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Ab. initio molecular dynamics for liquid metals
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We present ab initio quantum-mechanical molecular-dynamics calculations based on the calcula-
tion of the electronic ground state and of the Hellmann-Feynman forces in the local-density approx-
imation at each molecular-dynamics step. This is possible using conjugate-gradient techniques for
energy minimization, and predicting the wave functions for new ionic positions using sub-space align-
ment. This approach avoids the instabilities inherent in quantum-mechanical molecular-dynamics
calculations for metals based on the use of a fictitious Newtonian dynamics for the electronic de-
grees of freedom. This method gives perfect control of the adiabaticity and allows us to perform
simulations over several picoseconds.

A few years ago Car and Parrinello introduced an
approach that unifies molecular-dynamics techniques
for the calculation of the atomic structure with the
local-density approximation2 (LDA) for electronic struc-
ture calculations, with the complete set of quantum-
mechanical many-body forces calculated using the
Hellmann-Feynman theorem. The basic idea is the in-
troduction of a fictitious dynamics for the electronic de-
grees of freedom. Since the electronic wave functions
of the LDA are meaningful only if the electrons are in
their ground state for the instantaneous ionic configura-
tion, an essential condition for the practicability of the
Car-Parrinello method is that the transfer of energy be-
tween the atomic and electronic subsystems is small in
order to prevent the electron states to drift away from
the ground states. This transfer of energy is difBcult to
control in metallic systems. In insulators, the width of
the electronic band gap divided by the fictitious mass of
the electronic degrees of freedom defines the separation
in the characteristic frequencies of the atomic and elec-
tronic motions. In metals, this separation is absent and
there are essentially two mechanisms that drive metal-
lic systems into nonadiabaticity: a resonance between
the atomic and electronic frequencies opening a channel
for energy transfer and a level crossing between occupied
and empty electron states. s The operational solution of
these nonadiabaticity problems is (a) to perform peri-
odic energy minimizations to bring the system "back
to the Born-Oppenheimer surface" or (b) to attach the
electronic subsystem to a Nose thermostat that prevents
the heating up of the electron system. s Clearly the al-
ternative is to perform the minimization of the Kohn-
Sham functional for the electronic total energy at any
time step of the molecular-dynamics simulation, so that
the problem of the nonadiabaticity does not arise at all.
An efficient way to perform the minimization process are
conjugate-gradient methods. These techniques have
now been developed to a point were it is possible to per-
form canonical molecular-dynamics simulations for liquid
metals over periods of several picoseconds, with complete
control over deviations from adiabaticity and good en-

ergy conservation. Applications for liquid metals ranging

from Na to Ge demonstrate very good agreement with the
measured atomic structure factors and electronic spectra.

Our technique for performing a complete calculation
of the LDA ground state after each molecular-dynamics
step is based on the conjugate-gradient techniques de-
veloped by Payne and co-workers. s s and used in self-
consistent electronic structure calculations by Bylander,
Kleinman, and Lee.s io The method is a doubly iterative
one: in the inner loop the wave functions for each k point
in the Brillouin zone and each band are improved by a
preconditioned conjugate-gradient method as described
in Ref. 9 until the change in the energy eigenvalue is
smaller than 10 s eV (or smaller than 30% of the change
in the first step). After running over all bands (includ-
ing some empty bands), a subspace diagonalization is
performed, the new Fermi energy is calculated using a
Gaussian broadening of the energy levels, and the charge
density is updated. The problems arising from using
fractional occupation numbers and their consequences for
ab initio molecular-dynamics simulations have been dis-
cussed by Weinert and Davenportii and by Wentzcov-
itch, Martins, and Allen. i2 It has been shown that the
variational quantity is not the internal energy but a gen-
eralized free energy. To prevent charge sloshing, the mix-

ing scheme proposed by Kerkeris is used. This scheme
has the advantage of damping the oscillations in the low-q

components of the charge density. The electronic-energy
minimization is terminated when the change in the en-

ergy per atom becomes smaller than 1.5 x 10 s eV.
The atomic motion is described by Nosh dynamicsi4

generating a canonical ensemble at prefixed temperature.
The equations of motion are integrated using a fourth-
order predictor-corrector algorithmis' s which allows the
use of time steps as large as 3 x 10 s with good energy
conservation. After moving the atoms, the new wave
functions are estimated by using the subspace alignment
proposed by Arias, Payne, and Joannopoulos.

The calculation has been performed for a nonlocal
pseudopotential in Kleinman-Bylander factorization, us-

ing the real-space projection scheme of King-Smith,
Payne, and Lin. 7

The first test was performed for a 54-atom ensemble
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representing liquid Na at T = 400 K and a number den-
sity of n = 0.02436 A s. A Vanderbilt pseudopotentiali~
with a cutoff radius of r, = 2.0 a.u. has been used. The
simulation is started for a configuration of the liquid gen-
erated using classical molecular dynamics based on:pair
forces calculated by pseudopotential perturbation theory
from the same pseudopotential. The starting wave func-
tions for this configuration are generated by diagonaliz-
ing the Hamiltonian in a basis of 200 plane waves. For
the ab initio molecular dynamics (MD) the Kohn-Sham
orbitals at the I'-point are expanded into plane waves
with a maximum kinetic energy cutoff of 6 Ry, the time
step for the integration of the atomic equations of mo-
tion being Kt = 3 x 10 is s. For Na the prediction of
the wave function by subspace alignment leads to a state
whose energy does not difFer from the ground-state en-

ergy by more than 3 x 10 s eV/atom. Under those condi-
tions the total energy per ion remains constant within 1
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meV for a run over 2.5 ps [Fig. 1(a)]. Ensemble averages
are calculated from the last 1.5 ps of the run. The pair
correlation function [Fig. 1(b)] is in excellent agreement
with experiment. is The coordination number of N, = 13
(obtained by integrating the radial distribution function
4nR2g(R) up to the first minimum) corresponds to an
atomic arrangement similar to a dense random sphere
packing. Integration over the symetric part of the first
peak leads to a lower value for the coordination number
N, = 10. The diffusion constant (calculated by aver-

aging over a number of different starting configurations,
for details see Ref. 10) is approximately D = 6 x 10
cm2/s, again in reasonable agreement with experiment
(D = 5.3 x 10 s cm~/s; Ref. 19).

A more critical test than the free-electron metal Na is
the "bad metal" liquid Ge. We use again a nonloeal Van-
derbilt pseudopotential with r, = 1.5 a.u. and Kleinman-
Bylander factorization for s and d nonlocality. With this
pseudopotential, we calculate the lattice constant of n-
Ge at T = 0 K with the diamond structure within 1.3% of
the experimental value and a reasonable pressure for the
n ~ P transition (P, = 75 kbar, expt. P, = 100 kbar),
see Fig. 2. For the ab initio molecular-dynamics calcu-
lations, the wave functions at the I' point are expanded
in a basis of 7000 plane waves with a cutof energy of 12
Ry. For the real- and reciprocal-space representation of
the potential and the charge density a 32 x 32 x 32 mesh
is used. For the 64-atom ensemble, we calculated the
wave functions for 138 bands, i.e., 10 bands more than
necessary to accommodate the 256 valence electrons. A
Gaussian broadening width of 0.2 eV was used. Again
the simulation was started for a configuration generated
by classical molecular-dynamics run. The temperature
is T = 1250 K, the number density is n = 0.04385 A. s.
The prediction of the wave function leads to a state whose

energy does not differ from the ground-state energy by
more than 5 x 10 s eV/atom. The change in the total
energy per atom (Fig. 3) was 4 meV over a run of 2.7
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FIG. 1. (a) Variation of the total energy (upper curve)
and of the potential energy (lower curve) of liquid Na at
T = 400 K along an ab initio MD run of 2 ps. (b) Pair
correlation function for liquid Na at T = 400 K; full curve-
ab initio MD, squares —experiment (Ref. 18). (c) Bond-angle
distribution function g3(8, R ), calculated for difFerent values
of the maximum bond length: R = 3.5, 4.0, 4.5, and 5.0 A. .
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FIG. 2. Energy E and pressure P vs volume V for solid
Ge in difFerent crystal structures, calculated arith the pseu-
dopotential used in the ab initio MD simulation: cubic dia-
mond (CD), P—Sn, face-centered cubic (fcc), hexagonal close-
packed (hcp), and simple cubic (sc).
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FIG. 3. Variation of the free-energy (upper curve) and of
the potential energy (lower curve) of liquid Ge at T = 1250
K along an ab initio MD run of 2.7 ps.

ps (i.e., 900 steps with Bt = 3 x 10 is s); this is less
than 0.1% of the cohesive energy, and corresponds to a
temperature of 50 K. The kinetic energy is stabilized by
the Nose thermostat.

The detailed analysis of the atomic structure shows
that the atomic arrangement in liquid Ge is very differ-
ent from that in normal liquid metals. The coordination
number, obtained by integrating the radial distribution
function up to the first minimum at R = 3.35 A. is
N, = 6.2, i.e. , considerably lower than the value N, =
10 —12 characteristic for normal metals, but in good
agreement with experiment (N, = 6.8; Ref. 18). Besides
the first peak, there are only weak local maxima in the
pair correlation function g(R) whose experimental posi-
tion and amplitude are well reproduced by the ab initio
simulation (Fig. 4). Additional information on the short-
range order can be obtained from higher-order correlation
functions, in particular the triplet correlation function.
Triplet correlations are conventionally expressed in terms
of the bond angles between two bonds around a central
atom with a maximum bond length R . This means
that the bond-angle distribution function gs(8, R ) is
just the radial integral over the triplet correlation func-
tion gs(8, Ri, R2) for Ri ( ~ and Rz ( ~. ~ is
restricted to distances smaller than the position of the
first minimum in g(R). Figure 5 shows that short bonds
(R & 2.80 A.) form angles broadly distributed around
the tetrahedral angle (8 = 109'), whereas longer bonds
form angles distributed around 8 —109' and 8 60'.
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FIG. 5. Bond-angle distribution function g3(8, R ) for
liquid Ge at T = 1250 K calculated for different values of
the maximum bond length R

The bond-angle distribution gs(8, R ) in liquid Ge is
very different from that in liquid Na [Fig. 1(c)] with pro-
nounced peaks close to the icosahedral bond angles of
8 = 63.5' and 8 = 116.5'.

The pair correlations in liquid Ge are reasonably well
described on the basis of pseudopotential-derived volume
and pair forces. is zs'~o We find that differences exist at
the level of triplet correlations and in the fluctuations of
the local atomic arrangements. These local fiuctuations
become important at lower temperatures where the sys-
tem approaches the liquid metal —amorphous semiconduc-
tor transition (details will be described elsewhere). The
good agreement between the classical and the quantum-
mechanical simulations is also important from a compu-
tational point of view: it allows one to restrict the time-
consuming Hellmann-Feynman-type simulation to states
close to the equilibrium and to approach equilibrium in
the classical mode. The construction of pseudopotentials
that are useful in both aspects has been discussed very
recently by Kresse, Hafner, and Needs. sc

The electronic density of states (DOS) of liquid Ge
obtained by a Gaussian broadening (width 0.4 eV) of
the 8 x 150 lowest eigenvalues at the star of the spe-
cial k point (0.25, 0.25, 0.25) and averaged over ten con-
figurations is shown in Fig. 6. The characteristic fea-
ture is the deep pseudogap about 5 eV below the Fermi
level, which is independent of the k space sampling (cf.
Refs. 21 and 23). It is interesting that the calculated
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FIG. 4. Pair correlation function g(R) for liquid Ge at
T = 1250 K: full curve —ab initio MD, squares —experiment
(Ref. 18).

FI:G. 6. Electronic density of states n(E) for liquid Ge at
T = 1250 K: full curve —ab initio MD simulation, squares—
measured photoemission intensity (Ref. 22).
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DOS of liquid Ge is very difFerent from that of any of
the crystalline phases: it has neither the characteristic
signature of the spa hybridization dominating the DOS
of the semiconducting n and the metallic P phases, nor
the fr"" electron-like character of the metallic simple-
hexagonal high-pressure phase. zi The calculated DOS is
in very good agreement with the measured photoemis-
sion intensitiessz (the experimental resolution is about
0.2 eV) and earlier supercell —linear-muffin-tin-orbital cal-
culations for models of liquid Ge.2s zi The breakdown of
the sps hybridization is a consequence of the profound
change of the atomic short-range order. On melting the
coordination number increases from N, = 4 to N, = 6.5,
and the angular correlation characteristics for tetrahe-
dral bonding are reduced significantly. The pseudogap in
the electronic DOS is characteristic for the heavier liquid
group-IV elements (Ge,Sn,Pb), but not for l-Si, which is
much more fr""-electron-like. It has been shown s that
the formation of the pseudogap is due to an increasing
s-p splitting arising from relativistic effects. In Ge it is
enhanced by a partial penetration of the 4s electrons into
the 3d core, leading to a stronger electron-ion interaction.

We have shown that on the basis of improved
conjugate-gradient techniques and the extrapolation of
wave functions using subspace-alignment ab initio molec-
ular dynamics for liquid metals are feasible without the
introduction of a fictitious pseudo-Newtonian dynamics
of the electrons. The calculation of the exact Hellmann-
Feynman forces at each time step and the use of an accu-
rate predictor-corrector algorithm for the ionic equations
of motion allow the use of time steps (Et 3 x 10
s) which are of the same order as those used in classical
molecular-dynamics routines. This permits one to per-
form MD runs over several picoseconds. A run of 2.5 ps
for liquid Na took less than 12 h CPU time on a Fujitsu-
VP 50, a 2.7 ps run for liquid Ge 110 h CPU time. How-
ever, to further improve the energy conservation and to
extend the length of the simulation remains a challenge.
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nische Universitit Mien. The support of Dr. M. C.
Payne in the early stage of this work is gratefully ac-
knowledged.

iR. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
~W. Kohn and L.J. Sham, Phys. Rev. A 140, 1133 (1965).
G. Pastore, E. Smargiassi, and F. Buda, Phys. Rev. A 44,
6334 (1991).
I. Stich, R. Car, and M. Parrinello, Phys. Rev, B 44, 4262
(1991).
P.E. Blochl and M. Parrinello, Phys. Rev. B 45, 9413
(1992).
M.P. Teter, M.C. Payne, and D.C. Allan, Phys. Rev. B 40,
12255 (1989).
R.D. King-Smith, M.C. Payne, and J.S. Lin, Phys. Rev. B
44, 13063 (1991).
T.A. Arias, M.C. Payne, and J.D. Joannopoulos, Phys. Rev.
B 45, 1538 (1992).
D.M. Bylander, L. Kleinman, and S. Lee, Phys. Rev. B 42,
1394 (1990).
D.M. Bylander and L. Kleinman, Phys. Rev. B 45, 9663
(1992).
M. Weinert and J.W. Davenport, Phys. Rev. B 45, 13709
(1992).
R.M. Wentzcovitch, J.L. Martins, and P.B. Allen, Phys.

Rev. B 45, 11372 (1992).
»G.P. Kerker, Phys. Rev. B 23, 3082 (1981).
i4S. Nose, J. Chem. Phys. 81, 511 (1984).

C.W. Gear, Numerical Initial Value Problem in Ordinary

Differential Equations (Prentice-Hall, Englewood Cliffs, N J,
1971), Chaps. 9 and 10.
A. Arnold, N. Mauser, and J. Hafner, J. Phys. Condens.
Matter 1, 965 (1989).
D. Vanderbilt, Phys. Rev. B 32, 8412 (1985).

sY. Waseda, The Structure of Non Crystalline Ma-terials

Liquids and Amorphous Solids (McGraw-Hill, New York,
1981).
S.J. Larsson, C. Roxbergh, and A. Lodding, Phys. Chem.
Liq. 3, 137 (1972).
G. Kresse, J. Hafner, and R.J. Needs, J. Phys. Condens.
Matter 4, 7451 (1992).

iW. Jank and J. Hafner, Europhys. Lett. 7, 623 (1988).
G. Indlekofer, P. Oelhafen, R. Lapka, and H.J. Guntherodt,
Z. Phys. Chem 157, 465 (1988).
W. Jank and J. Hafner, Phys. Rev. B 41, 1497 (1990).


