q(r) is taken to be the "local wave vector" at the
position r.

It is easily seen that in order to obtain a smooth con-
tinuous change of q(r) from q, to qz, the interface should
coincide with the symmetric mirror planes and be normal
to the principal axes. Otherwise, the wavelengths of the
modulation waves along the interface become in-
equivalent as approached from the two different domains
on either side.

Hereafter, let us take q(r)=( —,', q (y)). That is, the q
component changes as the coordinate y is varied across
the boundary which is lying normal to the y axis. The or-
der parameter including the domain wall region is ex-
pressed by

i{x/2+q y)%r =ye

The stable configuration of the system having a single
domain wall is found by minimizing the Ginzburg-
Landau (GL) free energy under the boundary conditions:

From the condition 6F/6q =0, the stable solution is
given by solving the Euler-Lagrange equation:

with

8 q Bf(qy)

Qy Bqy
(14)

2

(15)

&0b p
4 2c

(17)

Then the local free-energy density f(q ) has a three-
minimum structure as shown in Fig. 2.

It is easy to envision the stable solution for such f(q~ )

without solving the Euler equation. It is well known
that, by the following replacement of the quantities in Eq.
(14):

subject to the boundary conditions given by

qy~qy, as p~+ ~0

q ~—
q asy~ —~.0

If the coefficient of the coupling term p is large enough,
we expect,

+—
e&& +pe&&qy dy .

C 2

2

(~) O, a O,)b )O, c )O, d )O,p)0) . (10)

0
V

I -q

The first term gives the gradient energy associated with
the spatial change of the wave vector qy, the first term of
the second line is the ordinary elastic energy with the
elastic constant c, and the last term gives the coupling be-
tween the strain and the gradient energy originating from
the term:

FIG. 2. Local free energy density plotted against the variable
qy. It has a three-minimum structure; the minima at qy —qy
give the (degenerated) stable states, and the minimum at q~ =0
is a metastable state.
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a.~m (mass),

y~t (time),

q» ~x (spatial coordinate),

f~—V (potential),

Eq. (14), becomes equivalent to Newton's equation of
motion of a particle. We can easily see the motion of a
particle moving in V(x) = f(q —) with the kinetic ener-

gy E -0 at x =+q0 as shown in Fig. 3.
Using the obtained q~(y), we can draw the CDW pat-

tern in the real space in the vicinity of the domain bound-
ary region which smoothly connects both variants. (See
Fig. 4.) It should be noticed that in the boundary region,
the wave vector (q') is pointing along the x direction:
q'=( —,', 0). At the same time, from Eq. (12)

oce11(y) qy

The spatial variation of the strain e11 is given in Fig. 5.
That is, the boundary region is spontaneously strained
along the x direction relative to the uniform incommen-
surate phase stabilized on both sides.

From these considerations, we conclude that at the
domain boundary, the charge density wave which is
characterized by the wave vector q'=( —,', 0) is embedded
preferentially in the slightly strained lattice along the x
direction. This situation is exactly the same as that of the
precursor regime of the martensites if we replace the
"embryo" by the "domain boundary. " Thus, one expects
the ghost lattice behavior in this model system as far as
there exist a domain distribution of the variants of the in-
commensurate structure in thermal equilibrium.

IV. TWO-q —3D SYS™

A. Extension of the thermodynamica1 treatment

In the preceding section, we have investigated the
essential origin of the anomalous incommensurate lattice
with a simpler model system. We extend the treatment to
a two-q —3D system for the direct application to O'-U.

We define the order parameters of a two-q —CDW state
stabilized in the a-U case as follows:

domain I

domain
boundary

domain II

FIG. 4. The CDW pattern around the domain-boundary re-
gion. The lines represent the nodal lines of the sinusoidal wave.
Notice the wave is propagating along the symmetric [100]direc-
tion within the boundary region.

i(1/2x+q y+q z) i(1/2x —
q y —

q z)

0
qy =

6

i(1/2x —
q y+ q z) i(1/2x+ q y —

q z)

(19)

qo—= —,', (at low temperatures) .

These four states are energetically equivalent. In fact,
it was observed that when a sample was cooled through
the phase transition point without applying external
force, the specimen was divided into domains corre-
sponding to the CDW states 'k„and 4' (or equivalently

4" and 4g).
For simplicity, we assume that the domain boundaries

lie on the symmetric directions similarly to the treatment
of the 2D model. To be specific, let us take the direction
of the normal of the boundaries along the [001) direction.
In order to find the CDW in the boundary region, we
take the same standpoint as in Sec. III. That is, we pos-
tulate that the space variation of the order parameter is
due to that of the phase factor (not the amplitude) on
traversing the boundary region along the z direction.
The local wave vector is defined by

q(r) =(—,', qy(z), q, (z)) . (20)

The order parameter 'P(r) at an arbitrary position is ex-
plicitly given by

boundary region

=y

V

domain boundary

FIG. 3. The expected change of the value of q~(y ) around the
domain-boundary region. The letters given in parentheses indi-

cate the corresponding variables of the equivalent one-particle
motion. (See text. )

FICx. 5. The expected spatial change of the strain component
e»(y) around the domain-boundary region. The boundary re-
gion is considered to be spontaneously strained relative to the
stable state having e~l =e 11=(p/c)q~ .
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where,

)[1/2x+q(z) r]+ ([1 /2x —q(z) r)
I BqyF(q, q„e„)=I az

2
Bq

+K2
az

L

2

r=(y, z),
q(z)=(q (z},q, (z)) .

f 1( ) +f2( ) e(I +P(e((q 2

2

+P2e11qz dZ2 (23}

We seek for the stable solution of 'P(r) subjected to the
boundary conditions:

where,

b1 d1f 1
= qy'+ q, '+ q, ',

%'(r)~(ll„as z~+ 00,

'P(r)~ —
%2) as z~ —co,

(22)
a2 b2
2q 4q + qz+

(a, , a, )O, b, )O, d, )Op, , )0;j'=1 2) (24)
by minimizing the GL free energy appropriate for the
two-q —3D system.

In a two-q —3D system, there are three independent
variables; Iq (z), q, (z), e»(z)I in contrast to single-q —2D
case where we defined the state in the two-dimensional
phase space spanned by (q (y ),e» (y ) ). As a natural ex-
tension of Eq. (8), the free energy is expressed by

From the stability condition, 5F/5e» =0, we have,

e 11

2 2
P1qy +P2qz

(25)

On substitution of Eq. (25) into Eq. (23), F is expressed in
terms of qy and q, as follows:

BQ'y
F(q, q, )=I )c)

Bq,
+K2

Bz

a, b1+ q„+
2 r

a 2 b+ q, +

P1 4
2 d

q + q
z

2
P2 4 d2

2c q, + q,
P1P2 2 2

y qz 'dZ
C

(27)

where,

a1 b1f(q, q, )= q + P1
qy +

6 qy

+ a 2+ b @2 4+ 2d+ q, + — q, + q,
[.

P192 2 2
qy qz

C
(28)

These coupled equations should be solved subjected to
the boundary condition:

(q, q, )~(q~, q, ) as z~+ ~,
(29)

(q, q, )~(q~, —q, ) as z~ —~ .

In the case when b1/4 —p1 /2c &O, b2/4 —p2 /2c &0,
the equal-energy contours of f(q, q, ) in the two-
dimensional (q~, q, ) space are as given in Fig. 6.

As is seen in the figure, there are five minima at

From the stability conditions: 5F/5q~=&F/&qz=Oi we
have the coupled Euler equations,

8q~ gf Bq,
QZ 8qy Qz 0qz

(1): (q~, q, ), (2): ( —qy,
—q, ), (3): (qy,

—q, ),
(4): ( —q~, q, ), (5): (0,o) .

q=( —,', 0,0)

That is, the CDW in the boundary region is given by

%(r }=r)e'"

(30)

(31)

Among these, the states (1), (2), (3), and (4) just corre-
spond to the degenerate stable states of the ordered phase
while the configuration (5) gives a metastable state. From
the characteristics of the energy contours, it is easily in-
ferred that as the coordinate z is varied the trajectory of
the lowest energy path for q(q (z ),q, (z ) ) to go from (1):
(q, q, ) to (3): (q, —q, ), [or equivalently from (2) to (4)]
would be as indicated by the dashed lines in Fig. 6.
Defining a curvilinear coordinate q, along the trajectory
of the lowest energy path, we see f(q, ) has a three-
minimum structure as shown in Fig. 7, which has essen-
tially the same feature as f(q ) in single-q —2D system.
(Compare with Fig. 2.)

Following the same discussion in the preceding section,
it is easily seen that the three variables; I q~(z ),
q, (z), e(1(z)I show the z dependences as schematically
given in Fig. 8. Notice, in the boundary region, we have,
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q 0

0

0-- —q Z

-L e0
e 11

11

FIG. 8. The expected spatial change of the variables
(q~, q„e») around the domain-boundary region. Notice in the
boundary region q=( 2,0,0) and e» We».

Case (i): tr))[100]

FICx. 6. Equal-energy contours of f(q~, q, ). There are five

minima among which four equivalent points (1), (2), (3), and (4)
are (degenerated) stable states, and the point (0,0) gives a meta-

stable state. The dashed lines indicate the trajectory of the
lowest energy path to transform the CD%' state from %~ to 4&.

q,
0

qz
it

The stress applied along the [100] direction does not
break the symmetry in the (q~, q, ) space. Hence the
change of the energy due to the application of the exter-

At the same time, the strain in the boundary region is
given by q q„

e„=0(&e „), (32)

which means that the region is strained relative to the
uniformly ordered state where the spontaneous strain has
a finite value e

& &
given by

(33)

(a)

(qs) (qs)

Thus, the anomalous incommensurate lattice effect is es-
tablished in two-q —3D case as well.

B. Eft'ect of stress

(b) (b')

qs

We now discuss, qualitatively, the effects of applying
external stresses from two different directions based on
the above thermodynarnical treatment. The results are
directly compared with the experimental observations as
described in Sec. II. t I

0
11

(c)

)

I

q
-qz

t I

(c ')

=q,

FIG. 7. The free energy density plotted against the curvilin-
ear coordinate along the lowest energy path, q, .

FIG. 9. The expected effect of the application of the external
stress. (a), (b), (c): When the stress is applied along the [100]
direction. (a'), (b'), (c'): When the stress is applied along the
[011]direction. Notice in the former case the system retains the
original symmetry of 2mm, while in the latter, it is lowered to 2.
The f(q, ) curves change from the solid lines to the dashed lines

given in (b) and (b'). Accordingly, the set of variables (q, e» )

change from the solid lines to the dashed lines given in (c) and
(c'). Notice in the case of [100] stress, the domain-boundary re-

gion narrows, while for [011] stress, the boundary region
translates without changing its size.
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nal stress o. is to deepen the four minima, (1), (2), (3), and
(4) in Fig. 6, by the same amount. Therefore, f(q, )

changes from the solid line (o =0) to the dashed line
given in Fig. 9(b). Accordingly the spatial variations of
the variables change from the solid lines to the dashed
lines in Fig. 9(c). That is, the volume of the boundary re-
gion is decreased. This means that when observed by a
diffraction experiment, the intensities of the anomalous
incommensurate satellites tends to diminish upon appli-
cation of the stress o. .

Case (ii): cr'(([011]

The stress o' applied along the [Ol1] direction does
break the symmetry in the (q, q, ) =plane from 2mm to
2. Hence, the application of the stress cr' will lift the de-
generacy of the energies between (1) and (3) [or (2) and
(4)]. The expected energy contours are represented
schematically in Fig. 9(a'). Hence, f(qs ) becomes asym-
metric as shown by the dashed line in Fig. 9(b'). The
corresponding change of the spatial variation of the vari-
ables are given in Fig 9(c. '). That is, the boundary re-
gion translates in the z direction without changing its
volume. On the other hand, the relative volumes between
the domains of the stable states on both sides of the
boundary are varied. When observed by a diffraction ex-
periment, the intensity of the anomalous incommensurate
satellite will not change, but instead, the relative intensi-
ties of the main satellites with qI and qII should change
upon application of the stress o'.

These predictions are qualitatively consistent with the
experimental results by Marmeggi et al.

V. SUMMARY AND DISCUSSIONS

To summarize, the long-standing puzzle concerning
the incommensurate structure of a-U is investigated us-
ing the analogy to the anomalous incommensurate lattice
in shape memory alloys. It is proposed that the domain-
boundary region which coherently connects the two vari-
ants of the incommensurate CDW states gives rise to the
anomalous incommensurability. The energy associated
with spatial variation of the phase factor of the CDW,
which couples strongly to the strain, is taken into ac-
count. The properties of the domain boundary region
have been studied based on Ginzburg-Landau-type treat-
ment. Particularly, the response of the system against
the stress has been investigated. The results are con-
sistent with the results of the diffraction experiments un-
der uniaxial stress.

In the present treatment, we have assumed that a11 the
coefficients a, , b;, d, (i: 1,2) in the Landau expansion
terms with respect to q and q, are positive [Eq. (23)].
This implies that without the coupling to the strain, the
stable q value is simply given by q=( —,', 0, 0). This situa-
tion allows us a simple physical interpretation of the elec-
tronic state in a-U as follows.

At higher temperatures ( T ) T, ) the 5f electrons are in
a valence-fIuctuating state. As the temperature is
lowered below T„ they start to develop long-range order
of the bond charges, which results in the pairing of the
neighboring atoms along the [100] direction. That is, the
intrinsic instability of o.-U is simply due to the tendency

of the 5f electrons to form local chemical bonds along
the [100] direction. The observed incommensurability of
the CDW is caused by the additional coupling effect with
strains.

Further, this picture allows us to develop a conjecture
concerning the properties of phonon dispersion at T )T, .
It was well established that the phonon dispersion be-
longing to X4 symmetry shows a strong V-shape dip
(softening) at q = —,

' when measured along the [100].
There has been the anticipation that, since the stable q
vector is in the oblique direction, the symmetric [—,, 0,0]
point is not the true minimum but the saddle point of the
dispersion surface with a negative curvature along the
[—,', g, g] direction. On the contrary, we conjecture that
the phonon dispersion itself would show normal behavior
giving the minimum at [—„0,0] because in the fluctuation
regime ( T)T, ), the coupling effect is suppressed whence
the intrinsic instability at [—,,0,0] would be manifested in

the properties of phonons.
One of the interesting aspects to be discussed is the line

profile of the anomalous incommensurate satellites. Since
the thickness of the boundary is expected to be spatially
restricted (probably of order of 10 nm), the line shape of
the anomalous incommensurate rejections would be
different from those of the major satellites which origi-
nate from the macroscopic domains. In fact, Smith and
Lander observed by neutron diffraction that the widths
of the anomalous incommensurate satellites were appreci-
ably broader than the major satellites. Recently, more
detailed observation of the line profiles were carried by
Grubel and Gibbs' using synchrotron x-ray diffraction.
The results revealed a remarkable asymmetry in the line
profiles of the anomalous incommensurate satellites,
which showed strong tailing towards the origin of the re-
ciprocal lattice. It is worthwhile to point out that the nu-
merical calculations of the diffraction patterns of the
anomalous incommensurate reAection by Fuchizaki and
Yamada" give the features consistent with the experi-
mental results by Griibel and Gibbs, although the calcu-
1ations are made for the case of shape memory alloys. In-
vestigations corresponding to o.-U case are 1eft as a future
problem.

Further, Fuchizaki and Yamada, based on their results
of calculated diffraction spectra, pointed out that as the
index h is increased, the anomalous incommensurate
reAection tends to show somewhat complicated profile.
In fact, in some calculation it exhibits a two-peak struc-
ture. This point is also left as a future problem to be test-
ed experimentally.

In the present analysis, the necessary conditions to pro-
duce the anomalous incommensurate rejections are con-
sidered essentia11y to reside in the following.

(i) Stabilization of the modulated structure with the
wave vectors forming the "star" in the reciprocal space
due to the symmetry operations.

(ii) Existence of strong coupling of the modulated order
parameter to the local strains. The former condition
gives rise to the domains of the equivalent modulated
structures, whence to the boundary regions which
coherently connects the neighboring domains. The latter
condition tends to deform the lattice of the boundary re-
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gions relative to the uniform region within the domains.
These conditions are not extraordinary ones. It seems
that there exist various kinds of materials with modulat-
ed structures [CDW's, SDW's, MDW's (mass density
waves), LDW's (lattice distortion waves), etc.] which
satisfy these necessary conditions. It would be interesting
to reinvestigate various candidate materials experimental-
ly to observe the similar anomalous incommensurate
effect.
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