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Fixed-spin-moment band-structure calculations of Fe3Ni show that the face-centered-cubic structure
is unstable with respect to small tetragonal distortions. Using the Bain transformation for the crossover
from the fcc to the bcc structure, we show that the ground state of Fe3Ni corresponds, in agreement with
experiment, to the bcc structure, which is by 1.75 mRy/atom lower in energy than the fcc structure. The
band structure of the nonmagnetic phase of fcc Fe3Ni reveals Fermi-surface nesting, which can give rise
to Kohn-like anomalies. This nesting behavior is very similar to what has recently been found in the
nonmagnetic Ni„A1, „compound [G. L. Zhao and B. N. Harmon, Phys. Rev. B 45, 2818 (1992)]. We
argue that this nesting behavior is one of the causes for the martensitic transition in Fe3Ni. The change
in the phonon-dispersion curves, which is connected with the formation of martensite, is evaluated by
using the method of Varma and Weber [C. M. Varma and W. Weber, Phys. Rev. Lett. 39, 1094 (1977)].
We find pronounced softening of the TA2 shear mode for q in the [110]direction and a polarization vec-
tor along the [001] direction. The search for Invar anomalies in fcc Fe,Ni has shown that there are two
competing effects, of which one is connected with the structural change from the fcc to the bcc structure,
and the other with the magnetovolume instability in the fcc structure, involving a transition from the
low-moment (LM) to the high-moment (HM) state in a critical range of volumes. It is argued that in
Fe& Ni and for x )0.65 the gain in energy due to the formation of martensite is more favorable as
compared to the gain in exchange energy from the LM~HM transition, whereas for x (0.65 is it more
favorable to form Invar.

I. INTRODUCTION

With a decrease in temperature Fe3Ni undergoes a
y~a transition at =700 K which is accompanied by on-
set of ferromagnetic order. This transition is of first or-
der with an unusual broad temperature hysteresis curve.
On the other hand, Fe3Ni is close in concentration to the
Invar region, where premartensitic behavior without a
structural phase transition is observed. Therefore, this
alloy is an ideal model system which allows us to study
both, the formation of martensite and the study of Invar
related effects. For recent reviews, in which the mutual
interplay of lattice and electronic degrees of freedom in
Invar systems is discussed in great detail, we refer to Ref.
1.

On the basis of band-structure calculations Invar relat-
ed effects in the fcc structure of Fe3Ni have recently been
discussed in great detail. Of particular interest is the
observation that in the fcc structure two types of fer-
romagnetic solutions exist, low-moment (LM) solutions
are found at low volumes, whereas high-moment (HM)
solutions are found at high volumes. In the HM ground
state the occupation of strongly antibonding majority-
spin bands is responsible for the HM and the large
volume of the unit cell. The manifestation of the LM
state is connected with charge transfer from these anti-

bonding majority-spin bands to nonbonding minority-
spin bands, which in turn causes the volume to shrink.
This kind of charge transfer also occurs with increasing
temperature and decreasing exchange splitting. There-
fore, Invar can be typified by stating that HM and LM
solutions approach each other with increase in T, and
that they finally merge at the Curie temperature T, . This
mechanism can be used to describe vanishing thermal ex-
pansion and other anomalies in Invar alloys.

In this paper we focus on the y —+a transition in Fe3Ni
and try to describe this transition in the frame of existing
theories for the formation of martensite. To this we will

briefly discuss a few theoretical concepts which are fre-
quently used.

Many nonmagnetic intermetallic compounds undergo
structural changes, usually from a less-closed-packed
structure at high temperatures to a closed-packed struc-
ture at low temperatures (for example, from bcc at high T
to fcc at low T). In many magnetic intermetallic com-
pounds the opposite occurs. A well-known example for
the latter case is the lattice deformation from fcc austen-
ite to bct (bcc) martensite in steel (Fe, „C ) with de-
creasing temperature. Bain's model for the formation of
martensite in steel is displayed in Fig. 1, which shows a
bct lattice delineated in the fcc austenite structure. The
bcc structure is then obtained by compressing the bct lat-
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FIG. 1. Bain's 1924 model for the formation of martensite

showing a bct lattice delineated in the fcc structure (Ref. 7).
The bcc lattice is produced by an appropriate tetragonal defor-
mation of the bct lattice.

II. THE y ~a TRANSITION IN Fe, „Ni„

The actual compound Fe3Ni is disordered down to
lowest temperatures making accurate first-principles cal-

tice. Other topological paths exist for the lattice defor-
mation from fcc to bcc, for example, the principal uni-
form shear, ao/12[112] of every successive (ill) plane
(ao is the lattice constant of the fcc structure).

In nonmagnetic intermetallics the formation of mar-
tensite is connected with the appearance of unusual prop-
erties, for example, a tweed precursor pattern, or an
anomalous low [110I TAz branch with a dip at q&0,
which depends strongly on temperature and composition.
Different proposals for the microscopic origins of such
structural transformations exist: that these are soft-mode
transitions, that they -are connected with the formation of
a charge density wave (CDW) (i.e., with a Peierls instabil-
ity), that singular Fermi-surface effects such as nesting
play a dominant role in the transformations and precur-
sors. The following picture emerges from these discus-
sions: Martensitic transformations are associated with
large anharmonicities, they are displacive, diffusionless,
and of first order. They cannot be described by a soft-
mode theory (i.e., a structural transformation of second
order). Most theoretical models are based on concepts
such as large anharmonicity effects, ' Fermi-surface nest-
ing, and Kohn anomalies, "' on Landau expansions, '

and on spin-analog models. ' ' While large anharmoni-
city effects are believed to be responsible for driving the
martensitic transformation (which means that the atomic
positions of the parent and the resultant structure are
highly correlated, leading to anomalous temperature
dependence of whole phonon branches), Kohn-like
anomalies are thought to be responsible for the transition
to an intermediate phase (precursor) and a resulting dip
in the lower transverse phonon branch.

In this paper we show that fixed-spin-moment (FSM)
band-structure calculations' ' can describe the y~o;
transition in the Fe, Ni system at zero temperature,
provided the calculation is done under the constraint
which keeps track of the correct volume change during
the transition. This is described in Sec. II. In Sec. III we
present calculations of phonon-dispersion curves which
are renormalized by precursor effects. In Sec. IV we ana-
lyze the formation of martensite and of Invar in the
Fe& „Ni„system by using a Ginzburg-Landau (GL)
description with FSM data as input. Section V contains
the summary and an outlook of future work.
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FICx. 2. (a) Fixed-spin-moment total energy of Fe3Ni along
the Bain path. fcc: r~s =2.60 a.u. , M=1.58p&/atom. bcc:
res=2. 67 a.u. , M=2. lip~/atom. (b) Change of the magnetic
moment along the Bain path.

culations unfeasible. Therefore, we have used the easiest
approach and considered ordered Fe3Ni.

Figures 2(a) and 2(b) show the results of spin-polarized
augmented-spherical-wave' band calculations (using the
FSM procedure) of the total energy and of the average
magnetic moment per atom of Fe3Ni for the transition
from the face-centered to the body-centered structure
(Bain's model). We find that fcc and bcc states are
separated by a tiny energy barrier of 0.25 mRy/atom and
that the bcc structure is lower in energy by 1.75
mRy/atom. So the bcc structure is the ground-state
structure of Fe3Ni in agreement with experiment. Also
the ground-state values of magnetic moment and
Wigner-Seitz radius of the bcc structure compare well
with experimental values. We expect that these results
will not much change if, in addition, statistical disorder is
taken into account. ' Note that similar calculations of
the energetics involved in the fcc-bcc lattice deformation
along the tetragonal Bain-deformation path have recently
been undertaken by Krasko and Olson for the case of
iron. They found that the ferromagnetic fcc phase cor-
responds to an enthalpy maximum, which means that the
fcc phase is unstable with respect to a tetragonal defor-
mation, and therefore cannot exist. This is very similar
to our results for the case of Fe3Ni. Note also that the
difference of enthalpies found by Krasko and Olson for
iron between the nonmagnetic fcc and the ferromagnetic
bcc phase is of the order of 5 mRy for zero pressure. In
intermetallic compounds such as Fe3Ni, which are even
more soft, we expect this energy difference to be smaller.
Therefore, the calculated energy difference of 1.75 mRy
for the case Fe3Ni can be considered as a good guess.

In the actual calculations we have used the constraint
that the next-nearest-neighbor distance between the Fe
atoms does not change during the transformation. The
resulting lattice constant of the bcc phase is 2ao/&3,
where ap is the original fcc lattice constant. This con-
straint implies furthermore that we have always a closely
packed structure at each step of the transformation.
Therefore, we expect that the energy differences found
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between undistorted and tetragonal distorted lattices are
not too unreasonable, in spite of the atomic sphere ap-
proximation used in the calculation.

With respect to the Invar effect in fcc Fe3Ni we have
recently shown that the FSM calculations confirm Kas-
par and Salahub's cluster calculations, according to
which the Invar effect is a consequence of collective
thermal excitations of electrons from the antibonding
majority-spin level into the close in energy lying
minority-spin level of nonbonding character, ' which is
equivalent to saying that the system undergoes a transi-
tion from the HM ground state to the LM state and then
to the nonmagnetic (NM) state with increasing tempera-
ture. The cooperative nature of this charge transfer is
due to the coherent coupling of the electrons involved in
local distortions, which do not cost much energy. The
energy difference between the HM ground state and the
excited LM state is of the order of 1 mRy/atom.

We now have the following energetic situation in
Fe3Ni. The ground state of Fe3Ni corresponds to the bcc
structure with a Wigner-Seitz radius of res=2. 67 a.u.
and a magnetic moment of M=2. 11p~/atom. The excit-
ed state is then the ferromagnetic ground state of the fcc
phase, which lies 1.75 mRy/atom higher in energy, with
rws =2.60 a.u. and M= 1.58p~/atom. The next and
overnext excited states are the LM and NM state of the
fcc phase, which lie 2.75 mRy and 7.75 mRy above the
ground-state energy of the bcc phase, respectively, while
the NM state of the bcc structure lies =6 mRy above its
ground-state value. Since the fcc LM state has only a
very shallow local-energy minimum, which is washed out
with increasing temperature, we expect the following
finite-temperature scenario. With increasing temperature
bcc Fe3Ni will become nonmagnetic at T=6 mRy =970
K and will simultaneously undergo a structural transfor-
mation to the close in energy lying nonmagnetic fcc state.
The actually observed transition temperature for this pro-
cess is lower, but we must bear in mind that these zero-
temperature considerations do not take into account the
impact of magnetic and structural Auctuations.

we believe that for the Invar composition Fe065Ni0 35
the situation will have changed. Now it is the fcc phase
with a ferromagnetic ground state that has the lowest en-
ergy, and excited states are (due to statistical disorder)
many close in energy lying states, which cover the whole
range between the HM ground state and the high-
temperature paramagnetic state. Yet it still does not cost
much energy to make small tetragonal or shear distor-
tions, which then are responsible for precursor effects in
Invar. The nonmagnetic bcc state lies too high in energy
to be of any importance and the system remains in the fcc
structure up to the melting temperature. Supercell calcu-
lations for Fe5Ni3, which corresponds to Fe0 625Ni0 375,
show that besides the HM ground state, there is only a
single LM state (which lies only 0.3 mRy above the HM
state). However, we expect that disorder will smear out
the shallow local-energy minimum of the LM state and
will lead to many close in energy lying HM-LM states
(this is a guess and will be checked by Korringa-
Kohn-Rostoker coherent-potential-approximation calcu-
lations' ).

III. FERMI-SURFACE NESTING
AND KOHN-LIKE ANOMALIES IN Fe3Ni
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FICx. 3. Fixed-spin-moment band structure of fcc Fe3Ni for
r~s =2.60 a.u. and M=O. Energies are relative to the Fermi en-

ergy.

The actual martensitic transformation which takes
place in Fe3Ni is complex and involves, as discussed
above, cooperative, rather than diffusive, large displace-
ments of atoms. A true microscopic theory is not at
hand. Yet several distinct concepts have proven to be
quite successful. ' In particular, there is the belief that
phonons and strong anharmonic interactions are in-
volved. Indeed, it seems that near all martensitic trans-
formations the vibrational frequencies of a particular
symmetry decrease. In cubic systems it is the TA2 shear
mode in the [110] direction and a polarization vector
along [1,1,0] (for bcc structures) and along [0,0, 1) (for
fcc structures) that are mostly aff'ected.

Of interest is the recent observation that the phonon
anomalies in the TAz branch of P-phase Ni, A1, „alloys
can be attributed to both strong electron-phonon interac-
tions and Fermi-surface nesting. " If this turns out to be
a common feature of martensitic transformations in non-
magnetic compounds, then the question is, whether this
is also true for magnetic martensitic phase transitions in
systems such as Fe3Ni. As we will show, there is strong
evidence from FSM energy-band calculations that this is
so.

To this we have calculated the hypothetical band struc-
ture of the paramagnetic high-temperature phase of fcc
Fe3Ni shown in Fig. 3, which mimics the situation just
before the simultaneous appearance of magnetism and
martensite. One characteristic feature is that the related
Fermi surface of two energy bands (bands 17 and 18)
shows nesting behavior with nesting wave vectors
Q& =0.8[1,1,0]7r/ao and Q2=0.6[1,1,0]vr/ao (see Fig. 4).
FSM calculations of the generalized susceptibility show
that this nesting behavior leads to a peak centered be-
tween Q, and Q2 on top of a large background. This is
shown in Fig. 5.
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FIG. 4. The Fermi surface of two bands (band 17: dashed
curve, band 18: solid curve) of nonmagnetic fcc Fe3Ni
(rws =2.60 a.u. ).
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It is known that such an enhanced susceptibility can
lead to Kohn-like anomalies in the phonon spectrum. In
order to check this, we have calculated the phonon-
dispersion curves by using the method of Varma and
Weber. Varma and Weber have shown that the dynam-23

ical matrix 2) can be decomposed into 2) =2), +2)2, where
2), contains the short-range interactions, which in this
work will be described by a Born —von Karman force-
constant model, while the coherent contribution 2)2 from
the electron-phonon interaction is given by

2)z(~a, lr'P, q) = ——g1 fk p fk+q, v

N k, I,, v ~k, p &k+q, v

X aa v'p
gk, p, k+q, v gk+q, v, k, p

in which K is a site index, a a Cartesian coordinate, p a
band index, and g the matrix element of the electron-
phonon interaction (the explicit form of g for a lattice
with a basis is given in Ref. 11).

The phonon spectrum which arises from 2)& is obtained
by fixing the slopes to rnatch the neutron-scattering re-
sults of Hallman and Brockhouse for fcc Feo 7Nio 3 at 296
K. The calculated phonon dispersion curves are shown24

in Fig. 6 for q along the [110]and along the [ill] direc-
tion. For the first case we find that the LA and the TA2

FIG. 5. Fixed-spin-moment results of the generalized suscep-
tibility y(q) along the [110] direction in fcc Fe,Ni. Note the
very large background.

branches are much affected by the nesting, whereas the
TA, branch is not influenced at all. Fermi-surface nest-
ing is really the source of this softening. This is obvious
from the dispersion curves along [111].There is no nest-
ing for this direction, therefore, the TA2 branch does not
show any softening effects.

The generalized susceptibility which enters 2)2, was
evaluated by using FSM band-structure data and the
tetrahedron method of Rath and Freeman, whereas the
electron-phonon matrix elements were approximated by
g(q/q, „). A self-consistent evaluation of the electron-
phonon matrix elements is still needed, since it will help
to clarify why the extrapolated sound velocities from
neutron-scattering data taken above the Curie tempera-
ture agree with the ultrasonic velocities, while there is a
marked difference below T&. Up to now, this difference
has been attributed to magnetoelastic excitations, which
are created during the acoustic measurements, while neu-
trons seem to couple less strongly to these excitations.
But this is speculative. Nonetheless, a first-principle eval-
uation of the electron-phonon matrix elements for small
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FIG. 6. Calculated phonon dispersion
curves of fcc Fe3Ni (a) along the [110] direc-
tion, and (b) along the [111] direction. The
large background of the susceptibility was sub-
tracted before the renormalized dispersion
curves (solid lines) were evaluated with an
electron-phonon coupling constant g =0.574
eV/A.
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q would show whether there is additional softening in the
magnetic phase due to a particular strong magnetoelastic
coupling. Recent measurements of the ultrasonic veloci-
ties in the Invar Fep 72Ptp 28 seem to prove that the nega-
tive thermal expansion in the ferromagnetic phase at low
temperatures is directly associated with the longitudinal-
acoustic-mode softening caused by magnetoelastic in-
teractions.

Because all calculations have been performed for or-
dered Fe3Ni, optical phonon branches are also obtained.
Due to the small mass difference between iron and nickel,
and due to disorder, the gap between acoustic and optical
branches will be smeared out. This explains why the ex-
perimental spectrum only shows acoustic-like phonon
branches. Although the experimental curves were ob-
tained at 296 K, which is very close to the onset of the
@~a transition at 273 K, the curves do not show any
kind of softening effects. This does not mean that the
Kohn anomaly, which we predict for the case of Fe3Ni, is

completely absent. Our calculations are zero-
temperature calculations, and it may be that disorder and
high temperatures can mask the softening of phonon

I

branches. On the other hand, we believe that in the case
of disorder, we also will have a strongly enhanced suscep-
tibility, which could be the electronic origin of large
anharmonicity. For clarification further experimental re-
sults and calculations, which include disorder, are need-
ed.

IV. FSM-GL THEORY OF THE MARTENSITIC
TRANSITION IN Fei —~ Ni

In order to study the stability of magnetic and
structural phases it is quite helpful to use an extended
Ginzburg-Landau expansion together with the FSM pro-
cedure. In the case of Invar, this allowed us to evaluate
the temperature evolution of the binding surface, and to
discuss the temperature variation of thermal expansion,
magnetic susceptibility, compressibility, specific heat,
etc. ' For the case of Fe3Ni the optimal GL energy cor-
responds to an expansion in terms of two magnetization
fields, one for Fe and one for Ni. In addition we must
add a constraint which fixes the average magnetic mo-
ment per atom. This leads to

&=—f d r[ ,'Bco +—yea +5co +a, (cu, —co)m, (r)+b, m, (r)+c,m, (r)+d, m, (r)+az(coz —co)mz(r)+bzmz(r)

+czmz(r)+dzmz(r)+ J,m, (r)mz(r)+ Jzm, (r)mz(r)+ J3m, (r)mz(r)], (2)

M(r) =
—,
' [3m, (r)+ mz(r) ] . (3)

Here, m1 is the Fe and m2 the Ni moment;
co=[V(T)—Vo]/Vo is the relative volume, Vo a refer-
ence volume, B the bulk modulus, and co, 2 are critical
volumina introduced for convenience. Gradient terms
have been left out, since we consider in this paper only
the zero-temperature case.

Calculations have been done according to the FSM
method. We fix the average magnetic moment M per
atom and determine the individual moments self-
consistently. In the case of Fe3Ni this has led to a bind-
ing surface with coexisting LM and HM states close to a
magnetovolume instability. GL parameters have been
obtained from a fit to the original FSM first-principles
binding surface. The discussion in Ref. 6 has shown that
the binding surface of Fe3Ni can be visualized as a super-
position of the binding surfaces of fcc Fe and fcc Ni.

For a discussion of structural changes, we must include
a series expansion in the Lagrangian strain tensor corn-

91 ( 933 922 /11 ) /

l2 I11 922 ~

(4)

where 210 has A symmetry and is identical with co in (2),
and g, and g2 have both E symmetry and correspond to
the tetragonal deformation (c/a —1) and to the shear de-
formation, respectively. The final form of the Landau ex-
pansion including lowest-order coupling to the magneti-
zation field is then of the form

ponents g; for the cubic m 3m Laue group. In order to
describe the fcc~bcc transition in terms of tetragonal or
shear deformations, it is better to reformulate this expan-
sion in terms of six linear combinations of the g,z

(i.e. ,
symmetry adapted strain tensor combinations), which
form the base of the irreducible representations. From
these six combinations we use for simplicity only

lP I11+ 122 + 133 ~

1&[M 210 &1 212]=.&[M]+— d r [ ,'(C11+2C1z )2)o+ —,
' (C,11—+6C„2+2C123)210

V

+ 648 ( C1111+ 8C1112+6 1122+ 2C1123 ) 90+ 12 ( Cl 1 1 C123 ) 90( 91 92 )
2 2

+ 4 ( C11 —C )1(2g 1m+I ) 2(+1 4/2&3)( C 1113C112+2C123 )211(211
—3gz)

+ —,'B, 210M —(1/23/3)B, 21,(M„+M 2M, )+ ,'B,g (M„2——M )—
+K, (M M +M M, +M, M )],
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where M, go, g, , g2, are assumed to depend on r, so that at
finite temperatures these parameters can be decomposed
into homogeneous and fluctuating contributions. These
Auctuation terms can be used to calculate the magneto-
elastic excitation spectrum or the softening of phonon
modes due to static deformations. ' ' A more detailed
account of this finite-temperature theory will be present-
ed elsewhere. Here we consider only zero temperature.

The Landau expansion shows that in principle one
would have to treat tetragonal and shear deformations on
an equal footing, since the Landau coefficients for both
strains are equally large. However, this makes a fit to
first-principles FSM data difficult, since FSM total-energy
calculations have only been done for deformation along

I

the Bain path, which corresponds to tetragonal distor-
tions. Therefore, we will neglect contributions from
shear deformations. Furthermore, Fig. 2(a) shows that
the derivative of the total energy, r)E/r)1l, , with respect
to tetragonal distortions vanishes in the fcc and bcc
ground state. This implies that the term which describes
the linear coupling ofI to g& must be small or vanishes,
and that a quadratic coupling of the order parameter to
the strain field must be taken into account. In order to
get a first impression of the martensitic transition along
the Bain path, we neglect the LM state and use the fol-
lowing expansion in powers of the average magnetic mo-
ment per atom and strain fields:

1&[M rip g&]:+ J d r I(B /2) gp + l rip+6&p +(a, +a2'rip+ a, rip+Dr/, )M + ( b +&p'gp+D rli )M
V

+cM +dM + Arj, +BE,+B'gp1), +C1),+C'1)pg, ] .
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=2.11'&/atom, and (b) for the correct magne-
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TABLE I. Coefticients of the fixed-spin-moment Ginzburg-Landau theory.

1193.112 —445.963

a&

—0.975 —28.699 —51.95 0.415

B'

5.631 0.049 33.773 —286.879 —271.653 11.2

M =2. 11—57 649.242(c/a —&2/2)

X [1—9.652 309 sin (c/a —+2/2) ] . (7)

The resulting surface in Fig. 7(b) has now two local
minima corresponding to the fcc and the bcc structure.
The energy difference between the fcc and bcc minima is
of the correct order, while the energy barrier around the
fcc minimum is a bit too large (0.5 mRy).

We believe that this Landau expansion will give a qual-
itatively correct description of Fe3Ni also at finite tem-
peratures. Fluctuations of strain and magnetization fields
will destabilize the ferromagnetic bcc phase and will lead
at high temperatures to a nonmagnetic fcc phase.

V. CONCLUSIONS

The present work is a continuation of the zero-
temperature calculations of the physical properties of
Fe3Ni. In Ref. 6 we have shown that Invar properties

Values for the coefticients of this simple Landau expan-
sion can be obtained by a fit to FSM total energies for the
Bain transformation. They are listed in Table I. The re-
sulting binding surface of energy contour lines in the
(c/a, rws) plane is shown in Figs. 7(a) and 7(b) for two
different cases. In case (a) we show the projection of the
binding surface for constant M=2. 11pz/atom. This pro-
jection shows that the surface has only one local
minimum corresponding to the bcc phase, and a saddle
point corresponding to the fcc phase. For any constant
M one only gets one local minimum. Also the resulting
slopes at c/a=1 are not finite as one would expect. The
reason for this behavior is obvious from Fig. 2(b) and
from the Landau expansion. Figure 2(b) shows that the
moment is not constant or does not vary linearly for the
Bain path, but exhibits a minimum at c /a = 1 and at a
maximum at c/a =&2/2. With respect to the Landau
expansion, there is only a fourth-order term of g&, which
is insuScient to obtain a second minimum on the binding
surface due to the expansion alone (a second minimum
would require an expansion up to eighth order). In order
to solve this problem, we have added the constraint to the
Landau expansion, that the magnetic moment varies ac-
cording to Fig. 2(b) along the Bain path. This can be
done very accurately by imposing for the variation of the
moment the condition

arise from the particular position of the Invar Fermi lev-
el. At zero temperature many electrons occupy Aat
bands of strongly antibonding character. With increasing
temperature these states can be depopulated resulting in a
lattice contraction and a rapid decrease of the magnetic
moment. We have explained that this is a cooperative
effect and that a typical excitation energy of 1 mRy is in-
volved.

In the present paper we have shown that there is
another excitation energy connected with the structural
transformation from fcc to bcc. Indeed, at zero tempera-
ture fcc Fe3Ni is unstable with respect to small tetragonal
or shear deformations. We have found that the bcc phase
is about 1.75 mRy lower in energy than the fcc phase.
Although the absolute values of these two excitation en-
ergies may change (for example, in a full potential calcu-
lation), there seems to emerge a unified picture for both
the formation of Invar and the formation of martensite.

The magic electron numbers for ferromagnetic and an-
tiferromagnetic Invar are connected with the specific po-
sition of the Fermi level at the crossing of antibonding
majority-spin and nonbonding minority-spin states in the
antibonding region. While this might also happen in ele-
mental systems such as fcc iron for appropriate values of
the Wigner-Seitz radius, there is another feature that ap-
pears in the intermetallic compound Feo 65Nio 35 due to
the presence of Ni, which stabilizes the high-volume
high-moment fcc ground state. The presence of Ni is also
responsible for the appearance of a second minimum, the
LM ground state. FSM calculations show that coexisting
HM and LM states are still present for composition
Fe3Ni.

On the other hand, nickel causes a lattice softening
which for a Ni concentration below some critical value
leads to the observed martensitic transformation. Below
this critical concentration of Ni, there are not enough d
electrons in the strongly antibonding states to maintain
the high-volume high-moment state. These zero-
temperature findings agree with the observation that
Fe3Ni undergoes a structural transformation from the
more-closed-packed structure (fcc) at high temperatures
to a less-closed-packed ferromagnetic structure (bcc) at
low temperatures.

Furthermore, we have shown that as in the case of In-
var, the martensitic transition can be understood on the
basis of a Ginzburg-Landau theory which relies on FSM
results. The martensite binding-surface obtained with the
help of an extended version of this FSM-CsL formulation
displays two local minima, which correspond to the bcc
and the fcc phase, respectively. Further calculations are
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needed to elucidate the finite-temperature behavior. We
expect from a proper calculation based on a spin and
strain fluctuation theory, that for Fe3Ni, the local bcc
and fcc minima, as well as the local minima correspond-
ing to the HM and LM states, will merge together at the
martensitic transition.
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